
Developer's Guide

This
guide
provides
introductory
conceptual
material
and
how-to
explanations
for
routine
tasks
for
developers
using
Spread
for
ASP.NET.
It
describes
how
an
application
developer
would
use
the
properties
and
methods
in
Spread
to
create
spreadsheets
and
grids
on
Web
Forms,
bind
to
databases,
and
customize
the
component
for
your
application.

Getting
Started
Understanding
the
Product
Working
with
the
Spread
Designer
Customizing
the
Appearance
Customizing
User
Interaction
Customizing
with
Cell
Types
Managing
Data
Binding
Managing
Data
in
the
Component
Managing
Formulas
Managing
File
Operations
Using
Sheet
Models
Maintaining
State
Working
with
the
Chart
Control
Using
Touch
Support
with
the
Component

For
complete
API
reference
information,
refer
to
the
Assembly
Reference
(on-line
documentation).

For
a
complete
list
of
documentation,
refer
to
the
Spread
for
ASP.NET
Documentation
(on-line
documentation).

Spread for ASP.NET Developer’s Guide 0

Copyright © GrapeCity, Inc. All rights reserved.

1 Table of Contents

Developer's
Guide 0

1. Table
of
Contents 1-16

Getting
Started 17

Handling
Installation 17

Installing
the
Product 17

Licensing
a
Trial
Project
after
Installation 17

End-User
License
Agreement 17-18

Creating
a
Build
License 18-19

Handling
Redistribution 19-20

Product
Requirements 20

Handling
Variations
In
Windows
Settings 20-21

Working
with
the
Component 21

Adding
a
Component
to
a
Web
Site
using
Visual
Studio
2015
or
2017 21-24

Adding
a
Component
to
a
Web
Site
using
Visual
Studio
2013 24-28

Adding
a
Component
to
a
Web
Site
using
Visual
Studio
2012 28-30

Adding
a
Component
to
a
Web
Site
using
Visual
Studio
2010 30-33

Adding
and
Using
JavaScript
Intellisense 33

Adding
JavaScript
IntelliSense
for
Visual
Studio
2012 33-35

Adding
JavaScript
IntelliSense
for
Visual
Studio
2010 35-36

Understanding
Browser
Support 36-38

Understanding
Parts
of
the
Component
Interface 38-39

Working
with
Collection
Editors 39

Working
with
Web
Parts 40

Working
with
Windows
Azure 40

Working
with
Microsoft
ASP.NET
MVC
5 40-44

Working
with
Microsoft
ASP.NET
MVC
3 44-48

Copying
Shared
Assemblies
to
Local
Folder 48-49

Working
with
Strongly
Typed
Data
Controls 49

Spread for ASP.NET Developer’s Guide 1

Copyright © GrapeCity, Inc. All rights reserved.

Getting
More
Practice 49

Understanding
Procedures
in
the
Documentation 49-51

Getting
Technical
Support 51

Understanding
the
Spread
Wizard 51

Starting
the
Spread
Wizard 51-52

Using
the
Spread
Wizard 52-53

Tutorial:
Creating
a
Checkbook
Register 53

Adding
Spread
to
the
Checkbook
Project 53

Adding
Spread
to
a
Project 53-55

Setting
Up
the
Rows
and
Columns
of
the
Register 55-57

Setting
the
Cell
Types
of
the
Register 57-59

Adding
Formulas
to
Calculate
Balances 59-60

Understanding
the
Product 61

Product
Overview 61-62

Features
Overview 62-63

AJAX
Support 63

ASP.NET
AJAX
Extenders 63-64

Built-In
Functions 64

Cell
Types 64-65

Chart
Control 65

Client-Side
Scripting 65

Conditional
Formatting 65

Context
Menu 65

Corner
Customization 65-66

Customized
Appearance
(Skins) 66

Data
Binding 66

Footers
for
Columns
or
Groups 66

Frozen
Rows
and
Columns 66

Goal
Seeking 66

Grouping 66

Spread for ASP.NET Developer’s Guide 2

Copyright © GrapeCity, Inc. All rights reserved.

Headers
with
Multiple
Columns
and
Rows 66

Hierarchical
Display 66-67

Import
and
Export
Capabilities 67

Load
on
Demand 67

Multiple-Line
Columns 67

Multiple
Sheets 67

PDF
Support 67

Printing 67-68

Row
Filtering 68

Row
Preview 68

Row
Template
Editor 68

Searching
Features 68

Sorting
Capabilities 68

Spannable
Cells 68

Sparklines 68

Spread
Designer 68-69

Spread
Wizard 69

Theme
Roller 69

Title
and
Subtitle 69

Touch
Support 69

Validation
Controls 69

Concepts
Overview 69

Shortcut
Objects 69-71

Object
Parentage 71

Underlying
Models 72-73

Cell
Types 73

SheetView
versus
FpSpread 73

Formatted
versus
Unformatted
Data 73-74

Zero-Based
Indexing 74

Client-Side
Scripting 74

Spread for ASP.NET Developer’s Guide 3

Copyright © GrapeCity, Inc. All rights reserved.

Maintaining
State 74

Namespaces
Overview 75

Working
with
the
Spread
Designer 76

Starting
the
Spread
Designer 76

Understanding
the
Spread
Designer
Interface 76-77

Spread
Designer
Menus 77-78

File
Menu 78

Home
Menu 78-79

Insert
Menu 79

Data
Menu 79

View
Menu 79

Settings
Menu 80

Chart
Tools
Menu 80

Sparklines
Menu 80-81

Spread
Designer
Toolbars 81

Spread
Designer
Editors 81

Alternating
Rows
Editor 81-82

Cells,
Columns,
and
Rows
Editor 82-83

ContextMenu
Collection
Editor 83-86

DataKey
Names
(String
Collection)
Editor 86-87

Formula
Editor 87-88

GroupInfo
Collection
Editor 88-89

Header
Editor 89-90

NamedStyle
Collection
Editor 90-91

Row
Template
Editor 91-92

SheetSkin
Editor 92-93

SheetView
Collection
Editor 93-94

Spread
Designer
Context
Menus 94-95

Using
the
Spread
Designer 95-96

Spread for ASP.NET Developer’s Guide 4

Copyright © GrapeCity, Inc. All rights reserved.

Customizing
Sheets,
Rows,
and
Columns
in
Spread
Designer 96-97

Customizing
Cells
in
Spread
Designer 97-99

Adding
Formulas
to
Cells 99-101

Saving
and
Opening
Design
Files 101-102

Applying
Changes
and
Closing
Spread
Designer 102

Customizing
User
Interaction 103

Customizing
Interaction
with
the
Overall
Component 103

Displaying
Scroll
Bars 103-104

Displaying
Scroll
Bar
Text
Tips 105

Customizing
the
Scroll
Bar
Colors 105-106

Allowing
Load
on
Demand 106-108

Customizing
Interaction
Based
on
Events 108

Handling
the
Tab
Key 108

Customizing
the
Graphical
Interface 109-110

Searching
for
Data
with
Code 110-111

Adding
a
Context
Menu 111-113

Working
with
AJAX 113

Enabling
AJAX
support 113-114

Using
ASP.NET
AJAX
Extenders 114-115

Customizing
the
Toolbars 115

Customizing
the
Command
Bar
on
the
Component 115-117

Customizing
the
Command
Buttons 117-120

Changing
the
Command
Button
Images 120-122

Hiding
a
Specific
Command
Button 122-123

Displaying
the
Sheet
Names 123-125

Customizing
Page
Navigation 125-128

Customizing
Page
Navigation
Buttons
on
the
Client 128-129

Customizing
the
Hierarchy
Bar 129-130

Customizing
Interaction
with
Rows
and
Columns 130

Allow
the
User
to
Move
Columns 130-131

Spread for ASP.NET Developer’s Guide 5

Copyright © GrapeCity, Inc. All rights reserved.

Allowing
the
User
to
Resize
Rows
or
Columns 131-132

Freezing
Rows
and
Columns 132-133

Setting
up
Row
Edit
Templates 133-134

Setting
up
Preview
Rows 134-135

Managing
Filtering
of
Rows
of
User
Data 135-136

Creating
Filtered
Rows
and
Setting
the
Appearance 136-140

Customizing
Simple
Filtering
of
Rows
of
User
Data 140

Using
Row
Filtering 140-141

Customizing
the
List
of
Filter
Items 141-142

Creating
a
Completely
Custom
Filter 142-143

Using
Enhanced
Filtering 143-145

Using
the
Filter
Bar 145-148

Customizing
Grouping
of
Rows
of
User
Data 148

Using
Grouping 148-149

Allowing
the
User
to
Group
Rows 149-150

Setting
the
Appearance
of
Grouped
Rows 150-152

Customizing
the
Group
Bar 152-153

Creating
a
Custom
Group 153

Compatibility
with
Other
Features 153-154

Customizing
Sorting
of
Rows
of
User
Data 154-155

Allowing
User
Sorting 155-156

Customizing
Interaction
with
Cells 156

Adding
a
Note
to
a
Cell 156-157

Adding
a
Tag
to
a
Cell 157-159

Locking
a
Cell 159-161

Using
Conditional
Formatting
in
Cells 161

Creating
Conditional
Formatting
with
Rules 161-162

Color
Scale
Rules 162-163

Data
Bar
Rule 163-165

Highlighting
Rules 165-167

Spread for ASP.NET Developer’s Guide 6

Copyright © GrapeCity, Inc. All rights reserved.

Icon
Set
Rule 167-168

Top
or
Average
Rules 168-169

Conditional
Formatting
of
Cells 169-170

Customizing
Selections
of
Cells 170

Specifying
What
the
User
Can
Select 170-172

Working
with
Selections
of
Cells 172-173

Customizing
the
Appearance
of
Selections 173-174

Managing
Printing 174

Printing
a
Spreadsheet 174-175

Adding
Headers
and
Footers
to
Printed
Pages 175

Customizing
the
Appearance 176

Customizing
the
Appearance
of
the
Overall
Component 176

Customizing
the
Dimensions
of
the
Component 176-177

Customizing
the
Outline
of
the
Component 177-178

Customizing
the
Default
Initial
Appearance 178-179

Resetting
Parts
of
the
Interface 179-180

Using
the
jQuery
Theme
Roller
with
Spread 180-181

Customizing
the
Appearance
of
the
Sheet 181-182

Working
with
the
Active
Sheet 182

Working
with
Multiple
Sheets 182-183

Adding
a
Sheet 183-184

Removing
a
Sheet 184-185

Showing
or
Hiding
a
Sheet 185-186

Setting
the
Background
Color
of
the
Sheet 186-187

Adding
a
Title
and
Subtitle
to
a
Sheet 187-188

Customizing
the
Page
Size
(Rows
to
Display) 188-190

Displaying
Grid
Lines
on
the
Sheet 190-191

Customizing
the
Sheet
Corner 191-193

Displaying
a
Footer
for
Columns
or
Groups 193-197

Spread for ASP.NET Developer’s Guide 7

Copyright © GrapeCity, Inc. All rights reserved.

Creating
a
Skin
for
Sheets 197-199

Applying
a
Skin
to
a
Sheet 199-200

Customizing
the
Appearance
of
Rows
and
Columns 200

Customizing
the
Number
of
Rows
or
Columns 200-201

Adding
a
Row
or
Column 201-202

Removing
a
Row
or
Column 202-204

Showing
or
Hiding
Rows
or
Columns 204-205

Setting
the
Row
Height
or
Column
Width 205-206

Setting
the
Top
Row
to
Display 206-207

Creating
Alternating
Rows 207-208

Creating
Row
Templates
(Multiple-Line
Columns) 208-212

Customizing
the
Appearance
of
Headers 212-213

Customizing
the
Style
of
Header
Cells 213-214

Showing
or
Hiding
Headers 214-216

Customizing
the
Default
Header
Labels 216-218

Customizing
Header
Label
Text 218-219

Setting
the
Size
of
Header
Cells 219-220

Customizing
the
Header
Empty
Areas 220-221

Creating
a
Header
with
Multiple
Rows
or
Columns 221-224

Creating
a
Span
in
a
Header 224-225

Customizing
the
Appearance
of
a
Cell 225-226

Working
with
the
Active
Cell 226

Customizing
the
Colors
of
a
Cell 226-228

Aligning
Cell
Contents 228-229

Customizing
Cell
Borders 229-230

Customizing
the
Margins
and
Spacing
of
the
Cell 230-232

Creating
and
Applying
a
Custom
Style
for
Cells 232-234

Assigning
a
Cascading
Style
Sheet
to
a
Cell 234-235

Creating
a
Range
of
Cells 235-236

Spanning
Cells 236-238

Spread for ASP.NET Developer’s Guide 8

Copyright © GrapeCity, Inc. All rights reserved.

Allowing
Cells
to
Merge
Automatically 238-240

Using
Sparklines 240-241

Adding
a
Sparkline
to
a
Cell 241-243

Customizing
Markers
and
Pointers 243-245

Specifying
Horizontal
and
Vertical
Axes 245-246

Working
with
Sparklines 246-247

Customizing
with
Cell
Types 248-249

Understanding
How
Cell
Types
Work 249

Understanding
Cell
Type
Basics 249

Understanding
How
Cell
Types
Display
Data 249-251

Understanding
How
Cell
Type
Affects
Model
Data 251-252

Determining
the
Cell
Type
of
a
Cell 252-253

Working
with
Editable
Cell
Types 253

Setting
a
Currency
Cell 253-255

Limiting
Values
for
a
Currency
Cell 255-256

Setting
a
Date-Time
Cell 256-257

Displaying
a
Calendar
in
a
Date-Time
Cell 257-258

Setting
a
Double
Cell 258-259

Setting
a
General
Cell 259-260

Setting
an
Integer
Cell 260-261

Setting
a
Percent
Cell 261-262

Setting
a
Regular
Expression
Cell 262-263

Setting
a
Text
Cell 263-264

Working
with
Graphical
Cell
Types 264

Setting
a
Button
Cell 264-266

Setting
a
Check
Box
Cell 266-268

Setting
a
Combo
Box
Cell 268-270

Setting
a
Hyperlink
Cell 270-272

Setting
an
Image
Cell 272-273

Setting
a
Label
Cell 273-274

Spread for ASP.NET Developer’s Guide 9

Copyright © GrapeCity, Inc. All rights reserved.

Setting
a
List
Box
Cell 274-275

Setting
a
Multiple-Column
Combo
Box
Cell 275-276

Setting
a
Radio
Button
List
Cell 276-278

Setting
a
Tag
Cloud
Cell 278-280

Working
with
ASP.NET
AJAX
Extender
Cell
Types 280-281

Setting
an
Automatic-Completion
Cell 281

Setting
a
Calendar
Cell 281-282

Setting
a
Combo
Box
Cell 282

Setting
a
Filtered
Text
Cell 282

Setting
a
Masked
Edit
Cell 282-283

Setting
a
Mutually
Exclusive
Check
Box
Cell 283

Setting
a
Numeric
Spin
Cell 283

Setting
a
Rating
Cell 283-284

Setting
a
Slider
Cell 284

Setting
a
Slide
Show
Cell 284

Setting
a
Text
Box
with
Watermark
Cell 284-285

Using
Validation
Controls 285-289

Managing
Data
Binding 290

Data
Binding
Overview 290-291

Binding
to
a
Data
Source 291-292

Binding
to
a
Range 292-294

Model
Data
Binding
in
ASP.NET
4.5 294-298

Setting
the
Cell
Types
for
Bound
Data 298-299

Displaying
Data
as
a
Hierarchy 299-302

Handling
Row
Expansion 302-303

Adding
an
Unbound
Row 303-304

Limiting
Postbacks
When
Updating
Bound
Data 304

Tutorial:
Binding
to
a
Corporate
Database 304

Using
Spread
with
Visual
Studio
2012
and
the
SQL
Data
Source 304-305

Spread for ASP.NET Developer’s Guide 10

Copyright © GrapeCity, Inc. All rights reserved.

Using
Spread
with
the
AccessDataSource
Control 305-306

Adding
Spread
to
a
DataBind
Project 306

Setting
up
the
Database
Connection 306-307

Specifying
the
Data
to
Use 307-308

Creating
the
Data
Set 308-309

Binding
Spread
to
the
Database 309-310

Improving
the
Display
by
Changing
the
Cell
Type 310

Managing
Data
in
the
Component 311

Saving
Data
to
the
Server 311

Placing
and
Retrieving
Data 311

Handling
Data
Using
Sheet
Methods 311-314

Handling
Data
Using
Cell
Properties 314

Server-Side
Scripting 314

Understanding
Effects
of
Client-Side
Validation 314-315

Understanding
Postback
and
Page
Load
Events 315-316

Understanding
the
Effect
of
Mode
on
Events 316-317

Managing
Formulas 318

Placing
a
Formula
in
Cells 318-319

Specifying
a
Cell
Reference
Style
in
a
Formula 319-320

Using
a
Circular
Reference
in
a
Formula 321-322

Nesting
Functions
in
a
Formula 322

Finding
a
Value
with
Goal
Seeking 322-323

Recalculating
and
Updating
Formulas
Automatically 323-324

Creating
a
Custom
Function 324-325

Creating
a
Custom
Name 325-326

Managing
File
Operations 327

Saving
Data
to
a
File 327

Saving
to
a
Spread
XML
File 327-328

Saving
to
an
Excel
File 328-329

Saving
to
a
Text
File 329-330

Spread for ASP.NET Developer’s Guide 11

Copyright © GrapeCity, Inc. All rights reserved.

Saving
to
an
HTML
File 330-331

Saving
to
a
PDF
File 331

Saving
to
PDF
Methods 331-332

Setting
PrintInfo
Class
Properties 332

Setting
Smart
Print
Options 332-334

Setting
Headers
and
Footers 334-338

Opening
Existing
Files 338

Opening
a
Spread
XML
File 338-339

Opening
an
Excel-Formatted
File 339-340

Opening
a
Text
File 340

Using
Sheet
Models 341-342

Understanding
the
Models 342

Understanding
How
the
Models
Work 342-344

Customizing
Models 344

Understanding
the
Axis
Model 344-345

Understanding
the
Data
Model 345-348

Understanding
the
Selection
Model 348

Understanding
the
Span
Model 348

Understanding
the
Style
Model 348-351

Understanding
the
Optional
Interfaces 351

Creating
a
Custom
Sheet
Model 352-353

Maintaining
State 354

State
Overview 354

Saving
Data
to
the
View
State 354-356

Saving
Data
to
the
Session
State 356-358

Saving
Data
to
an
SQL
Database 358

Loading
Data
for
Each
Page
Request 358-364

Working
with
the
Chart
Control 365

Understanding
and
Customizing
Charts 365

Chart
User
Interface
Elements 365-366

Spread for ASP.NET Developer’s Guide 12

Copyright © GrapeCity, Inc. All rights reserved.

Chart
Types
and
Views 366-367

Plot
Types 367

Y
PlotTypes 368

Area
Charts 368-370

Bar
Charts 370-373

Line
Charts 373-374

Market
Data
(High-Low)
Charts 374-376

Point
Charts 376-377

Stripe
Charts 377-378

XY
Plot
Types 378

Bubble
Charts 378-379

Line
Charts 379

Point
Charts 379-380

Stripe
Charts 380

XYZ
Plot
Types 380-381

Point
Charts 381-382

Line
Charts 382-383

Surface
Charts 383-384

Stripe
Charts 384

Pie
Plot
Types 384

Doughnut
Charts 385

Pie
Charts 385

Polar
Plot
Types 386

Point
Charts 386-387

Line
Charts 387-388

Area
Charts 388-389

Stripe
Charts 389

Radar
Plot
Types 389-390

Point
Charts 390-391

Spread for ASP.NET Developer’s Guide 13

Copyright © GrapeCity, Inc. All rights reserved.

Line
Charts 391-392

Area
Charts 392

Stripe
Charts 392-393

Data
Plot
Types 393-394

Series 394-395

Walls 395-396

Axis
and
Other
Lines 396-398

Fill
Effects 398-401

Elevation
and
Rotation 401-402

Lighting,
Shapes,
and
Borders 402-405

Size
-
Height,
Width,
and
Depth 405-406

Labels 406-407

Legends 407-408

Creating
Charts 408

Creating
Plot
Types 408

Creating
a
Y
Plot 408-410

Creating
an
XY
Plot 410-413

Creating
an
XYZ
Plot 413-416

Creating
a
Pie
Plot 416-418

Creating
a
Polar
Plot 418-421

Creating
a
Radar
Plot 421-423

Combining
Plot
Types 423-425

Connecting
to
Data 425

Using
a
Bound
Data
Source 425-427

Using
an
Unbound
Data
Source 427-428

Using
Raw
Data
Versus
Represented
Data 428-429

Using
the
Chart
Designer 429

Opening
the
Chart
Designer 429-430

Creating
a
Chart
Control 430-433

Using
the
Chart
Collection
Editors 433

Spread for ASP.NET Developer’s Guide 14

Copyright © GrapeCity, Inc. All rights reserved.

LabelArea
Collection
Editor 433-434

LegendArea
Collection
Editor 434

PlotArea
Collection
Editor 434-435

Light
Collection
Editor 435-436

Series
Collection
Editor 436

Using
the
Spread
Designer 436-437

Using
the
Chart
Control 437

Creating
the
Chart
Control 437-439

Rendering
or
Saving
the
Chart
Control
to
an
Image 439

Loading
or
Saving
the
Chart
Control
to
XML 439-440

Using
the
Chart
Control
in
Spread 440

Creating
the
Chart
Control
with
Code 440-443

Binding
the
Chart
Control
with
Spread 443-444

Moving
and
Resizing
the
Chart
Control
in
Spread 444-445

Selecting
the
Chart
Control
in
Spread 445-446

Setting
the
Chart
Control
Border
in
Spread 446-447

Setting
the
Chart
View
Type 447-448

Using
the
Chart
Context
Menu 448-449

Using
Touch
Support
with
the
Component 450

Understanding
Touch
Support 450

Understanding
Touch
Gestures 450

Using
Touch
Support 450-451

Using
the
Touch
Menu
Bar 451-452

Using
Touch
Support
with
AutoFit 452

Using
Touch
Support
with
Charts 452

Using
Touch
Support
with
Editable
Cells 452-453

Using
Touch
Support
with
Filtering 453-454

Using
Touch
Support
with
Grouping 454-456

Using
Touch
Support
when
Moving
Columns 456-457

Using
Touch
Support
when
Resizing
Columns
or
Rows 457-459

Spread for ASP.NET Developer’s Guide 15

Copyright © GrapeCity, Inc. All rights reserved.

Using
Touch
Support
with
Scrolling 459-460

Using
Touch
Support
with
Selections 461-462

Using
Touch
Support
with
Sorting 462-463

2. Index 464-502

Spread for ASP.NET Developer’s Guide 16

Copyright © GrapeCity, Inc. All rights reserved.

Getting Started

This
topic
describes
how
to
get
started
with
the
component.
It
includes:

Handling
Installation
Working
with
the
Component
Getting
More
Practice
Understanding
the
Spread
Wizard
Tutorial:
Creating
a
Checkbook
Register

Handling Installation

Here
are
the
tasks
for
installing
the
product
for
development
and
for
redistribution.

Installing
the
Product
Licensing
a
Trial
Project
after
Installation
End-User
License
Agreement
Creating
a
Build
License
Handling
Redistribution
Product
Requirements
Handling
Variations
in
Windows
Regional
Settings

Installing the Product

Installation
instructions
and
a
list
of
installed
files
for
Spread
for
ASP.NET
is
provided
in
the
Read
Me
file
that
accompanies
this
product.
To
view
the
Read
Me
file,
do
one
of
the
following:

1.
 From
the
Start
menu
choose
Programs
->
GrapeCity
->
Spread.NET
11
->
ASP.NET
->
SpreadASPReadMe.
Select
the
Read
Me
under
the
GrapeCity
name
on
the
Start
screen
with
Microsoft
Windows
8,
8.1,
or
10.

2.
 If
you
performed
a
default
installation,
in
Windows
Explorer
browse
to
\Program
Files\GrapeCity\Spread.NET
11\Docs\ASP.NET
and
double-click
the
readme.chm
file.

You
can
also
access
the
Read
Me
on
the
web
site.

Licensing a Trial Project after Installation

To
license
ASP.NET
projects
made
with
the
trial
version
do
the
following:

1.
 Ensure
that
Spread
is
licensed
on
the
machine
by
following
the
installation
steps
in
the
Read
Me.
2.
 Open
the
project
in
Microsoft
Visual
Studio.
3.
 Open
the
Visual
Studio
Build
menu
and
select
Rebuild
Solution.
4.
 The
web
application
is
now
licensed
and
no
evaluation
banners
appear
when
you
run
it.
You
can
distribute
the

Web
application
to
unlicensed
machines
and
no
evaluation
banners
appear.

For
licensing
Web
Site
applications,
open
the
Visual
Studio
Build
menu
and
select
Build
Runtime
Licenses
to
create
the
App_Licenses.dll
file.

End-User License Agreement

The
GrapeCity
licensing
information,
including
the
GrapeCity
end-user
license
agreements,
frequently
asked
licensing
questions,
and
the
GrapeCity
licensing
model,
is
available
online
at
https://www.grapecity.com/en/licensing/spread

Spread for ASP.NET Developer’s Guide 17

Copyright © GrapeCity, Inc. All rights reserved.

http://sphelp.grapecity.com/WebHelp/SpreadNET11ReadMe/webframe.html
http://sphelp.grapecity.com/WebHelp/SpreadNET11ReadMe/webframe.html
https://www.grapecity.com/en/licensing/spread

and
https://www.grapecity.com/en/legal/eula.

Creating a Build License

You
can
create
a
build
license
to
use
on
a
build
machine.

Licenses
are
built
using
the
license
compiler
tool
(lc.exe)
to
produce
a
special
resource
file
with
the
.licenses
file
extension.
Visual
Studio
VB.NET
and
C#
projects
automatically
handle
compiling
the
licenses.licx
in
the
project
to
produce
the
.licenses
resource
file,
which
is
linked
into
the
target
executable.
The
components’
run-time
license
keys
in
that
licenses
resource
file
are
loaded
and
verified
when
the
first
instance
of
each
component
with
the
LicenseProvider
attribute
is
created
in
the
application.
You
can
remove
the
licenses.licx
from
your
Visual
Studio
project
and
add
the
.licenses
resource
in
its
place
using
the
following
steps:

1.
 Build
the
project
using
the
licensed
components
on
a
developer
machine
which
is
licensed
for
development
with
all
the
components
referenced
in
the
project
(this
creates
the
.licenses
resource).

2.
 Find
the
licenses.licx
in
the
Solution
Explorer
window.
You
can
use
the
Show
All
Files
toolbar
button
to
see
it
or
expand
the
Properties
folder.

3.
 Right-click
the
licenses.licx
in
the
Solution
Explorer
window,
and
then
select
Exclude
From
Project.

4.
 Use
Windows
Explorer
(outside
Visual
Studio)
to
find
the
.licenses
file
in
the
obj\{configuration}
folder
(obj\Debug
or
obj\Release).
The
file
should
have
the
name
{target}.{ext}.licenses
(for
example:
project1.exe.licenses).

5.
 Copy
that
file
to
the
project
folder
and
rename
it
to
remove
the
target
name
(rename
it
from
{target}.
{ext}.licenses
to
{ext}.licenses).
For
example:
project1.exe.licenses
to
exe.licenses.

6.
 In
the
Visual
Studio
Solution
Explorer
window,
find
the
{ext}.licenses
(you
might
need
to
refresh
the
window),
then
right-click
the
file
and
select
Include
In
Project.

Spread for ASP.NET Developer’s Guide 18

Copyright © GrapeCity, Inc. All rights reserved.

https://www.grapecity.com/en/licensing/spread
http://spread.grapecity.com/Pages/EULA/

7.
 Change
the
Build
Action
for
the
{ext}.licenses
from
Content
to
Embedded
Resource.

8.
 The
project
can
now
be
built
without
requiring
a
developer
license
on
the
machine,
since
the
license
has
already
been
built
and
linked
into
the
project.

Note
the
following
restrictions:

The
licenses
resource
contains
the
name
of
the
target
module
encoded
in
its
contents,
so
that
licenses
resource
is
specific
to
that
particular
project.
The
steps
described
above
will
not
bypass
any
part
of
the
design-time
license
enforcement.
The
developer
license
is
still
required
to
open
forms
containing
instances
of
the
licensed
controls.
If
the
licensed
components
in
the
project
change,
then
special
care
should
be
taken.
The
licenses.licx
should
be
added
back
to
the
project
first,
so
that
it
does
not
get
recreated
(empty)
by
Visual
Studio
and
cause
type
references
(and
embedded
licenses
in
the
resource)
to
be
lost.
After
the
new
licensed
components
are
added
or
changed
in
the
licx,
the
above
steps
should
be
repeated.
The
above
steps
only
apply
for
.NET
managed
code
applications
which
use
the
standard
.NET
Framework
component
licensing
model
(ActiveX
control
licensing
in
managed
.NET
applications
does
not
use
this
mechanism).

Handling Redistribution

Please
review
this
information
concerning
redistribution
of
Spread
for
ASP.NET
with
your
application.

Server
Requirements

You
must
deploy
to
a
Microsoft
Internet
Information
server.

Spread for ASP.NET Developer’s Guide 19

Copyright © GrapeCity, Inc. All rights reserved.

Server
Files

Place
the
assemblies
that
come
with
Spread
for
ASP.NET
in
either
your
server's
global
assembly
cache
(GAC)
or
in
your
application
directory's
\bin
folder
under
the
wwwroot
directory
on
your
server.

Place
the
following
assemblies
on
your
server:

FarPoint.Web.Spread.dll
FarPoint.CalcEngine.dll
FarPoint.Excel.dll
FarPoint.PDF.dll
FarPoint.Web.Chart.dll
(if
you
use
the
Chart
control
or
Sparklines)
FarPoint.Web.Spread.Extender.dll
(if
you
use
the
extender
classes)
System.Web.Extensions.dll
(if
you
use
the
FarPoint.Web.Spread.Extender.dll)
AjaxControlToolkit.dll
(if
you
use
the
FarPoint.Web.Spread.Extender.dll)
FarPoint.Mvc.Web.Spread.dll
(if
you
use
Spread
in
an
MVC3
project)

Place
the
fp_client
folder
(installed
in
Spread.NET\ASP.NET\..\fp_client)
and
its
subfolders
provided
with
Spread
for
ASP.NET
under
your
server's
wwwroot
directory,
or,
if
you
wish
to
put
it
elsewhere,
set
up
a
virtual
directory
in
IIS
Manager
to
point
to
the
location
of
that
folder's
contents.

The
fp_client
folder
can
also
be
placed
in
the
web
application
directory.
The
following
code
would
need
to
be
added
to
the
web
config
file.
For
example:

<?xml version="1.0"?>

<configuration>

<system.web>

 ...

</system.web>

<appSettings>

<add key="fp_client" value="fp_client" />

</appSettings>

</configuration>

Be
aware
that
Spread
for
ASP.NET
creates
a
Web
server
control
that
serves
up
HTML
pages
for
clients
and
it
also
puts
HTC
files
in
a
directory
on
the
client
machine
for
client-side
scripting
capability.

Spread
for
ASP.NET
uses
jQuery
2.x.
If
the
web
page
or
web
application
uses
jQuery
2.0
or
higher,
Spread
uses
that
version
of
jQuery.
If
the
web
page
uses
jQuery
1.9
or
earlier,
Spread
uses
jQuery
2.x
internally
and
does
not
conflict
with
the
web
page
version
of
jQuery.

Permission
Requirements

If
you
use
the
Spread
control
on
medium
trust
web
sites,
you
need
to
add
SerializationFormatter
and
Reflection
permissions
to
the
machine
config
file,
web_mediumtrust.config.
The
SecurityPermission
needs
the
UnmanagedCode
and
SerializationFormatter
flags.
For
example:

<IPermission class="SecurityPermission" version="1" Flags="Assertion, Execution, ControlThread, ControlPrincipal, RemotingConfiguration, UnmanagedCode, SerializationFormatter"/>

<IPermission class="ReflectionPermission" version="1" Unrestricted="true" Flags="ReflectionPermissionFlag.MemberAccess"/>

Product Requirements

For
developing
applications
with
the
.NET
4.0
version
of
Spread
for
ASP.NET,
you
must
have
the
following
system
items:

Operating System
One
of
the
following:

Microsoft
Windows
2003
Server
Microsoft
Windows
2008
Server
Microsoft
Windows
2012
Server
Microsoft
Windows
XP
Professional
Microsoft
Windows
Vista
Microsoft
Windows
7
Microsoft
Windows
8
Microsoft
Windows
8.1
Microsoft
Windows
10

Software
Release
version
of
the
Microsoft
.NET
4.0
Framework.
Microsoft
Internet
Information
Services
(IIS)
SQL
Server
or
the
SQL
Server
desktop
engine
that
ships
with
Visual
Studio
.NET
installed
on
your
machine
to
be
able
to
run
some
of
the
data
binding
samples
The
Spread
extender
requires
the
AJAX
Control
Toolkit
The
Spread
Designer
requires
Microsoft
Internet
Explorer
(IE)
7
or
higher
and
the
Microsoft.mshtml.dll.

Handling Variations in Windows Regional Settings

The
Spread
component
reads
the
Windows
regional
settings
or
options,
which
are
set
by
the
user
through
the
Control

Spread for ASP.NET Developer’s Guide 20

Copyright © GrapeCity, Inc. All rights reserved.

Panel,
but
due
to
variations
in
how
Windows
handles
those
settings,
your
user
might
experience
unexpected
results.

In
general
in
Windows
operating
systems,
the
Spread
component
does
not
recognize
changes
made
to
the
Windows
regional
settings
until
you
restart
your
development
environment
or
your
application
or
perform
any
operation
that
unloads
and
reloads
the
current
assembly
and
dependent
assemblies.
This
is
because
handling
the
regional
settings
is
very
processor
intensive.
To
optimize
performance
these
settings
are
not
checked
each
time
a
simple
operation
is
performed.

In
most
Windows
operating
systems,
the
regional
options
are
read
from
the
system
registry.
In
certain
situations,
Windows
does
not
clear
previous
regional
options
when
reading
changes
from
the
system
registry.
Be
aware
of
this
when
working
with
regional
settings.

Working with the Component

Here
are
the
tasks
involved
with
starting
to
work
with
the
component.

Adding
a
Component
to
a
Web
Site
using
Visual
Studio
2015
or
2017
Adding
a
Component
to
a
Web
Site
using
Visual
Studio
2013
Adding
a
Component
to
a
Web
Site
using
Visual
Studio
2012
Adding
a
Component
to
a
Web
Site
using
Visual
Studio
2010
Adding
and
Using
JavaScript
IntelliSense
Understanding
Browser
Support
Understanding
Parts
of
the
Component
Interface
Working
with
Collection
Editors
Working
with
Web
Parts
Working
with
Windows
Azure
Working
with
Microsoft
ASP.NET
MVC
5
Working
with
Microsoft
ASP.NET
MVC
3
Copying
Shared
Assemblies
to
Local
Folder
Working
with
Strongly
Typed
Data
Controls

Adding a Component to a Web Site using Visual Studio 2015 or 2017

Use
the
following
steps
to
add
a
Spread
component
to
a
Web
Form
in
Visual
Studio.
You
can
either
open
an
existing
Web
Site
or
create
a
new
one.

Spread,
as
a
child
control
of
the
page,
is
affected
by
the
style
settings
on
that
page
(similar
to
placing
a
table
on
a
web
form,
and
setting
a
master
CSS
for
everything
inside
the
page).
If
you
create
a
default
web
application
with
Visual
Studio
2010
or
higher,
the
default
master
page
contains
CSS
style
settings.
Spread,
once
placed
on
this
default
page,
can
be
affected
by
the
style
settings
and
the
layout
may
change.
Avoid
the
following
HTML
tags
to
prevent
the
layout
change:
TD,
TH,
TABLE,
INPUT,
and
TEXTAREA.

Step
1.
Start
Visual
Studio.

Step
2.
Create
a
new
Web
site.

1.
 Select
New
Project
or
from
the
File
menu,
choose
New,
Web
Site.
2.
 Under
Templates,
select
Web
under
Visual
Basic
or
Visual
C#.

Spread for ASP.NET Developer’s Guide 21

Copyright © GrapeCity, Inc. All rights reserved.

3.
 Select
ASP.NET
Web
Application.
4.
 Specify
a
location
and
name
for
the
project.
5.
 Select
OK.
6.
 Select
a
template
such
as
Empty.

Spread for ASP.NET Developer’s Guide 22

Copyright © GrapeCity, Inc. All rights reserved.

7.
 Select
OK.
If
your
project
does
not
display
the
Solution
Explorer,
from
the
View
menu,
choose
Solution
Explorer.
If
you
used
an
empty
site,
you
may
wish
to
add
a
web
form
to
the
project
(choose
Add,
Web
Form
after
right-clicking
on
the
project
name
in
the
Solution
Explorer).

Specify
the
Item
name.
Select
OK.

Step
3.
Add
the
FpSpread
component
to
the
toolbox
if
the
component
is
not
displayed
in
the
toolbox.

1.
 If
the
Toolbox
is
not
displayed,
from
the
View
menu
choose
Toolbox.
2.
 Once
the
Toolbox
is
displayed,
look
in
the
GrapeCity
Spread
category
(or
in
other
categories
if
you
have
installed

Spread
and
placed
the
toolbox
icon
in
a
different
category).
3.
 If
the
FpSpread
component
is
not
in
the
Toolbox,
right-click
in
the
Toolbox,
and
from
the
pop-up
menu
choose
Choose
Items.

4.
 In
the
Choose
Toolbox
Items
dialog,
click
the
.NET
Framework
Components
tab.
5.
 In
the
.NET
Framework
Components
tab,
the
FpSpread
component
should
be
displayed
in
the
list
of
components.

Spread for ASP.NET Developer’s Guide 23

Copyright © GrapeCity, Inc. All rights reserved.

Select
the
FpSpread
component
check
box
and
click
OK.
If
the
FpSpread
component
is
not
displayed
in
the
list
of
components,
click
Browse
and
browse
to
the
installation
path
for
the
Spread
component.
Once
there,
select
FarPoint.Web.Spread.dll
and
click
Open.
The
FpSpread
component
is
now
displayed
in
the
list
of
components.
Select
it
and
click
OK.
Select
FarPoint.Web.Chart.dll
if
you
wish
to
add
FpChart
at
design
time.

6.
 You
can
test
that
the
component
has
been
added
by
opening
a
project
and
inserting
the
component.

Step
4.
Add
the
FpSpread
component
to
the
Web
site.

1.
 With
an
open
project,
in
the
Toolbox
under
Web
Forms,
select
the
FpSpread
component.
Select
FpChart
if
you
wish
to
add
the
chart
at
design
time.

2.
 On
your
Web
Forms
page,
draw
an
FpSpread
component
by
dragging
a
rectangle
the
size
that
you
would
like
the
initial
component
or
simply
double-click
on
the
page.

3.
 The
FpSpread
component
appears
(as
shown
in
this
Visual
Studio
project).

Adding a Component to a Web Site using Visual Studio 2013

Adding
an
FpSpread
component
to
a
Web
Form
in
Visual
Studio
2013
involves
the
following
steps
of
adding
the
component
to
a
Web
Site.
You
can
either
open
an
existing
Web
Site
or
create
a
new
one.

Spread,
as
a
child
control
of
the
page,
is
affected
by
the
style
settings
on
that
page
(similar
to
placing
a
table
on
a
web
form,
and
setting
a
master
CSS
for
everything
inside
the
page).
If
you
create
a
default
web
application
with
Visual
Studio

Spread for ASP.NET Developer’s Guide 24

Copyright © GrapeCity, Inc. All rights reserved.

2010
or
higher,
the
default
master
page
contains
CSS
style
settings.
Spread,
once
placed
on
this
default
page,
can
be
affected
by
the
style
settings
and
the
layout
may
change.
Avoid
the
following
HTML
tags
to
prevent
the
layout
change:
TD,
TH,
TABLE,
INPUT,
and
TEXTAREA.

Step
1.
Start
Visual
Studio
2013.

Step
2.
Create
a
new
Web
site.

1.
 Select
New
Project
or
from
the
File
menu,
choose
New,
Web
Site.
2.
 Under
Templates,
select
Web
under
Visual
Basic
or
Visual
C#.

3.
 Select
ASP.NET
Web
Application.
4.
 Specify
a
location
and
name
for
the
project.
5.
 Click
OK.
6.
 Select
a
template
such
as
Empty.

Spread for ASP.NET Developer’s Guide 25

Copyright © GrapeCity, Inc. All rights reserved.

7.
 Click
OK.
If
your
project
does
not
display
the
Solution
Explorer,
from
the
View
menu,
choose
Solution
Explorer.
If
you
used
an
empty
site,
you
may
wish
to
add
a
web
form
to
the
project
(choose
Add,
Web
Form
after
right-clicking
on
the
project
name
in
the
Solution
Explorer).

Spread for ASP.NET Developer’s Guide 26

Copyright © GrapeCity, Inc. All rights reserved.

Specify
the
Item
name.
Select
OK.

Step
3.
Add
the
FpSpread
component
to
the
toolbox.
This
only
has
to
be
done
once.

1.
 If
the
Toolbox
is
not
displayed,
from
the
View
menu
choose
Toolbox.
2.
 Once
the
Toolbox
is
displayed,
look
in
the
GrapeCity
Spread
category
(or
in
other
categories
if
you
have
installed

Spread
and
placed
the
toolbox
icon
in
a
different
category).
3.
 If
the
FpSpread
component
is
not
in
the
Toolbox,
right-click
in
the
Toolbox,
and
from
the
pop-up
menu
choose
Choose
Items.

4.
 In
the
Choose
Toolbox
Items
dialog,
click
the
.NET
Framework
Components
tab.
5.
 In
the
.NET
Framework
Components
tab,
the
FpSpread
component
should
be
displayed
in
the
list
of
components.
Select
the
FpSpread
component
check
box
and
click
OK.
If
the
FpSpread
component
is
not
displayed
in
the
list
of
components,
click
Browse
and
browse
to
the
installation
path
for
the
Spread
component.
Once
there,
select
FarPoint.Web.Spread.dll
and
click
Open.
The
FpSpread
component
is
now
displayed
in
the
list
of
components.
Select
it
and
click
OK.
Select
FarPoint.Web.Chart.dll
if
you
wish
to
add
FpChart
at
design
time.

6.
 You
can
test
that
the
component
has
been
added
by
opening
a
project
and
inserting
the
component.

Step
4.
Add
the
FpSpread
component
to
the
Web
site.

1.
 With
an
open
project,
in
the
Toolbox
under
Web
Forms,
select
the
FpSpread
component.
Select
FpChart
if
you
wish
to
add
the
chart
at
design
time.

2.
 On
your
Web
Forms
page,
draw
an
FpSpread
component
by
dragging
a
rectangle
the
size
that
you
would
like
the
initial
component
or
simply
double-click
on
the
page.

3.
 The
FpSpread
component
appears
(as
shown
in
this
Visual
Studio
2013
project).

Spread for ASP.NET Developer’s Guide 27

Copyright © GrapeCity, Inc. All rights reserved.

Adding a Component to a Web Site using Visual Studio 2012

Adding
an
FpSpread
component
to
a
Web
Form
in
Visual
Studio
2012
involves
the
following
steps
of
adding
the
component
to
a
Web
Site.
You
can
either
open
an
existing
Web
Site
or
create
a
new
one.

Spread,
as
a
child
control
of
the
page,
is
affected
by
the
style
settings
on
that
page
(similar
to
placing
a
table
on
a
web
form,
and
setting
a
master
CSS
for
everything
inside
the
page).
If
you
create
a
default
web
application
with
Visual
Studio
2010
or
higher,
the
default
master
page
contains
CSS
style
settings.
Spread,
once
placed
on
this
default
page,
can
be
affected
by
the
style
settings
and
the
layout
may
change.
Avoid
the
following
HTML
tags
to
prevent
the
layout
change:
TD,
TH,
TABLE,
INPUT,
and
TEXTAREA.

Step
1.
Start
Visual
Studio
2012.

Step
2.
Create
a
new
Web
site.

1.
 From
the
File
menu,
choose
New,
Web
Site.
2.
 In
the
New
Web
Site
dialog,
select
a
template.
For
example,
from
the
list
of
Templates,
choose
ASP.NET
Web
Forms
Site
or
ASP.NET
Empty
Web
Site.

3.
 In
the
Web
location
area,
select
HTTP
from
the
drop-down
box,
and
type
a
location
path,
such
as
http://localhost/SpWebTest01.
Alternatively,
you
could
use
the
default
location
type
as
FileSystem,
and
then
specify
the
complete
path,
but
this
requires
some
additional
setup
of
copying
the
fp_client
folder.

4.
 Click
OK.
If
your
project
does
not
display
the
Solution
Explorer,
from
the
View
menu,
choose
Solution
Explorer.
If
you
used
an
empty
site,
you
may
wish
to
add
a
web
form
to
the
project
(choose
Add
New
Item
after
right-
clicking
on
the
project
name
in
the
Solution
Explorer).

In
the
Solution
Explorer,
right-click
on
the
form
name,
Default.aspx.
You
can
rename
it.
Choose
Rename
from
the
pop-up
menu,
then
type
the
new
form
name.

Step
3.
Add
the
FpSpread
component
to
the
toolbox.
This
only
has
to
be
done
once.

1.
 If
the
Toolbox
is
not
displayed,
from
the
View
menu
choose
Toolbox.

Spread for ASP.NET Developer’s Guide 28

Copyright © GrapeCity, Inc. All rights reserved.

2.
 Once
the
Toolbox
is
displayed,
look
in
the
GrapeCity
Spread
category
(or
in
other
categories
if
you
have
installed
Spread
and
placed
the
toolbox
icon
in
a
different
category).

3.
 If
the
FpSpread
component
is
not
in
the
Toolbox,
right-click
in
the
Toolbox,
and
from
the
pop-up
menu
choose
Choose
Items.

4.
 In
the
Choose
Toolbox
Items
dialog,
click
the
.NET
Framework
Components
tab.
5.
 In
the
.NET
Framework
Components
tab,
the
FpSpread
component
should
be
displayed
in
the
list
of
components.
Select
the
FpSpread
component
check
box
and
click
OK.
If
the
FpSpread
component
is
not
displayed
in
the
list
of
components,
click
Browse
and
browse
to
the
installation
path
for
the
Spread
component.
Once
there,
select
FarPoint.Web.Spread.dll
and
click
Open.
The
FpSpread
component
is
now
displayed
in
the
list
of
components.
Select
it
and
click
OK.
Select
FarPoint.Web.Chart.dll
if
you
wish
to
add
FpChart
at
design
time.

6.
 You
can
test
that
the
component
has
been
added
by
opening
a
project
and
inserting
the
component.

Step
4.
Add
the
FpSpread
component
to
the
Web
site.

1.
 With
an
open
project,
in
the
Toolbox
under
Web
Forms,
select
the
FpSpread
component.
Select
FpChart
if
you
wish
to
add
the
chart
at
design
time.

2.
 On
your
Web
Forms
page,
draw
an
FpSpread
component
by
dragging
a
rectangle
the
size
that
you
would
like
the
initial
component
or
simply
double
click
on
the
page.

3.
 The
FpSpread
component
appears
(as
shown
in
this
Visual
Studio
2012
project).

Spread for ASP.NET Developer’s Guide 29

Copyright © GrapeCity, Inc. All rights reserved.

Step
5.
Handle
messages
when
running
the
Web
site.

1.
 When
you
are
ready
to
build
and
run
the
Web
site,
Visual
Studio
pops
up
an
additional
dialog
to
allow
you
to
choose
between
whether
to
enable
debugging
or
not
to
enable
it.
An
example
of
the
dialog
appears
here.
Click
OK,
unless
you
want
to
select
the
other
option
to
run
without
debugging
before
clicking
OK.

If
you
select
the
File
System
for
the
location,
follow
these
additional
instructions.

Place
the
fp_client
folder
(installed
in
Spread.NET\ASP.NET\..\fp_client)
and
its
subfolders
provided
with
Spread
for
ASP.NET
under
the
folder
for
the
Web
site.
Add
the
following
code
to
the
web.config
file.
For
example:

XML
<?xml version="1.0"?>
<system.web>
...
</system.web>
<appSettings>
<add key="fp_client" value="fp_client" />
</appSettings>
</configuration>

If
you
add
FpChart
and
you
are
using
integrated
managed
pipeline
mode,
you
may
wish
to
set
validateIntegratedModeConfiguration
to
false
in
web.config.
For
example:

XML
<system.webServer>
<validation validateIntegratedModeConfiguration="false"/>
<handlers>
...
<add name="chart" path="FpChart.axd" verb="*"
type="FarPoint.Web.Chart.ChartImageHttpHandler"/>
</handlers>
// If you are using integrated managed pipeline mode,
//set validateIntegratedModeConfiguration to false.
<validation validateIntegratedModeConfiguration="false"/>

Adding a Component to a Web Site using Visual Studio 2010

Spread for ASP.NET Developer’s Guide 30

Copyright © GrapeCity, Inc. All rights reserved.

Adding
an
FpSpread
component
to
a
Web
Form
in
Visual
Studio
2010
involves
the
following
steps
of
adding
the
component
to
a
Web
Site.
You
can
either
open
an
existing
Web
Site
or
create
a
new
one.

Spread,
as
a
child
control
of
the
page,
is
affected
by
the
style
settings
on
that
page
(similar
to
placing
a
table
on
a
web
form,
and
setting
a
master
CSS
for
everything
inside
the
page).
If
you
create
a
default
web
application
with
Visual
Studio
2010
or
higher,
the
default
master
page
contains
CSS
style
settings.
Spread,
once
placed
on
this
default
page,
can
be
affected
by
the
style
settings
and
the
layout
may
change.
Avoid
the
following
HTML
tags
to
prevent
the
layout
change:
TD,
TH,
TABLE,
INPUT,
and
TEXTAREA.

Step
1.
Start
Visual
Studio
2010.

Step
2.
Create
a
new
Web
site.

1.
 From
the
File
menu,
choose
New,
Web
Site.
2.
 In
the
New
Web
Site
dialog,
select
a
template.
For
example,
from
the
list
of
Templates,
choose
ASP.NET
Web
Site
or
ASP.NET
Empty
Web
Site.

3.
 In
the
Web
location
area,
select
HTTP
from
the
drop-down
box,
and
type
a
location
path,
such
as
http://localhost/SpWebTest01.
Alternatively,
you
could
use
the
default
location
type
as
FileSystem,
and
then
specify
the
complete
path,
but
this
requires
some
additional
setup
of
copying
the
fp_client
folder.

4.
 Click
OK.
If
your
project
does
not
display
the
Solution
Explorer,
from
the
View
menu,
choose
Solution
Explorer.
If
you
used
an
empty
site,
you
may
wish
to
add
a
web
page
to
the
project
(choose
Add
New
Item
after
right-
clicking
on
the
project
name
in
the
Solution
Explorer).

In
the
Solution
Explorer,
right-click
on
the
form
name,
Default.aspx.
You
can
rename
it.
Choose
Rename
from
the
pop-up
menu,
then
type
the
new
form
name.

Step
3.
Add
the
FpSpread
component
to
the
toolbox.
This
only
has
to
be
done
once.

1.
 If
the
Toolbox
is
not
displayed,
from
the
View
menu
choose
Toolbox.
2.
 Once
the
Toolbox
is
displayed,
look
in
the
GrapeCity
Spread
category
(or
in
other
categories
if
you
have

installed
Spread
and
placed
the
toolbox
icon
in
a
different
category).
3.
 If
the
FpSpread
component
is
not
in
the
Toolbox,
right-click
in
the
Toolbox,
and
from
the
pop-up
menu
choose
Customize
Toolbox,
Add/Remove
Items,
or
Choose
Items.

4.
 In
the
Customize
Toolbox
dialog,
click
the
.NET
Framework
Components
tab.
5.
 In
the
.NET
Framework
Components
tab,
the
FpSpread
component
should
be
displayed
in
the
list
of
components.
Select
the
FpSpread
component
check
box
and
click
OK.
If
the
FpSpread
component
is
not
displayed
in
the
list
of
components,
click
Browse
and
browse
to
the
installation
path
for
the
Spread
component.
Once
there,
select
SpreadWeb.dll
and
click
Open.
The
FpSpread
component
is
now
displayed
in
the
list
of
components.
Select
it
and
click
OK.

6.
 You
can
test
that
the
component
has
been
added
by
opening
a
project
and
inserting
the
component.

Step
4.
Add
the
FpSpread
component
to
the
Web
site.

1.
 With
an
open
project,
in
the
Toolbox
under
Web
Forms,
select
the
FpSpread
component.
2.
 On
your
Web
Forms
page,
draw
an
FpSpread
component
by
dragging
a
rectangle
the
size
that
you
would
like
the

initial
component
or
simply
double
click
on
the
page.
3.
 The
FpSpread
component
appears
(as
shown
in
this
Visual
Studio
2010
project).

Spread for ASP.NET Developer’s Guide 31

Copyright © GrapeCity, Inc. All rights reserved.

Step
5.
Handle
messages
when
running
the
Web
site.

1.
 When
you
are
ready
to
build
and
run
the
Web
site,
Visual
Studio
pops
up
an
additional
dialog
to
allow
you
to
choose
between
whether
to
enable
debugging
or
not
to
enable
it.
An
example
of
the
dialog
appears
here.
Click
OK,
unless
you
want
to
select
the
other
option
to
run
without
debugging
before
clicking
OK.

Spread for ASP.NET Developer’s Guide 32

Copyright © GrapeCity, Inc. All rights reserved.

If
you
select
the
File
System
for
the
location,
follow
these
additional
instructions.

Place
the
fp_client
folder
(installed
in
Spread.NET\ASP.NET\..\fp_client)
and
its
subfolders
provided
with
Spread
for
ASP.NET
under
the
folder
for
the
Web
site.
Add
the
following
code
to
the
web.config
file.
For
example:

XML
<?xml version="1.0"?>
<system.web>
...
</system.web>
<appSettings>
<add key="fp_client" value="fp_client" />
</appSettings>
</configuration>

Adding and Using JavaScript IntelliSense

The
Spread
component
can
support
client-side
code
IntelliSense.
This
requires
a
minimum
of
Visual
Studio
2010.
This
feature
allows
you
to
type
the
name
of
the
control
and
get
a
list
of
available
methods
and
properties.
Some
browsers
may
not
support
certain
properties
and
methods.

After
support
has
been
added,
type
the
control
name
followed
by
a
dot
to
see
the
list.

The
following
topics
contain
detailed
information
based
on
the
version
of
Visual
Studio:

Adding
JavaScript
IntelliSense
for
Visual
Studio
2012

Adding
JavaScript
IntelliSense
for
Visual
Studio
2010

Adding JavaScript IntelliSense for Visual Studio 2012

The
Spread
component
can
support
client-side
code
IntelliSense
in
Visual
Studio
2012.
This
feature
allows
you
to
type
the
name
of
the
control
and
get
a
list
of
available
methods
and
properties.
Some
browsers
may
not
support
certain
properties
and
methods.

Spread for ASP.NET Developer’s Guide 33

Copyright © GrapeCity, Inc. All rights reserved.

After
support
has
been
added,
type
the
control
name
followed
by
a
dot
to
see
the
list.

This
features
requires
the
FpSpreadJsIntellisense.js
file
located
in
the
fp_client
folder.
Use
the
following
steps:

1.
 Verify
that
the
~/Scripts/_references.js
reference
exists
in
your
IntelliSense
settings.
Select
the
Options
menu
under
the
Tools
menu
to
see
this
dialog.
Click
OK.

2.
 Add
the
FpSpreadJsIntellisense.js
file
to
the
same
folder
where
the
_references.js
file
is
located.
You
may
need
to
create
a
Scripts
folder
in
your
project
if
the
folder
does
not
exist.
You
may
also
need
to
create
the
_references.js
file
under
the
Scripts
folder
if
the
file
does
not
already
exist.

3.
 Add
the
following
line
to
_references.js:
///
<reference
path="FpSpreadJsIntellisense.js"
/>

4.
 Open
and
close
the
FpSpreadJsIntellisense.js
file.
5.
 Spread
client-side
methods
and
properties
should
now
be
displayed
when
you
type
the
control
name
followed
by
a
dot.

Spread for ASP.NET Developer’s Guide 34

Copyright © GrapeCity, Inc. All rights reserved.

Adding JavaScript IntelliSense for Visual Studio 2010

The
Spread
component
can
support
client-side
code
IntelliSense.
This
requires
a
minimum
of
Visual
Studio
2010.
This
feature
allows
you
to
type
the
name
of
the
control
and
get
a
list
of
available
methods
and
properties.
Some
browsers
may
not
support
certain
properties
and
methods.

After
support
has
been
added,
type
the
control
name
followed
by
a
dot
to
see
the
list.

Adding
Support
for
IntelliSense

This
features
requires
the
FpSpreadJsIntellisense.js
file
located
in
the
fp_client
folder.
Use
the
following
steps:

Create
a
folder
named
ClientResources
and
put
the
folder
in
the
project
folder
(or
root
path
of
the
application
or
web
site).
Put
the
FpSpreadJsIntelliSense.js
file
in
the
ClientResources
folder.
Add
the
following
code
(after
the
title)
to
the
aspx
page:

Code
<%If (False) Then%>
<script type="text/javascript"
src="./ClientResources/FpSpreadJsIntellisense.js"></script>
<% End If%>
function SomeFunction() {
var spread = FpSpread("FpSpread1");
// This variable declaration is necessary for the autocomplete.
// Type spread. here to see the autocomplete.
}

The
final
aspx
page
might
appear
as
follows:

Code
<title>Untitled Page</title>
<%If (False) Then%>
<script type="text/javascript"
src="./ClientResources/FpSpreadJsIntellisense.js"></script>
<% End If%> <script language="javascript" type ="text/javascript" >

Spread for ASP.NET Developer’s Guide 35

Copyright © GrapeCity, Inc. All rights reserved.

window.onload = function () {
var ss = document.getElementById("<%=FpSpread1.ClientID %>");
if (document.all) {
// IE
if (ss.addEventListener) {
// IE9
ss.addEventListener("DataChanged", DataChanged, false);
} else {
// Other versions of IE and IE9 quirks mode (no doctype set)
ss.onDataChanged = DataChanged;
}
}
else {
// Firefox
ss.addEventListener("DataChanged", DataChanged, false);
}
}

function DataChanged(event) {
var spread = FpSpread("FpSpread1");
> // TYPE spread. here to see the auto-complete.
}
</SCRIPT>

The
<%
if
%>
block
will
evaluate
to
false
at
run
time
since
this
code
is
only
used
for
code
autocomplete.

Client-side
autocomplete
support
can
also
be
used
in
a
stand-alone
js
file
with
the
following
code
(this
line
must
be
before
any
script):

Code
<reference name="FarPoint.Web.Spread.htc.FpSpreadJsIntellisense.js"
assembly="FarPoint.Web.Spread" />

Understanding Browser Support

The
Spread
component
resides
on
the
server
and
generates
HTML
pages
when
it
is
accessed
by
end
users
on
the
client
side.
The
appearance
and
amount
of
interactivity
of
the
Web
page
depends
on
the
browser
used
on
the
client
side.
The
view
of
the
HTML
pages
generated
by
the
Spread
component
depends
on
the
browser
being
used
to
view
the
page.
The
component
also
downloads
some
HTML
component
(HTC)
files
to
the
client
side.
This
topic
summarizes
some
browser-
specific
behaviors
of
the
product.
These
aspects
of
browser
support,
discussed
below,
include:

Browser
Level

The
appearance
and
amount
of
interactivity
of
the
Web
page
depends
on
the
level
of
browser.
Broadly,
an
uplevel
browser
is
one
that
can
support
client-side
JavaScript,
HTML
version
4.0,
the
Microsoft
Document
Object
Model,
and
cascading
style
sheets
(CSS).
A
downlevel
browser
is
one
that
does
not.
For
a
more
detailed
definition
of
uplevel
and
downlevel
browser
and
for
a
list
of
capabilities
of
those
browsers,
refer
to
the
browser
capability
information
in
the
Microsoft
.NET
documentation.

Mozilla
Firefox
Support

While
most
features
work
in
Mozilla
Firefox,
not
all
do.
All
features
work
in
the
latest
version
of
Microsoft
Internet
Explorer
(IE).
Here
is
a
list
of
features
that
are
not
supported
in
Firefox.

Scroll
bar
properties
(see
Customizing
the
Scroll
Bar
Colors)

Spread for ASP.NET Developer’s Guide 36

Copyright © GrapeCity, Inc. All rights reserved.

For
other
affects,
see
the
discussion
on
the
DOCTYPE
Affect
on
Rendering.

Apple
Safari
Support

While
most
features
work
in
Apple
Safari,
not
all
do.
Here
is
a
list
of
features
that
are
not
supported.

Frozen
rows
and
columns
(FrozenRowCount
('FrozenRowCount
Property'
in
the
on-line
documentation)
property
and
FrozenColumnCount
('FrozenColumnCount
Property'
in
the
on-
line
documentation)
property)
ImeMode
for
editable
cell
types
UIVirtualization
('UIVirtualization
Property'
in
the
on-line
documentation)
property

Apple
Safari
Support
with
IPad

Here
is
a
list
of
features
that
are
not
supported.

Panning
mode
is
not
supported.
Custom
toolbar
above
the
system
keyboard
is
not
supported.
Scroll
bars
are
not
displayed.

Google
Chrome

Here
is
a
list
of
features
that
are
not
supported.

ImeMode
for
editable
cell
types
Scroll
bar
properties
(see
Customizing
the
Scroll
Bar
Colors)

Client-Side
Scripting

For
other
browsers,
besides
Microsoft
Internet
Explorer
(IE)
and
Mozilla
Firefox,
the
Spread
client-side
scripting
is
not
supported.

In
your
scripting
code,
you
will
need
to
check
the
browser
to
see
if
it
is
Firefox
or
IE
before
calling
this
code,
so
you
can
call
it
correctly
based
on
the
browser
that
is
viewing
the
page.
Client-side
scripting
for
the
Firefox
browser
is
a
little
different
than
it
is
for
IE.
You
need
to
use
Firefox's
way
to
attach
events.
For
example

Code
<HEAD>
...
<script language="javascript" type="text/javascript">
window.onload = function ()
 {
 var spread1 = document.getElementById("<%=FpSpread1.ClientID %>");
 if (document.all) {
 // IE
 if (spread1.addEventListener) {
 // IE9
 spread1.addEventListener("DataChanged", dataChanged, false);
 } else {
 // Other versions of IE and IE9 quirks mode (no doctype set)
 spread1.onDataChanged = dataChanged;
 }
 } else {
 // Firefox
 spread1.addEventListener("DataChanged", dataChanged, false);
 }
 }

Spread for ASP.NET Developer’s Guide 37

Copyright © GrapeCity, Inc. All rights reserved.

 function dataChanged() {
 alert("The data has changed!");
 }

</SCRIPT>
</HEAD>

Firefox
does
not
support
JavaScript
properties
as
IE
does;
everything
is
accessed
with
methods.
For
example,
to
get
the
active
row
and
active
column,
you
use
the
GetActiveRow
(on-line
documentation)
method
and
the
GetActiveCol
(on-line
documentation)
method
respectively.
In
code,

Code
var row = ss.GetActiveRow();
alert(row);

For
browser-level
issues
specific
to
certain
members,
refer
to
these:

FpSpread.EnableClientScript
('EnableClientScript
Property'
in
the
on-line
documentation)
Property
SheetView.MessageRowStyle
('MessageRowStyle
Property'
in
the
on-line
documentation)
Property
SheetSkin.SelectionForeColor
('SelectionForeColor
Property'
in
the
on-line
documentation)
Property

and
refer
to
Understanding
Effects
of
Client-Side
Validation.

AJAX
Support

Spread
for
ASP.NET
supports
AJAX
in
Microsoft
Internet
Explorer
(IE)
and
Mozilla
Firefox
browsers.

DOCTYPE
Affect
on
Rendering

The
DOCTYPE
settings
can
affect
the
rendering
of
Spread.
Consider
the
following:

Column
widths
slightly
differ
from
what
you
see
in
Spread
Designer
(IE
and
Firefox).
Spread
inside
a
DIV
element
does
not
scroll
as
expected
(IE
and
Firefox)
Row
height
expands
to
show
the
wrapping
text
(IE
and
Firefox)

The
column
widths
may
appear
narrower
in
Firefox
than
in
IE.
This
has
to
do
with
the
document
type
(DOCTYPE)
of
the
HTML
page.
In
IE,
with
compliant
mode,
you
will
see
column
widths
with
margins
set
to
be
larger
that
what
you
set
them
to.
If
you
change
the
DOCTYPE
of
the
page
to
Transitional
or
remove
the
margins
for
the
cells,
you
should
see
the
same
column
widths
using
either
browser.
For
more
information,
refer
to
the
IsStrictMode
method.

Note:
Spread
requires
that
the
XML
name
space
be
declared
as
follows:
<html
xmlns="http://www.w3.org/1999/xhtml">

Spread
uses
HTML
tables
for
the
display
on
the
client
side.
When
you
define
a
row
span,
it
defines
the
span
for
the
HTML
table
in
the
page.
The
default
behavior
in
Internet
Explorer
for
a
spanned
row
in
an
HTML
table
is
to
resize
to
fit
the
text.
In
Spread,
the
row
is
resized
to
avoid
layout
issues.
There
is
little
documentation
outlining
this
behavior,
but
you
can
test
this
behavior
in
Firefox
where
you
do
not
see
the
cell
resize
itself
to
display
the
full
text.
However,
it
does
not
force
the
horizontal
scroll
bar
to
remain.

Understanding Parts of the Component Interface

The
generated
Spread
component
interface
is
made
up
of
the
tool
bars
(which
can
appear
above
and
below
the
spreadsheet)
and
the
sheet
that
displays
the
data.
The
figure
below
shows
the
major
parts
of
the
component
interface

Spread for ASP.NET Developer’s Guide 38

Copyright © GrapeCity, Inc. All rights reserved.

http://www.w3.org/1999/xhtml

that
can
be
customized.

More
information
about
the
component
is
available
in
Customizing
the
Appearance
of
the
Overall
Component
and
Customizing
Interaction
with
the
Overall
Component.

The
command
bar,
the
optional
page
navigation
bar,
and
the
scroll
bars
are
described
in
more
detail
in
Customizing
the
Tool
Bars.

The
row
and
column
headers,
considered
part
of
the
sheet,
are
described
in
more
detail
in
Customizing
the
Appearance
of
Headers.

For
more
information
on
the
data
area,
including
the
sheet,
the
rows
and
columns,
and
the
cells,
refer
to
Customizing
the
Appearance
of
the
Sheet,
Customizing
the
Appearance
of
Rows
and
Columns,
and
Customizing
the
Appearance
of
a
Cell.

Working with Collection Editors

Several
properties
that
appear
in
the
Properties
window
are
associated
with
collections.
To
view
and
modify
these
settings,
click
on
the
Browse
button
(...)
and
a
separate
Collection
Editor
window
appears.
This
is
the
case
for
the
NamedStyles
('NamedStyles
Property'
in
the
on-line
documentation)
property
and
the
Sheets
('Sheets
Property'
in
the
on-line
documentation)
property
in
the
FpSpread
component.

With
these
collection
editors,
you
must
click
OK
to
see
the
results
of
a
change
to
a
setting.
(The
collection
editors
are
part
of
the
Microsoft
.NET
framework
and
do
not
have
an
Apply
button.)

Spread for ASP.NET Developer’s Guide 39

Copyright © GrapeCity, Inc. All rights reserved.

Working with Web Parts

You
can
allow
Spread
for
ASP.NET
work
as
a
Web
Part
in
a
Microsoft
SharePoint
environment.
To
do
so,
follow
these
steps:

1.
 Set
the
trust
level
to
full.
Set
the
TrustLevel
in
SharePoint
web.config
to
Full.
2.
 Mark
the
Spread
DLLs
safe
in
web.config
(FarPoint.CalcEngine.dll,
FarPoint.Excel.dll
and

FarPoint.Web.Spread.dll).

This
assumes
you
are
using
the
latest
version
of
SharePoint
(WSS
or
MOSS).
For
earlier
versions
of
SharePoint
you
also
had
the
additional
step
of
excluding
the
fp_client
folder
from
the
SharePoint
server.
This
is
no
longer
necessary.

Spread
can
be
used
inside
the
Web
Part
you
are
developing.

In
earlier
versions
of
the
product,
the
FpSpread.RenderWebPart
method
was
used
for
the
.NET
Framework
1.x
when
you
created
a
Web
Part
based
on
Microsoft.SharePoint.WebPartPages.WebPart
class.
In
.NET
Framework
2.x,
the
Web
Part
becomes
part
of
the
framework.
If
you
use
the
framework
WebPart
class,
System.Web.UI.WebControls.WebParts.WebPart,
the
FpSpread.RenderWebPart
method
is
no
longer
needed.

See
a
good
introduction
to
Web
Parts
at:

https://msdn.microsoft.com/en-us/library/ee231579.aspx

Working with Windows Azure

You
can
use
Spread
for
ASP.NET
in
a
Windows
Azure
project.
Use
the
following
steps:

1.
 Copy
the
fp_client
folder
to
your
WebRole
project
folder.
2.
 Include
this
fp_client
folder
in
your
WebRole
project
and
add
the
following
setting
to
the
web.config
file.

Code
<appSettings>
<add key="fp_client" value="fp_client"/>
</appSettings>

You
do
not
need
to
edit
web.config
if
you
use
the
development
fabric
in
Visual
Studio.

You
can
also
use
the
Chart
control
in
a
Windows
Azure
project.
You
would
need
to
add
the
ChartImageHttpHandler
to
the
web
server
section
of
the
web.config
file.
If
you
are
using
integrated
managed
pipeline
mode,
set
validateIntegratedModeConfiguration
to
False.
For
example:

Code
<system.webServer>
<validation validateIntegratedModeConfiguration="false"/>
<handlers>
...
<add name="chart" path="FpChart.axd" verb="*"
type="FarPoint.Web.Chart.ChartImageHttpHandler"/>

Working with Microsoft ASP.NET MVC 5

You
can
use
Spread
for
ASP.NET
in
an
MVC
5
project.
MVC
support
in
Spread
for
ASP.NET
requires
Microsoft
ASP.NET
MVC
5,
Microsoft
Visual
Studio
2013
with
.NET
4.0
Framework,
and
the
Microsoft
ADO.NET
Entity
4.1
Framework.

The
Razor
view
generally
uses
@
in
front
of
the
name
and
the
ASPX
view
generally
uses
<%
%>around
the
name.
Use
the
following
steps
to
create
a
project
with
Spread:

Spread for ASP.NET Developer’s Guide 40

Copyright © GrapeCity, Inc. All rights reserved.

https://msdn.microsoft.com/en-us/library/ee231579.aspx

1.
 Reference
FarPoint.Mvc.Spread.dll
and
FarPoint.Web.Spread.dll
in
the
project.
2.
 Add
the
Spread
information
to
the
Licenses.licx
file:

Code
FarPoint.Web.Spread.FpSpread, FarPoint.Web.Spread, Version=10.40.20162.0,
Culture=neutral, PublicKeyToken=327c3516b1b18457
FarPoint.Mvc.Spread.FpSpread, FarPoint.Mvc.Spread, Version=10.40.20162.0,
Culture=neutral, PublicKeyToken=327c3516b1b18457

3.
 Open
Global.asax.cs,
go
to
the
Application_Start
function
and
add
the
following
registration
code:

If
you
use
Spread
MVC
on
.NET
Framework
4.0
or
above,
remove
FarPoint.Mvc.Spread.MvcSpreadVirtualPathProvider.AppInitialize();
from
Application_Start().

C#
protected void Application_Start()
{
//FarPoint.Mvc.Spread.MvcSpreadVirtualPathProvider.AppInitialize();
AreaRegistration.RegisterAllAreas();
RegisterGlobalFilters(GlobalFilters.Filters);
RegisterRoutes(RouteTable.Routes);
//ModelBinders.Binders.DefaultBinder =
ModelBinders.Binders[typeof(FarPoint.Mvc.Spread.FpSpread)];
//ModelBinders.Binders.Add(typeof(FarPoint.Mvc.Spread.FpSpread), new
FarPoint.Mvc.Spread.MvcSpreadModelBinder());
}

4.
 Declare
Spread
with
the
MVC
Spread
namespace:

Code
@using FarPoint.Mvc.Spread; or <%@ Import Namespace="Farpoint.Mvc.Spread"
%>

This
allows
you
to
have
an
MVC
Spread
with
the
following
code:

Code
@Html.FpSpread("FpSpread1"); or <%=Html.FpSpread("FpSpread1")%>

FpSpread1
is
the
Spread
ID.
It
should
be
unique.

5.
 Provide
access
to
MVC
Spread
from
the
Controller.
When
the
user
posts
back
data
to
the
server,
the
developer
can
access
the
declared
MVC
Spread
as
an
argument
(the
Spread
has
full
ViewState
and
new
postback
data).
For
example:

C#
public ActionResult
Index([FarPoint.Mvc.Spread.MvcSpread]FarPoint.Mvc.Spread.FpSpread FpSpread1)
{
ViewBag.Message = "Welcome to GrapeCity";
if (FpSpread1 != null)
{
var value = FpSpread1.ActiveSheetView.Cells[0, 0].Value;
}
return View();
}

Spread for ASP.NET Developer’s Guide 41

Copyright © GrapeCity, Inc. All rights reserved.

If
you
do
not
want
to
use
an
attribute,
open
the
Global.asax.cs
and
uncomment
one
of
the
lines
in
step
3.

Make
sure
the
Spread
ID
is
the
same
in
the
view
code
and
in
the
controller
action
parameter.

6.
 Attach
Spread
events:
Spread
supports
attaching
events
from
the
Controller
only.
If
there
is
an
AJAX
postback,
the
Spread
events
will
not
be
handled.
MvcSpread
allows
attaching
3
main
events:
Init,
Load,
and
PreRender.
Events
can
be
grouped
or
ungrouped.
Use
one
of
the
following
methods
to
handle
the
event:

Create
a
function
with
a
special
name.

The
special
name
indicates
that
“I
want
to
bind
this
function
to
a
Spread
event”.
For
example,
to
attach
to
the
Load
event
of
FpSpread1,
the
function
looks
like
the
following:

C#
public void FpSpread1_Load(object sender, EventArgs e)
{
}
Use MvcSpreadEventAttribute.
In some cases, you may want to reserve a special name (like “FpSpread1_Load”).
This can only be done by using the second method: MvcSpreadEventAttribute. The
event handler can be shared globally or in a group.
This example handles the Init event for all FpSpreads with the ID of FpSpread1 in
any view, globally:
[FarPoint.Mvc.Spread.MvcSpreadEvent("Init", "FpSpread1")]
private void _init(object sender, EventArgs e)
{
}

This
solution
also
provides
the
ability
to
bind
one
function
to
many
different
Spreads.
The
following
example
handles
the
Init
event
for
all
FpSpreads
with
the
ID
of
FpSpread1
or
FpSpread2
in
any
view,
globally:

C#
[FarPoint.Mvc.Spread.MvcSpreadEvent("Init", new string[] {"FpSpread1",
"FpSpread2"})]
private void _init(object sender, EventArgs e)
{
}

The
second
solution
requires
that
you
indicate
implicitly
that
the
function
(with
special
name)
should
not
be
attached
automatically:

C#
[FarPoint.Mvc.Spread.NoMvcSpreadEvent]
private void FpSpread1_Init(object sender, EventArgs e)
{
}

By
attaching
to
the
Init
or
Load
event,
you
can
attach
to
other
custom
Spread
events
such
as
TopRowChange,
UpdateCommand,
and
so
on.

Additional
information
about
global,
grouped,
and
ungrouped
events:

Attaching
events
with
a
grouped
MvcSpread:

If
the
MvcSpread
is
grouped,
use
a
group
name.
For
example:

C#
// groupName is "GroupName" -> grouped

Spread for ASP.NET Developer’s Guide 42

Copyright © GrapeCity, Inc. All rights reserved.

public ActionResult Index([MvcSpread("GroupName", false)] FpSpread FpSpread1)
// no groupName specified -> not grouped
public ActionResult Index([MvcSpread(false)] FpSpread FpSpread1)

The
following
examples
show
how
to
handle
group
events:

C#
// method Func3() is used to handle the Load event for all FpSpreads with ID of
FpSpread1 in any view, inside the group called "GroupName"
[MvcSpreadEvent("Load", "GroupName", "FpSpread1")]
private void Func3(object sender, EventArgs e)
{
}
// method Func4() is used to handle the Load event for all FpSpreads with ID of
FpSpread1, or FpSpread2 in any view, inside the group called "GroupName"
[MvcSpreadEvent("Load", "GroupName", new string[] { "FpSpread1", "FpSpread2" })]
private void Func4(object sender, EventArgs e)
{
}

Any
function
named
“[Spread
ID]_[Event
Name]”
is
treated
as
a
global
event
handler.
The
event
name
is
indicated
by
[Event
Name]
and
only
an
MvcSpread
with
an
ID
the
same
as
[Spread
ID]
can
handle
this
event
handler:

C#
// this is a global handler for all FpSpread1 Load events
public void FpSpread1_Load(object sender, EventArgs e)
{
}

You
can
exclude
some
groups
(that
contain
FpSpread
controls
that
are
not
handled
by
this
method)
from
global
event
handlers.
These
groups
can
be
referenced
by
their
names.
For
example:

C#
// method abc() is used to handle the Load event for all FpSpread1 controls,
excluding the ones that belong to GroupName1 or GroupName2
[MvcSpreadEvent("Load", "FpSpread1")]
[MvcSpreadEventExclude("GroupName1", "GroupName2")]
public void abc(object sender, EventArgs e)
{
}
// this method is used to handle the Load event for all FpSpread1 controls,
excluding the ones that belong to GroupName1 or GroupName2
[MvcSpreadEventExclude("GroupName1", "GroupName2")]
public void FpSpread1_Load(object sender, EventArgs e)
{
}

Developer
does
not
declare
MvcSpread
inside
controller:

The
MvcSpread
is
ungrouped
if
the
MvcSpread
is
declared
inside
the
view.
Using
a
group
name
with
MvcSpread
in
the
view
may
cause
issues
since
there
is
a
case
where
the
group
name
in
the
controller
and
the
group
name
in
the
view
are
different.
If
MvcSpread
is
not
declared
in
the
controller,
the
events
are
attached
to
global
event
handlers
only.

Developer
declares
MvcSpread
inside
controller:

If
the
event
handlers
are
global
(group
name
not
declared
in
MvcSpreadEventAttribute),
they
attach
to
all
Spread

Spread for ASP.NET Developer’s Guide 43

Copyright © GrapeCity, Inc. All rights reserved.

controls
whether
grouped
or
not.

If
the
event
handlers
are
private
(group
name
explicitly
declared
in
MvcSpreadEventAttribute),
they
attach
only
to
Spread
controls
with
the
same
group
name.

Spread
controls
without
a
group
name
are
attached
by
global
event
handlers.

If
there
are
two
event
handlers
for
the
same
event,
the
first
one
is
private
and
the
second
one
is
global.

The
current
Spread
looks
for
the
global
event
handler
first
when
binding
events.
If
found,
binding
for
the
current
event
happens
first.
The
private
one
with
the
same
group
name
happens
next.

Note:
Using
the
create
parameter
to
notify
MvcSpreadModelBinder
to
create
a
new
instance
of
MvcSpread
the
first
time
does
not
affect
attaching
events.An
event
handler
is
attached
to
MvcSpread
if
the
event
ID
list
contains
the
MvcSpread
ID,
regardless
of
whether
the
event
handler
is
private
or
global.

7.
 Pass
MVC
Spread
from
Controller
to
View:
If
an
instance
of
FpSpread
is
created
by
a
model,
it
is
applied
to
the
view
automatically.
The
code
that
renders
FpSpread
with
the
same
ID,
renders
the
current
FpSpread
to
the
client
browser:

C#
public ActionResult Index([MvcSpread(true)] FpSpread FpSpread1)
{
FpSpread1.ActiveSheetView.Rows.Count = 30;
return View();
}

In
the
parameter
list
Index()
action
the
FpSpread1
is
declared
specifically
as
[MvcSpread(true)]
FpSpread
FpSpread1.
When
running
this
code,
a
new
instance
of
FpSpread
is
created
by
our
ModelBinder.
The
ActiveSheetView.Rows.Count
is
set
to
30,
and
then
this
instance
is
applied
to
the
view
automatically.
The
FpSpread
control
with
the
ID
of
"FpSpread1"
in
the
view
receives
these
changes.

Working with Microsoft ASP.NET MVC 3

You
can
use
Spread
for
ASP.NET
in
an
MVC
3
project.
MVC
support
in
Spread
for
ASP.NET
requires
Microsoft
ASP.NET
MVC3,
Microsoft
Visual
Studio
2010
with
.NET
4.0
Framework,
and
the
Microsoft
ADO.NET
Entity
4.1
Framework.

The
Razor
view
generally
uses
@
in
front
of
the
name
and
the
ASPX
view
generally
uses
<%
%>around
the
name.
Use
the
following
steps
to
create
a
project
with
Spread:

1.
 Reference
FarPoint.Mvc.Spread.dll
and
FarPoint.Web.Spread.dll
in
the
project.
2.
 Add
the
Spread
information
to
the
Licenses.licx
file:

Code
FarPoint.Web.Spread.FpSpread, FarPoint.Web.Spread, Version=8.40.20143.0,
Culture=neutral, PublicKeyToken=327c3516b1b18457
FarPoint.Mvc.Spread.FpSpread, FarPoint.Mvc.Spread, Version=8.40.20143.0,
Culture=neutral, PublicKeyToken=327c3516b1b18457

3.
 Open
Global.asax.cs,
go
to
the
Application_Start
function
and
add
the
following
registration
code:

C#
protected void Application_Start()
{
FarPoint.Mvc.Spread.MvcSpreadVirtualPathProvider.AppInitialize();
AreaRegistration.RegisterAllAreas();
RegisterGlobalFilters(GlobalFilters.Filters);
RegisterRoutes(RouteTable.Routes);
//ModelBinders.Binders.DefaultBinder =

Spread for ASP.NET Developer’s Guide 44

Copyright © GrapeCity, Inc. All rights reserved.

ModelBinders.Binders[typeof(FarPoint.Mvc.Spread.FpSpread)];
//ModelBinders.Binders.Add(typeof(FarPoint.Mvc.Spread.FpSpread), new
FarPoint.Mvc.Spread.MvcSpreadModelBinder());
}

4.
 Declare
Spread
with
the
MVC
Spread
namespace:

Code
@using FarPoint.Mvc.Spread; or <%@ Import Namespace="Farpoint.Mvc.Spread"
%>

This
allows
you
to
have
an
MVC
Spread
with
the
following
code:

Code
@Html.FpSpread("FpSpread1"); or <%=Html.FpSpread("FpSpread1")%>

FpSpread1
is
the
Spread
ID.
It
should
be
unique.

5.
 Provide
access
to
MVC
Spread
from
the
Controller.
When
the
user
posts
back
data
to
the
server,
the
developer
can
access
the
declared
MVC
Spread
as
an
argument
(the
Spread
has
full
ViewState
and
new
postback
data).
For
example:

C#
public ActionResult
Index([FarPoint.Mvc.Spread.MvcSpread]FarPoint.Mvc.Spread.FpSpread FpSpread1)
{
ViewBag.Message = "Welcome to GrapeCity";
if (FpSpread1 != null)
{
var value = FpSpread1.ActiveSheetView.Cells[0, 0].Value;
}
return View();
}

If
you
do
not
want
to
use
an
attribute,
open
the
Global.asax.cs
and
uncomment
one
of
the
lines
in
step
3.

Make
sure
the
Spread
ID
is
the
same
in
the
view
code
and
in
the
controller
action
parameter.

6.
 Attach
Spread
events:
Spread
supports
attaching
events
from
the
Controller
only.
If
there
is
an
AJAX
postback,
the
Spread
events
will
not
be
handled.
MvcSpread
allows
attaching
3
main
events:
Init,
Load,
and
PreRender.
Events
can
be
grouped
or
ungrouped.
Use
one
of
the
following
methods
to
handle
the
event:

Create
a
function
with
a
special
name.

The
special
name
indicates
that
“I
want
to
bind
this
function
to
a
Spread
event”.
For
example,
to
attach
to
the
Load
event
of
FpSpread1,
the
function
looks
like
the
following:

C#
public void FpSpread1_Load(object sender, EventArgs e)
{
}
Use MvcSpreadEventAttribute.

In some cases, you may want to reserve a special name (like “FpSpread1_Load”).
This can only be done by using the second method: MvcSpreadEventAttribute. The
event handler can be shared globally or in a group.
This example handles the Init event for all FpSpreads with the ID of FpSpread1 in
any view, globally:

Spread for ASP.NET Developer’s Guide 45

Copyright © GrapeCity, Inc. All rights reserved.

[FarPoint.Mvc.Spread.MvcSpreadEvent("Init", "FpSpread1")]
private void _init(object sender, EventArgs e)
{
}

This
solution
also
provides
the
ability
to
bind
one
function
to
many
different
Spreads.
The
following
example
handles
the
Init
event
for
all
FpSpreads
with
the
ID
of
FpSpread1
or
FpSpread2
in
any
view,
globally:

C#
[FarPoint.Mvc.Spread.MvcSpreadEvent("Init", new string[] {"FpSpread1",
"FpSpread2"})]
private void _init(object sender, EventArgs e)
{
}

The
second
solution
requires
that
you
indicate
implicitly
that
the
function
(with
special
name)
should
not
be
attached
automatically:

C#
[FarPoint.Mvc.Spread.NoMvcSpreadEvent]
private void FpSpread1_Init(object sender, EventArgs e)
{
}

By
attaching
to
the
Init
or
Load
event,
you
can
attach
to
other
custom
Spread
events
such
as
TopRowChange,
UpdateCommand,
and
so
on.

Additional
information
about
global,
grouped,
and
ungrouped
events:

Attaching
events
with
a
grouped
MvcSpread:

If
the
MvcSpread
is
grouped,
use
a
group
name.
For
example:

C#
// groupName is "GroupName" -> grouped
public ActionResult Index([MvcSpread("GroupName", false)] FpSpread FpSpread1)
// no groupName specified -> not grouped
public ActionResult Index([MvcSpread(false)] FpSpread FpSpread1)

The
following
examples
show
how
to
handle
group
events:

C#
// method Func3() is used to handle the Load event for all FpSpreads with ID of
FpSpread1 in any view, inside the group called "GroupName"
[MvcSpreadEvent("Load", "GroupName", "FpSpread1")]
private void Func3(object sender, EventArgs e)
{
}
// method Func4() is used to handle the Load event for all FpSpreads with ID of
FpSpread1, or FpSpread2 in any view, inside the group called "GroupName"
[MvcSpreadEvent("Load", "GroupName", new string[] { "FpSpread1", "FpSpread2" })]
private void Func4(object sender, EventArgs e)
{
}

Any
function
named
“[Spread
ID]_[Event
Name]”
is
treated
as
a
global
event
handler.
The
event
name
is
indicated
by
[Event
Name]
and
only
an
MvcSpread
with
an
ID
the
same
as
[Spread
ID]
can
handle
this
event

Spread for ASP.NET Developer’s Guide 46

Copyright © GrapeCity, Inc. All rights reserved.

handler:

C#
// this is a global handler for all FpSpread1 Load events
public void FpSpread1_Load(object sender, EventArgs e)
{
}

You
can
exclude
some
groups
(that
contain
FpSpread
controls
that
are
not
handled
by
this
method)
from
global
event
handlers.
These
groups
can
be
referenced
by
their
names.
For
example:

C#
// method abc() is used to handle the Load event for all FpSpread1 controls,
excluding the ones that belong to GroupName1 or GroupName2
[MvcSpreadEvent("Load", "FpSpread1")]
[MvcSpreadEventExclude("GroupName1", "GroupName2")]
public void abc(object sender, EventArgs e)
{
}
// this method is used to handle the Load event for all FpSpread1 controls,
excluding the ones that belong to GroupName1 or GroupName2
[MvcSpreadEventExclude("GroupName1", "GroupName2")]
public void FpSpread1_Load(object sender, EventArgs e)
{
}

Developer
does
not
declare
MvcSpread
inside
controller:

The
MvcSpread
is
ungrouped
if
the
MvcSpread
is
declared
inside
the
view.
Using
a
group
name
with
MvcSpread
in
the
view
may
cause
issues
since
there
is
a
case
where
the
group
name
in
the
controller
and
the
group
name
in
the
view
are
different.
If
MvcSpread
is
not
declared
in
the
controller,
the
events
are
attached
to
global
event
handlers
only.

Developer
declares
MvcSpread
inside
controller:

If
the
event
handlers
are
global
(group
name
not
declared
in
MvcSpreadEventAttribute),
they
attach
to
all
Spread
controls
whether
grouped
or
not.

If
the
event
handlers
are
private
(group
name
explicitly
declared
in
MvcSpreadEventAttribute),
they
attach
only
to
Spread
controls
with
the
same
group
name.

Spread
controls
without
a
group
name
are
attached
by
global
event
handlers.

If
there
are
two
event
handlers
for
the
same
event,
the
first
one
is
private
and
the
second
one
is
global.

The
current
Spread
looks
for
the
global
event
handler
first
when
binding
events.
If
found,
binding
for
the
current
event
happens
first.
The
private
one
with
the
same
group
name
happens
next.

Note:
Using
the
create
parameter
to
notify
MvcSpreadModelBinder
to
create
a
new
instance
of
MvcSpread
the
first
time
does
not
affect
attaching
events.An
event
handler
is
attached
to
MvcSpread
if
the
event
ID
list
contains
the
MvcSpread
ID,
regardless
of
whether
the
event
handler
is
private
or
global.

7.
 Pass
MVC
Spread
from
Controller
to
View:
If
an
instance
of
FpSpread
is
created
by
a
model,
it
is
applied
to
the
view
automatically.
The
code
that
renders
FpSpread
with
the
same
ID,
renders
the
current
FpSpread
to
the
client
browser:

C#
public ActionResult Index([MvcSpread(true)] FpSpread FpSpread1)
{
FpSpread1.ActiveSheetView.Rows.Count = 30;

Spread for ASP.NET Developer’s Guide 47

Copyright © GrapeCity, Inc. All rights reserved.

return View();
}

In
the
parameter
list
Index()
action
the
FpSpread1
is
declared
specifically
as
[MvcSpread(true)]
FpSpread
FpSpread1.
When
running
this
code,
a
new
instance
of
FpSpread
is
created
by
our
ModelBinder.
The
ActiveSheetView.Rows.Count
is
set
to
30,
and
then
this
instance
is
applied
to
the
view
automatically.
The
FpSpread
control
with
the
ID
of
"FpSpread1"
in
the
view
receives
these
changes.

Copying Shared Assemblies to Local Folder

FarPoint.CalcEngine.dll,
FarPoint.Excel.dll,
and
FarPoint.PDF.dll
are
installed
to
the
GAC
by
default
when
installing
Spread
for
ASP.NET.

You
can
use
the
smart
tag
verb
"Copy
Shared
Assemblies
Local"
to
copy
FarPoint.CalcEngine.dll,
FarPoint.Excel.dll,
and
FarPoint.PDF.dll
to
the
local
bin
folder
on
the
web
site
when
deploying.

The
smart
tag
verb
appears
as
follows:

The
following
entry
is
added
to
the
web.config
file:

Code
<appSettings>
<add key="fp_CopySharedAssembliesLocal" value="True" />

Spread for ASP.NET Developer’s Guide 48

Copyright © GrapeCity, Inc. All rights reserved.

</appSettings>

Working with Strongly Typed Data Controls

Strong-typed
data
controls
support
binding
using
a
new
syntax
that
is
available
in
ASP.NET
4.5.
This
allows
you
to
directly
reference
properties
on
the
data
source
object
in
the
markup.
For
example,
in
order
to
bind
data
to
PreviewRowTemplate
and
RowEditTemplate
before
ASP.NET
4.5,
code
to
bind
to
the
FirstName
property
on
your
data
source
item
looked
like
this:

Code
<FarPoint:FpSpread ID="FpSpread1">
 <Sheets>
 <FarPoint:SheetView SheetName="Sheet1">
 <PreviewRowTemplate>
 First Name is: <%#DataBinder.Eval(Item, "FirstName") %>
 </PreviewRowTemplate>
 <RowEditTemplate>
 First Name is: <%#DataBinder.Eval(Item, "FirstName") %>
 </RowEditTemplate>
 </FarPoint:SheetView>
 </Sheets>
</FarPoint:FpSpread>

With
ASP.NET
4.5
you
can
use
code
like
the
following:

Code
<FarPoint:FpSpread ID="FpSpread1">
 <Sheets>
 <FarPoint:SheetView SheetName="Sheet1">
 <PreviewRowTemplate>
 First Name is: <%#Item.FirstName %>
 </PreviewRowTemplate>
 <RowEditTemplate>
 First Name is: <%#Item.FirstName %>
 </RowEditTemplate>
 </FarPoint:SheetView>
 </Sheets>
</FarPoint:FpSpread>

Using
code
in
your
markup
this
way
allows
you
to
get
the
added
benefits
of
IntelliSense
listing
of
your
data
source
object's
properties
and
validation
of
the
property
name
at
design
time.

Getting More Practice

Here
are
the
tasks
for
getting
more
practice
with
the
product.

Understanding
Procedures
in
the
Documentation
Getting
Technical
Support
(on-line
documentation)

Understanding Procedures in the Documentation

There
are
several
different
ways
to
accomplish
the
same
result
when
creating
a
Windows
Forms
page
with
a
Spread
component.
In
this
documentation,
the
procedures
often
describe
more
than
one
way,
including
using
the
Properties

Spread for ASP.NET Developer’s Guide 49

Copyright © GrapeCity, Inc. All rights reserved.

window
in
Visual
Studio
.NET,
writing
code
including
using
shortcut
objects,
and
using
the
Spread
Designer.
The
Spread
Designer
sets
properties
and
calls
methods
for
the
component,
including
properties
not
available
at
design
time
through
Visual
Studio
.NET,
without
producing
any
editable
code.

Each
of
these
has
its
advantages
and
disadvantages.
Using
shortcut
objects
is
the
shortest,
quickest
way
of
adding
code
using
dot
notation
and
setting
a
property
of
a
shortcut
object.
Using
code
without
using
shortcut
objects
generally
means
declaring
objects
and
setting
properties
for
them.
Typically,
for
either
way
of
writing
code,
there
is
an
example
given.

Documentation
Provided

The
Spread
for
ASP.NET
documentation
provides
introductory
information
about
the
product,
conceptual
information,
how-to
topics,
and
a
detailed
assembly
and
formula
function
reference
in
a
help
file
and
in
PDF
files.
Additional
information
is
provided
in
the
Read
me
file.

Accessing
the
Help

You
can
access
the
help
through
F1
support
provided
in
Visual
Studio
.NET.
While
the
component
or
one
of
its
members
has
focus,
press
F1
to
display
the
Spread
for
ASP.NET
help.

You
can
also
access
the
help
file
in
a
stand-alone
window
by
choosing
Start‑>Programs‑>GrapeCity‑>...->Product-
>Help.

Documentation
Conventions

The
format
of
the
help
is
similar
to
the
help
provided
for
Visual
Studio
.NET.
Reference
material
for
members
provides
multiple
language
reference
for
the
member.
You
can
change
which
language's
syntax
is
displayed
by
clicking
the
Languages
button
in
the
title
of
the
topic.

List
of
How-To's

Here
is
a
list
of
the
commonly
used
procedures
covered
in
the
documentation:

Adding
a
Note
to
a
Cell
Adding
a
Row
or
Column
Adding
a
Sheet
Applying
a
Skin
to
a
Sheet
Customizing
the
Dimensions
of
the
Component
Customizing
the
Number
of
Rows
or
Columns
Creating
a
Custom
Function
Creating
a
Custom
Name
Creating
a
Skin
for
Sheets
Creating
Alternating
Rows
Customizing
the
Outline
of
the
Component
Customizing
the
Sheet
Corner
Displaying
Grid
Lines
on
the
Sheet
Displaying
Scroll
Bars
Locking
a
Cell
Nesting
Functions
in
a
Formula
Opening
Existing
Files
Placing
a
Formula
in
Cells
Removing
a
Row
or
Column
Removing
a
Sheet
Saving
Data
to
a
File

Spread for ASP.NET Developer’s Guide 50

Copyright © GrapeCity, Inc. All rights reserved.

Setting
the
Background
Color
of
the
Sheet
Setting
the
Row
Height
or
Column
Width
Specifying
a
Cell
Reference
Style
in
a
Formula
Using
a
Circular
Reference
in
a
Formula
Working
with
Editable
Cell
Types
Working
with
Graphical
Cell
Types

Getting Technical Support

If
you
have
a
technical
question
about
this
product,
consult
the
following
sources:

Help
and
other
documentation
files
installed
with
the
product.
For
instructions
for
accessing
the
help
and
other
documentation
files,
see
Understanding
Procedures
in
the
Documentation.

Product
forum
at
https://www.grapecity.com/en/forums#spread

If
you
cannot
find
the
answer
using
these
sources,
please
contact
Technical
Support
using
one
of
these
methods:

Web
site: https://www.grapecity.com/en/forums

E-mail: spread.support@grapecity.com

Fax: (412)
681-4384

Phone: (412)
681-4738

Technical
Support
is
available
between
the
hours
of
9:00
a.m.
and
5:30
p.m.
Eastern
time,
Monday
through
Friday.

Understanding the Spread Wizard

You
can
use
the
Spread
Wizard
to
quickly
and
easily
bind
data,
set
up
the
column
structure,
and
customize
the
appearance
of
a
spreadsheet.
See
the
following
topics
for
more
information:

Starting
the
Spread
Wizard
Using
the
Spread
Wizard

Starting the Spread Wizard

You
can
launch
the
Spread
Wizard
from
the
Smart
Tags
on
the
FpSpread
component
on
the
Web
Form
in
Visual
Studio
as
shown
in
this
figure.

Spread for ASP.NET Developer’s Guide 51

Copyright © GrapeCity, Inc. All rights reserved.

https://www.grapecity.com/en/forums#spread
https://www.grapecity.com/en/forums
mailto:spread.support@grapecity.com

Using the Spread Wizard

You
can
use
the
Spread
Wizard
to
bind
to
a
data
source,
set
column
properties,
set
the
operation
mode,
specify
titles,
select
a
sheet
skin,
and
many
others.

Select
the
menu
option
of
the
feature
you
wish
to
customize,
located
on
the
left
side
of
the
dialog.
Select
the
various
options
for
that
feature
and
then
click
Next
to
go
to
the
next
step.
When
you
are
finished,
click
Finish.

Spread for ASP.NET Developer’s Guide 52

Copyright © GrapeCity, Inc. All rights reserved.

Tutorial: Creating a Checkbook Register

The
following
tutorial
walks
you
through
creating
an
ASP.NET
project
in
Visual
Studio
.NET
using
the
Spread
for
ASP.NET
component.
By
creating
a
checkbook
register,
you
will
learn
how
to
modify
the
appearance
of
a
spreadsheet,
work
with
cell
types,
and
add
some
formulas
for
performing
calculations.
In
this
tutorial,
the
major
steps
are

Adding
Spread
to
the
Checkbook
Project
Adding
Spread
to
a
Project
Setting
Up
the
Rows
and
Columns
of
the
Register
Setting
the
Cell
Types
of
the
Register
Adding
Formulas
to
Calculate
Balances

Adding Spread to the Checkbook Project

Start
a
new
Visual
Studio
.NET
project.
Name
the
project
checkbook.
Name
the
form
in
the
project
register.aspx.
Add
the
FpSpread
component
to
your
project,
and
then
place
the
component
on
the
form.

If
you
do
not
know
how
to
add
the
FpSpread
component
to
the
project,
complete
the
steps
in
Adding
Spread
to
a
Project.

Spread for ASP.NET Developer’s Guide 53

Copyright © GrapeCity, Inc. All rights reserved.

Adding Spread to a Project

This
and
all
the
tutorials
assume
that
you
have
Visual
Studio
.NET
installed
on
your
system,
and
Internet
Information
Services
(IIS)
installed
and
running
on
your
system
as
the
local
host
server.

Perform
the
steps
in
this
tutorial
to
set
up
an
ASP.NET
Visual
Studio
.NET
project
that
contains
the
Spread
for
ASP.NET
component.

1.
 Start
Visual
Studio
.NET.
2.
 From
the
File
menu,
choose
New,
Project.
3.
 In
the
New
Project
dialog,
4.
 In
the
Project
Types
list,
choose
either
Visual
Basic
Projects
or
Visual
C#
Projects
depending
on
the

language
you
are
using.
5.
 In
the
Templates
list,
choose
ASP.NET
Web
Application.
6.
 In
the
Location
box,
leave
the
location
path
as
http://localhost/
unless
you
prefer
to
save
this
project
to
another

server.
Change
the
project
name
from
WebApplication1
to
the
name
of
your
choice.
7.
 Click
OK.
8.
 In
the
Solution
Explorer,
right-click
on
the
form
name,
WebForm1.aspx.
Choose
Rename
from
the
pop-up

menu,
then
type
the
new
form
name
you
prefer
for
the
new
form
name.
9.
 If
your
project
does
not
display
the
Solution
Explorer,
from
the
View
menu,
choose
Solution
Explorer.
10.
 If
the
Toolbox
is
not
displayed,
from
the
View
menu
choose
Toolbox.
11.
 In
the
Toolbox,
look
in
the
Web
Forms
category
(or
in
other
categories
if
you
have
installed
Spread
and
placed

the
toolbox
icon
in
a
different
category).
If
the
Spread
component
is
not
in
the
Toolbox,
perform
steps
12
through
14.
Otherwise,
proceed
to
step
15.

12.
 Right-click
in
the
Toolbox,
and
from
the
pop-up
menu
choose
Customize
Toolbox.
13.
 In
the
Customize
Toolbox
dialog,
click
the
.NET
Framework
Components
tab.
14.
 In
the
.NET
Framework
Components
tab,

a.
 Click
Browse.
b.
 Browse
to
the
installation
path
for
the
Spread
for
ASP.NET
component.
Once
there,
select

FarPoint.Web.Spread.dll
and
click
Open.
c.
 The
FpSpread
component
is
now
displayed
in
the
list
of
components.
Click
OK.

15.
 In
the
Toolbox
under
Web
Forms
or
another
tab,
select
the
FpSpread
component.
16.
 On
your
form,
draw
an
FpSpread
component.
17.
 Save
your
project.

Your
project
should
now
look
similar
to
the
following
image:

Spread for ASP.NET Developer’s Guide 54

Copyright © GrapeCity, Inc. All rights reserved.

You
have
added
the
Spread
component
to
the
project.

Setting Up the Rows and Columns of the Register

The
Spread
component
on
your
form
already
has
a
sheet,
ready
for
you
to
configure.
In
this
step,
you
are
going
to
set
up
the
columns
and
cells
in
the
sheet
to
resemble
a
checkbook
register.

1.
 Double-click
on
the
form
in
your
project
to
open
the
code
window.
2.
 Select
the
line
of
code

C#
// Put user code to initialize the page here.

VB
'Put user code to initialize the page here.

and
type
the
following
code
to
replace
it:

C#
if (this.IsPostBack) return;
// Set up component and rows and columns in sheet.
FpSpread1.Height = Unit.Pixel(300);
FpSpread1.Width = Unit.Pixel(763);
FpSpread1.Sheets[0].ColumnCount = 8;

Spread for ASP.NET Developer’s Guide 55

Copyright © GrapeCity, Inc. All rights reserved.

FpSpread1.Sheets[0].RowCount = 100;

VB
If (IsPostBack) Then
Return
End If
' Set up component and rows and columns in sheet.
FpSpread1.Height = Unit.Pixel(300)
FpSpread1.Width = Unit.Pixel(763)
FpSpread1.Sheets(0).ColumnCount = 8
FpSpread1.Sheets(0).RowCount = 100

This
code
sets
up
the
component
to
be
300
pixels
high
and
763
pixels
wide,
and
the
sheet
to
have
8
columns
and
100
rows.

3.
 Now
we
need
to
set
up
the
columns
to
have
custom
headings.
Add
the
following
code
below
the
code
you
added
in
Step
2:

C#
// Add text to column heading.
FpSpread1.ColumnHeader.Cells[0, 0].Text = "Check #";
FpSpread1.ColumnHeader.Cells[0, 1].Text = "Date";
FpSpread1.ColumnHeader.Cells[0, 2].Text = "Description";
FpSpread1.ColumnHeader.Cells[0, 3].Text = "Tax?";
FpSpread1.ColumnHeader.Cells[0, 4].Text = "Cleared?";
FpSpread1.ColumnHeader.Cells[0, 5].Text = "Debit";
FpSpread1.ColumnHeader.Cells[0, 6].Text = "Credit";
FpSpread1.ColumnHeader.Cells[0, 7].Text = "Balance";

VB
' Add text to column heading.
FpSpread1.ColumnHeader.Cells(0, 0).Text = "Check #"
FpSpread1.ColumnHeader.Cells(0, 1).Text = "Date"
FpSpread1.ColumnHeader.Cells(0, 2).Text = "Description"
FpSpread1.ColumnHeader.Cells(0, 3).Text = "Tax?"
FpSpread1.ColumnHeader.Cells(0, 4).Text = "Cleared?"
FpSpread1.ColumnHeader.Cells(0, 5).Text = "Debit"
FpSpread1.ColumnHeader.Cells(0, 6).Text = "Credit"
FpSpread1.ColumnHeader.Cells(0, 7).Text = "Balance"

4.
 Now
set
up
the
column
widths
to
properly
display
our
headings
and
the
data
you
will
add.
Add
the
following
code
below
the
code
you
added
in
Step
3:

C#
// Set column widths.
FpSpread1.Sheets[0].Columns[0].Width = 50;
FpSpread1.Sheets[0].Columns[1].Width = 50;
FpSpread1.Sheets[0].Columns[2].Width = 200;
FpSpread1.Sheets[0].Columns[3].Width = 40;
FpSpread1.Sheets[0].Columns[4].Width = 65;
FpSpread1.Sheets[0].Columns[5].Width = 100;
FpSpread1.Sheets[0].Columns[6].Width = 100;
FpSpread1.Sheets[0].Columns[7].Width = 125;

VB

Spread for ASP.NET Developer’s Guide 56

Copyright © GrapeCity, Inc. All rights reserved.

' Set column widths.
FpSpread1.Sheets(0).Columns(0).Width = 50
FpSpread1.Sheets(0).Columns(1).Width = 50
FpSpread1.Sheets(0).Columns(2).Width = 200
FpSpread1.Sheets(0).Columns(3).Width = 40
FpSpread1.Sheets(0).Columns(4).Width = 65
FpSpread1.Sheets(0).Columns(5).Width = 100
FpSpread1.Sheets(0).Columns(6).Width = 100
FpSpread1.Sheets(0).Columns(7).Width = 125

5.
 Save
your
project,
then
from
the
Debug
menu
choose
Start
to
run
your
project.

Your
ASP.NET
page
should
look
similar
to
the
following
picture.

Setting the Cell Types of the Register

To
set
cell
types,
for
each
custom
cell
type,
you
have
to
create
a
cell
type
object,
set
the
properties
for
it,
and
then
assign
that
object
to
the
CellType
('CellType
Property'
in
the
on-line
documentation)
property
for
a
cell
or
range
of
cells.

1.
 Set
the
cell
type
for
the
Check
#
column
by
adding
the
following
code
below
the
code
you
have
already
added:

C#
// Create Check # column of integer cells.
FarPoint.Web.Spread.IntegerCellType objIntCell = new
FarPoint.Web.Spread.IntegerCellType();
FpSpread1.Sheets[0].Columns[0].CellType = objIntCell;

VB
' Create Check # column of integer cells.
Dim objIntCell As New FarPoint.Web.Spread.IntegerCellType()
FpSpread1.Sheets(0).Columns(0).CellType = objIntCell

2.
 Set
the
cell
type
for
the
Date
column
by
adding
the
following
code
below
the
code
you
have
already
added:

C#
// Create Date column of date-time cells.

Spread for ASP.NET Developer’s Guide 57

Copyright © GrapeCity, Inc. All rights reserved.

FarPoint.Web.Spread.DateTimeCellType objDateCell = new
FarPoint.Web.Spread.DateTimeCellType();
objDateCell.FormatString = "M/dd/yyyy";
FpSpread1.Sheets[0].Columns[1].CellType = objDateCell;

VB
' Create Date column of date-time cells.
Dim objDateCell As New FarPoint.Web.Spread.DateTimeCellType()
objDateCell.FormatString ="M/dd/yyyy"
FpSpread1.Sheets(0).Columns(1).CellType = objDateCell

3.
 Set
the
cell
type
for
the
Description
column
by
adding
the
following
code
below
the
code
you
have
already
added:

C#
// Create Description column of general cells.
FarPoint.Web.Spread.GeneralCellType objGenCell = new
FarPoint.Web.Spread.GeneralCellType();
FpSpread1.Sheets[0].Columns[2].CellType = objGenCell;

VB
' Create Description column of general cells.
Dim objGenCell As New FarPoint.Web.Spread.GeneralCellType()
FpSpread1.Sheets(0).Columns(2).CellType = objGenCell

4.
 Set
the
cell
type
for
the
Tax?
and
Cleared?
columns
by
adding
the
following
code
below
the
code
you
have
already
added:

C#
/// Create Tax? and Cleared? columns of check box cells.
FarPoint.Web.Spread.CheckBoxCellType objCheckCell = new
FarPoint.Web.Spread.CheckBoxCellType();
FpSpread1.Sheets[0].Columns[3].CellType = objCheckCell;
FpSpread1.Sheets[0].Columns[4].CellType = objCheckCell;

VB
' Create Tax? and Cleared? columns of check box cells.
Dim objCheckCell As New FarPoint.Web.Spread.CheckBoxCellType()
FpSpread1.Sheets(0).Columns(3).CellType = objCheckCell
FpSpread1.Sheets(0).Columns(4).CellType = objCheckCell

5.
 Set
the
cell
type
for
the
Debit,
Credit,
and
Balance
columns
by
adding
the
following
code
below
the
code
you
have
already
added:

C#
// Create the Debit, Credit, and Balance columns of currency cells.
FarPoint.Web.Spread.CurrencyCellType objCurrCell = new
FarPoint.Web.Spread.CurrencyCellType();
FpSpread1.Sheets[0].Columns[5].CellType = objCurrCell;
FpSpread1.Sheets[0].Columns[6].CellType = objCurrCell;
FpSpread1.Sheets[0].Columns[7].CellType = objCurrCell;

VB
' Create the Debit, Credit, and Balance columns of currency cells.
Dim objCurrCell As New FarPoint.Web.Spread.CurrencyCellType()

Spread for ASP.NET Developer’s Guide 58

Copyright © GrapeCity, Inc. All rights reserved.

FpSpread1.Sheets(0).Columns(5).CellType = objCurrCell
FpSpread1.Sheets(0).Columns(6).CellType = objCurrCell
FpSpread1.Sheets(0).Columns(7).CellType = objCurrCell

6.
 Save
your
project,
then
from
the
Debug
menu
choose
Start
to
run
your
project.

Your
ASP.NET
page
should
look
similar
to
the
following
picture.

Adding Formulas to Calculate Balances

Your
checkbook
register
is
now
set
up
to
look
like
a
checkbook
register;
however,
it
does
not
balance
the
currency
figures
you
enter
in
the
register.
This
step
sets
up
the
formula
for
balancing
the
figures.

1.
 Below
the
code
you
have
already
added,
add
the
following
code:

C#
// Set formula for calculating balance.
FpSpread1.Sheets[0].ReferenceStyle =
FarPoint.Web.Spread.Model.ReferenceStyle.R1C1;
FpSpread1.Sheets[0].Cells[0, 7].Formula = "RC[-1]-RC[-2]";
for (int i = 1; i < 99; i++)
{
 FpSpread1.Sheets[0].Cells[i, 7].Formula = "R[-1]C-RC[-2]+RC[-1]";
}

VB
' Set formula for calculating balance.
FpSpread1.Sheets(0).ReferenceStyle = FarPoint.Web.Spread.Model.ReferenceStyle.R1C1
FpSpread1.Sheets(0).Cells(0, 7).Formula = "RC[-1]-RC[-2]"
Dim i As Integer
For i = 1 To 99
 FpSpread1.Sheets(0).Cells(i, 7).Formula = "R[-1]C-RC[-2]+RC[-1]"
Next

2.
 Save
your
project,
then
from
the
Debug
menu
choose
Start
to
run
your
project.

Your
ASP.NET
page
should
look
similar
to
the
following
picture.
Type
data
into
your
checkbook
register
to
test
it
and
see

Spread for ASP.NET Developer’s Guide 59

Copyright © GrapeCity, Inc. All rights reserved.

how
it
operates.
Click
on
the
checkmark
icon
to
save
the
changes
or
set
the
ClientAutoCalculation
property
for
the
control
to
True.

Your
checkbook
register
is
complete!
You
have
completed
this
tutorial.

Spread for ASP.NET Developer’s Guide 60

Copyright © GrapeCity, Inc. All rights reserved.

Understanding the Product

Spread
for
ASP.NET
provides
a
completely
new,
object-oriented
spreadsheet
component
for
use
in
the
Microsoft
.NET
framework.
The
following
topics
provide
an
introduction
to
this
unique
and
powerful
product
and
explain
some
of
the
underlying
concepts.

Product
Overview
Features
Overview
Concepts
Overview
Namespaces
Overview

Product Overview

Spread
for
ASP.NET
is
a
comprehensive
spreadsheet
component
for
Web
applications
that
combines
grid
capabilities,
spreadsheet
functionality,
and
includes
the
ability
to
bind
to
data
sources.
A
single
component
can
contain
many
sheets,
columns,
and
rows.
Cross-sheet
referencing
allows
calculations
to
make
use
of
data
and
formulas
on
a
variety
of
sheets.
Spread
for
ASP.NET
uses
dot
notation
for
object-oriented
coding
in
.NET.

A
Spread
component
may
be
dropped
on
a
Web
Form
and
customized
for
a
range
of
applications.
You
can
control
the
appearance
and
the
user
interaction
in
a
variety
of
ways.
With
a
built-in
Designer,
you
can
quickly
create
a
prototype
or
customize
your
finished
design.
With
most
of
the
Spread’s
appearance
and
functionality
based
on
underlying
models,
the
advanced
developer
has
complete
control
over
the
component.

The
component
resides
on
the
server
and
generates
HTML
pages
when
it
is
accessed
by
end
users
on
the
client
side.
The
amount
of
interactivity
of
the
Web
page
depends
on
the
level
of
browser
used
on
the
client
side.
The
view
of
the
HTML
pages
generated
by
the
Spread
component
depends
on
the
browser
being
used
to
view
the
page.
Broadly,
an
uplevel
browser
is
one
that
can
support
client-side
JavaScript,
HTML
version
4.0,
the
Microsoft
Document
Object
Model,
and
cascading
stylesheets
(CSS).
For
a
more
detailed
definition
of
uplevel
and
downlevel
browser
and
for
a
list
of
capabilities
of
those
browsers,
refer
to
the
browser
capability
information
in
the
Microsoft
.NET
documentation.
The
component
also
downloads
some
HTML
component
(HTC)
files
to
the
client
side.

Import
and
export
capabilities
provide
another
source
of
flexibility
when
developing
and
exchanging
designs.
Spread
for
ASP.NET
can
handle
data
from
comma-delimited
text
files
as
well
as
multiple
spreadsheets
from
Microsoft
Excel
files.

The
following
figure
provides
a
conceptual
overview
of
Spread
for
ASP.NET.

Spread for ASP.NET Developer’s Guide 61

Copyright © GrapeCity, Inc. All rights reserved.

In
Spread,
you
can
use
the
default
models
or
extend
them
through
inheritance.
Refer
to
Underlying
Models
for
more
information
on
models.
Styles
and
named
styles
provide
ways
to
save
customized
appearances
that
can
be
applied
to
other
sheets.

The
Spread
component
contains
toolbars
and
navigation
aids,
and
a
collection
of
sheets
that
contain
row,
column,
cell,
and
header
objects.
The
contents
of
the
component
may
be
saved
as
a
BIFF8
or
XLSX
file
compatible
with
Microsoft
Excel
or
a
text
file
or
as
a
Spread
XML
file.
For
more
information
on
exporting
to
(and
importing
from)
a
file,
refer
to
the
Spread
for
ASP.NET
Import
and
Export
Reference.

For
a
list
of
many
of
the
features,
see
Features
Overview.

Features Overview

Spread
for
ASP.NET
introduces
some
powerful
features,
as
described
in
the
following
topics.
Each
topic
refers
to
other
topics
in
the
documentation
that
provide
more
information.

AJAX
Support
ASP.NET
AJAX
Extenders

Spread for ASP.NET Developer’s Guide 62

Copyright © GrapeCity, Inc. All rights reserved.

Built-In
Functions
Cell
Types
Chart
Control
Client-Side
Scripting
Conditional
Formatting
Context
Menu
Corner
Customization
Customized
Appearance
(Skins)
Data
Binding
Floating
Images
(on-line
documentation)
Footers
for
Columns
or
Groups
Formula
Extender
Control
(on-line
documentation)
Frozen
Rows
and
Columns
Goal
Seeking
Grouping
Headers
with
Multiple
Columns
and
Rows
Hierarchical
Display
Import
and
Export
Capabilities
Load
on
Demand
Multiple-Line
Columns
Multiple
Sheets
PDF
Support
Printing
Row
Filtering
Row
Preview
Row
Template
Editor
Searching
Features
Sorting
Capabilities
Spannable
Cells
Sparklines
Spread
Designer
Spread
Wizard
Theme
Roller
Title
and
Subtitle
Touch
Support
Validation
Controls

AJAX Support

You
can
allow
support
for
AJAX
(Asynchronous
JavaScript
and
XML)
to
make
your
applications
more
responsive
on
the
client
side.

For
more
information,
refer
to
Enabling
AJAX
Support.

ASP.NET AJAX Extenders

You
can
use
the
many
cell
types
in
the
FarPoint.Web.Spread.Extender
assembly
to
provide
controls
that
are
available
as
ASP.NET
AJAX
extenders.

Spread for ASP.NET Developer’s Guide 63

Copyright © GrapeCity, Inc. All rights reserved.

For
more
information,
refer
to
Using
ASP.NET
AJAX
Extenders.

Built-In Functions

You
can
use
built-in
functions
and
operators
to
develop
formulas
and
perform
calculations.
Add
calculations
quickly
to
your
applications
by
using
any
of
over
300
pre-defined
algorithms
or
add
your
own
custom
functions.

For
more
information,
refer
to
Managing
Formulas
and
to
the
Formula
Reference.

Cell Types

There
are
several
different
types
of
cells
that
can
be
set
in
a
sheet
to
customize
how
the
user
interacts
with
the
information
in
that
cell.
You
can
specify
the
cell
type
for
individual
cells,
columns,
rows,
a
range
of
cells,
or
an
entire
sheet.
For
each
cell
type
there
are
properties
of
a
cell
that
can
be
set.
In
general,
working
with
cell
types
includes
defining
the
cell
type,
setting
the
properties,
and
applying
that
cell
type
to
cells.

The
following
image
displays
many
of
the
cell
types
that
are
available.
You
can
also
create
multi-column
combo,
tag
cloud,
and
ajax
extender
cells.

For
a
complete
list
of
cell
types,
refer
to
Customizing
with
Cell
Types.

Header
Cells

While
you
can
assign
a
cell
type
to
the
cells
in
the
row
header
or
column
header,
the
cell
type
is
only
used
for
painting
purposes.

Details

In
Spread,
a
cell
has
both
an
editor,
which
determines
how
the
user
interacts
with
the
value
in
the
cell,
a
formatter,
which
determines
how
the
value
is
displayed,
and
a
renderer
which
does
the
painting
of
the
cell.
The
editor
is
an
actual
control
instance
that
Spread
creates
and
places
in
the
location
of
the
cell
when
you
go
into
edit
mode.
The
formatter
decides
how
the
displayed
text
appears.
The
renderer
is
simply
code
that
paints
that
control
inside
the
cell
rectangle

Spread for ASP.NET Developer’s Guide 64

Copyright © GrapeCity, Inc. All rights reserved.

http://sphelp.grapecity.com/WebHelp/SpreadNet10/FR/webframe.html#FormulaCover.html

when
the
editor
is
not
there.

For
more
detailed
information
on
these
objects,
refer
to
the
individual
interfaces
in
the
Assembly
Reference
(on-
line
documentation).
For
more
general
information
about
cell
types
and
applying
them
to
cells,
columns,
rows,
or
whole
sheets,
refer
to
Customizing
with
Cell
Types.

Chart Control

You
can
add
a
chart
control
to
the
Spread
control
or
use
the
chart
control
stand
alone.
The
chart
control
supports
many
types
of
charts
as
well
as
2D
or
3D
views.

For
more
information,
refer
to
Working
with
the
Chart
Control.

Client-Side Scripting

With
scripting
you
can
run
small
programs,
or
scripts,
in
your
Web
pages
on
the
client
after
the
pages
are
downloaded
from
the
server.
Client-side
scripting
allows
the
user
to
interact
with
the
page
on
the
client
without
the
page
having
to
be
reloaded
from
the
server.
Scripts
can
be
written
in
any
scripting
language
supported
by
the
browser
on
the
client,
such
as
VBScript
or
JavaScript.
Most
often
scripts
are
written
in
JavaScript
(also
referred
to
as
ECMAScript).

Spread
for
ASP.NET
gives
you
client-side
scripting
capabilities
to
enhance
the
power
of
your
Web
Forms.
In
addition,
you
can
also
create
your
own
HTC
files
for
specific
purposes.

Spread
for
ASP.NET
client
side
features
are
enabled
for
IE
5.5
and
above.
For
other
browsers,
there
may
be
no
client
side
scripting
support
or
it
may
be
limited.

For
more
information,
refer
to
the
Spread
for
ASP.NET
Client-Side
Scripting
Reference
(on-line
documentation).

Conditional Formatting

You
can
set
up
conditional
formats
within
cells
that
determine
the
formatting
of
the
cell
based
on
the
outcome
of
a
conditional
operation
or
rule.

For
more
information,
refer
to
Using
Conditional
Formatting
in
Cells.

Context Menu

You
can
create
a
Spread
context
menu
that
is
displayed
when
right-clicking
on
the
Spread
control.
For
more
information,
see
Adding
a
Context
Menu.

Corner Customization

You
can
customize
the
sheet
corner
with
text,
colors,
and
various
style
settings.

Spread for ASP.NET Developer’s Guide 65

Copyright © GrapeCity, Inc. All rights reserved.

For
more
information,
refer
to
Customizing
the
Sheet
Corner.

Customized Appearance (Skins)

Easily
and
quickly
configure
the
appearance
of
Spread
using
predefined
skins
or
create
and
save
your
own
custom
skins.
Custom
skins
can
be
shared
with
everyone
in
your
development
team,
allowing
a
consistent
look
of
the
component
across
applications.

For
more
information
about
skins,
refer
to
Applying
a
Skin
to
a
Sheet
and
Creating
a
Skin
for
Sheets.

Data Binding

You
can
bind
the
spreadsheet
to
a
data
set
to
display
and
allow
your
users
to
edit
information.
Spread
can
automatically
update
the
data
set
with
the
changes.
You
can
also
bind
a
range
of
cells
to
a
data
source.

For
more
information
about
data
binding,
refer
to
Managing
Data
Binding.

Footers for Columns or Groups

You
can
display
a
footer
at
the
bottom
of
the
sheet
that
allows
you
to
enter
formulas
or
instructions
with
a
footer
cell
for
each
column.
This
feature
also
works
with
the
grouping
feature.

For
more
information,
refer
to
Displaying
a
Footer
for
Columns
or
Groups.

Frozen Rows and Columns

You
can
freeze
columns
and
rows
(keep
them
non-scrollable)
and
keep
them
displayed
regardless
of
where
the
user
navigates
in
the
sheet.

For
more
information,
refer
to
Freezing
Rows
and
Columns.

Goal Seeking

You
can
use
goal
seeking
capability
to
iterate
toward
a
desired
formula
result.
Use
this
if
you
know
the
result
of
a
formula
but
not
the
input
value
required
to
obtain
the
result.

For
more
information,
refer
to
Finding
a
Value
with
Goal
Seeking.

Grouping

You
can
set
up
the
spreadsheet
to
group
rows
of
data.
This
is
useful
for
displaying
large
amounts
of
data
in
organized
groups.

For
more
information,
refer
to
Customizing
Grouping
of
Rows
of
User
Data.

Headers with Multiple Columns and Rows

You
can
have
multiple
column
headers
and
row
headers.
You
can
also
span
header
cells.
Use
headers
with
multiple
columns
or
rows
to
organize
your
column
and
row
data.

For
more
information,
refer
to
Customizing
the
Appearance
of
Headers.

Spread for ASP.NET Developer’s Guide 66

Copyright © GrapeCity, Inc. All rights reserved.

Hierarchical Display

You
can
create
a
sheet
within
a
row
to
display
relational
data
hierarchically,
with
parent
rows
and
child
views
of
related
data.

For
more
information
about
hierarchical
display
of
data,
refer
to
Displaying
Data
as
a
Hierarchy.

Import and Export Capabilities

You
can
import
data
from
and
export
data
and
formatting
to
Microsoft
Excel,
both
individual
spreadsheets
and
entire
workbooks.
You
can
import
and
export
entire
spreadsheet(s)
with
data
and
formatting
to
and
from
XML.

For
more
information
about
opening
and
saving
files,
refer
to
Managing
File
Operations.

For
more
information
about
what
happens
during
importing
or
exporting,
refer
to
the
Spread
for
ASP.NET
Import
and
Export
Reference
(on-line
documentation).

Load on Demand

You
can
allow
the
Web
page
to
load
on
demand.
As
the
user
scrolls
further
down
the
spreadsheet
the
Spread
component
on
the
client
loads
another
page
of
rows
from
the
server
as
needed.

FpSpread.AllowLoadOnDemand
SheetView.AllowLoadOnDemand

For
more
information
about
this
feature,
refer
to
Allowing
Load
on
Demand.

Multiple-Line Columns

For
a
more
compressed
format
of
displaying
information,
you
may
want
to
display
columns
with
multiple
lines
of
information.

For
more
information
on
multiple-line
columns,
refer
to
Creating
Row
Templates
(Multiple-Line
Columns).

Multiple Sheets

Spread
supports
multiple
sheets
in
a
single
component
each
uniquely
named.
Use
multiple
sheets
to
categorize
your
information,
similar
to
using
worksheets
in
Microsoft
Excel.

Sheets
can
have
multiple
rows
and
columns.
You
can
define
styles
for
sheets
and
apply
those
styles
across
multiple
sheets.

For
more
information
about
sheets,
refer
to
Working
with
Multiple
Sheets.

PDF Support

You
can
allow
the
user
to
save
the
spreadsheet
to
a
PDF
(Portable
Document
Format)
file.

For
more
information,
refer
to
Saving
to
a
PDF
File.

Printing

You
can
allow
the
user
to
print.
You
can
also
add
headers
and
footers
to
the
printed
pages
and
customize
the
printed
page.

Spread for ASP.NET Developer’s Guide 67

Copyright © GrapeCity, Inc. All rights reserved.

For
more
information,
refer
to
Managing
Printing.

Row Filtering

You
can
allow
row
filtering
by
hiding
or
changing
the
color
of
the
filtered
rows.
You
can
also
use
a
filter
bar,
simple
filtering,
or
enhanced
filtering.

For
more
information,
refer
to
Managing
Filtering
of
Rows
of
User
Data.

Row Preview

You
can
add
a
preview
row
that
contains
extra
information
about
a
row.

For
more
information,
refer
to
Setting
up
Preview
Rows.

Row Template Editor

You
can
use
the
row
editor
or
template
editor
to
type
text.

For
more
information,
refer
to
Setting
up
Row
Edit
Templates.

Searching Features

You
can
programmatically
search
the
cell
text,
headers,
notes,
or
tags.
You
can
also
specify
the
starting
row
and
column
and
the
ending
row
and
column.

Use
the
Search
('Search
Method'
in
the
on-line
documentation)
method
or
the
SearchHeaders
('SearchHeaders
Method'
in
the
on-line
documentation)
method
of
the
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
object.
For
more
information,
refer
to
Searching
for
Data
with
Code.

Sorting Capabilities

You
can
sort
rows
or
columns
or
a
range
of
cells.
You
can
programmatically
sort
data
by
rows
or
columns
or
allow
your
users
to
sort
rows
automatically
by
clicking
on
the
column
header.

For
more
information,
refer
to
Customizing
Sorting
of
Rows
of
User
Data

Spannable Cells

You
can
span
cells.
Create
cell
spans
to
join
cells
together,
allowing
one
cell
to
span
across
multiple
cells
to
include,
for
example,
your
company
logo.
You
can
span
data
cells
or
headers.

For
more
information,
refer
to
Spanning
Cells.

Sparklines

You
can
add
sparklines
to
a
cell.
A
sparkline
is
a
small
graph
that
fits
inside
a
cell
and
uses
data
from
a
range
of
cells.

For
more
information,
refer
to
Using
Sparklines.

Spread Designer

Spread for ASP.NET Developer’s Guide 68

Copyright © GrapeCity, Inc. All rights reserved.

You
can
use
the
Spread
Designer
to
design
your
component
and
to
create
a
prototype
quickly.
Use
the
Spread
Designer
to
reduce
development
time
by
allowing
you
to
customize
the
look
and
feel
of
the
component
at
design
time
using
an
intuitive,
easy-to-use
interface.

For
more
information
refer
to
Working
with
the
Spread
Designer.

Spread Wizard

You
can
use
the
Spread
Wizard
to
design
your
component
and
to
create
a
prototype
quickly.

For
more
information
refer
to
Using
the
Spread
Wizard.

Theme Roller

Spread
supports
using
a
Theme
Roller
theme
in
the
Spread
control.

For
more
information,
refer
to
Using
the
jQuery
Theme
Roller
with
Spread.

Title and Subtitle

You
can
add
a
title
to
the
Spread
component
and
subtitle
to
the
sheet.

For
more
information
refer
to
Adding
a
Title
and
Subtitle
to
a
Sheet.

Touch Support

The
Spread
control
supports
touch
gestures
in
many
areas.

For
more
information,
refer
to
Using
Touch
Support
with
the
Component.

Validation Controls

You
can
prevent
a
user
from
entering
invalid
characters
in
a
cell
by
using
a
validation
control
in
the
Spread
cell.

For
more
information,
refer
to
Using
Validation
Controls.

Concepts Overview

While
those
familiar
with
previous
generations
of
Spread
products
understand
the
object
oriented
nature
of
Spread
for
ASP.NET,
there
are
several
concepts
that
are
worth
reviewing
for
new
users.

Shortcut
Objects
Object
Parentage
Underlying
Models
Cell
Types
SheetView
versus
FpSpread
Formatted
versus
Unformatted
Data
Zero-Based
Indexing
Client-Side
Scripting
Maintaining
State

Shortcut Objects

Spread for ASP.NET Developer’s Guide 69

Copyright © GrapeCity, Inc. All rights reserved.

The
spreadsheet
objects
in
the
Spread
namespace,
which
represent
various
parts
of
the
spreadsheet,
can
be
accessed
through
a
set
of
built-in
shortcut
objects.
The
shortcut
objects
help
you
interact
with
the
parts
of
the
spreadsheet
in
a
way
that
is
probably
familiar
to
you
from
working
with
other
components
or
applications.
Cells,
rows,
columns
and
others
are
wrappers
to
other
objects,
and
make
customization
that
much
easier
by
allowing
you
to
manipulate
them.
There
are
objects
that
represent
parts
of
a
visible
spreadsheet,
such
as
columns,
rows,
and
cells;
and
there
are
conceptual
representations
of
underlying
pieces
of
the
spreadsheet
which
are
implemented
in
the
underlying
models.
To
understand
more
about
the
objects
in
Spread,
look
at
the
simplified
object
model
diagrams
for
the
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
class
and
the
SheetView
('SheetView
Class'
in
the
on-line
documentation)
class
as
shown
here.

Spread
for
ASP.NET
provides
the
following
shortcut
objects
in
the
Spread
namespace:

Shortcut
Object

Corresponding
Classes

cell Cell
('Cell
Class'
in
the
on-line Cells
('Cells
Class'
in
the
on-line

Spread for ASP.NET Developer’s Guide 70

Copyright © GrapeCity, Inc. All rights reserved.

documentation) documentation)

column Column
('Column
Class'
in
the
on-line
documentation)

Columns
('Columns
Class'
in
the
on-line
documentation)

header ColumnHeader
('ColumnHeader
Class'
in
the
on-line
documentation)

RowHeader
('RowHeader
Class'
in
the
on-
line
documentation)

row Row
('Row
Class'
in
the
on-line
documentation)

Rows
('Rows
Class'
in
the
on-line
documentation)

alternating
row

AlternatingRow
('AlternatingRow
Class'
in
the
on-line
documentation)

AlternatingRows
('AlternatingRows
Class'
in
the
on-line
documentation)

To
use
the
shortcut
objects,
you
will
set
their
properties
or
call
their
methods.
Many
of
the
objects
provide
indexes
for
specifying
the
row,
column,
or
cell
with
which
you
want
to
work.

The
shortcut
objects
help
you
interact
with
the
Spread
for
ASP.NET
component
in
a
way
that
is
probably
familiar
to
you
from
working
with
other
components
or
applications.
They
are
shortcuts
for
working
with
more
conceptual
objects,
the
more
abstract
objects,
that
are
referred
to
as
"models."
These
models
are
responsible
for
managing
the
style
information,
formatting,
and
data
in
the
Spread
component.
They
are
what
give
the
product
its
power
and
flexibility
for
customization.
For
more
information
on
the
underlying
models,
refer
to
Underlying
Models.

The
shortcut
objects
call
the
model
objects.
However,
the
shortcut
objects
allow
you
to
interact
with
the
Spread
component
without
dealing
too
much
with
the
underlying
object
models
if
you
are
doing
routine
development.
If
you
are
new
to
working
with
Spread,
or
are
new
to
developing
in
an
object-oriented
environment,
you
might
want
to
use
the
shortcut
objects
at
first,
as
you
become
familiar
with
the
features
of
Spread
for
ASP.NET.
However,
intensive
use
of
the
shortcut
objects
can
degrade
your
application’s
performance.
As
you
get
familiar
with
the
workings
of
the
product
and
as
you
want
more
control
over
the
spreadsheet,
you
may
begin
to
work
more
with
the
models.

For
more
information
on
the
skins
that
can
applied
to
a
sheet,
refer
to
Applying
a
Skin
to
a
Sheet.
For
more
information
on
the
styles
refer
to
Creating
and
Applying
a
Custom
Style
for
Cells.

Object Parentage

For
the
objects
in
a
Spread
component,
such
as
the
sheet,
column,
and
cell,
there
are
formatting
and
other
properties
that
each
object
inherits
from
what
is
called
its
"parent."
A
cell
may
inherit
some
formatting,
for
example
the
background
color,
from
the
sheet.
If
you
set
the
alignment
of
text
for
all
the
cells
in
a
column,
the
cell
inherits
that
as
well.
Because
of
this
object
parentage,
many
properties
and
methods
can
be
applied
in
different
ways
to
different
parts
of
a
spreadsheet.

Of
course,
you
can
override
the
formatting
that
an
individual
cell
inherits.
But
by
default,
objects
inherit
properties
from
their
parents.
So
in
a
given
context,
the
settings
of
any
object
are
the
composite
of
the
settings
of
its
parents
that
are
being
applied
to
that
object.
For
example,
you
may
set
the
text
color
for
a
cell
at
the
cell
level,
but
it
may
inherit
the
vertical
alignment
from
the
row
and
the
border
from
its
column,
and
the
background
color
from
the
sheet.
Since
the
background
color
may
be
set
at
several
of
these
levels,
certain
rules
of
precedence
must
apply.

The
closer
to
the
cell
level,
the
higher
the
precedence.
So
if
you
set
the
background
color
of
the
cell,
the
settings
inherited
from
the
parents
are
overridden.
Refer
to
the
list
to
see
the
order
of
precedence
of
these
properties.
The
closer
to
the
cell
(the
lower
the
number)
the
higher
the
precedence.

1.
 Cell
2.
 Row
3.
 Column
4.
 Alternating
Row
5.
 Sheet
6.
 component

For
more
information
on
the
setting
of
properties
of
an
object
and
how
to
use
the
Parent
property
of
an
object,
refer
to
Customizing
the
Appearance.
For
information
on
cell
types,
which
is
set
in
a
different
way
than
inheriting
from
a
parent,
refer
to
Customizing
with
Cell
Types.

Spread for ASP.NET Developer’s Guide 71

Copyright © GrapeCity, Inc. All rights reserved.

Underlying Models

Spread
for
ASP.NET
provides
the
following
underlying
models
for
each
sheet
and
each
set
of
headers
in
the
spreadsheet:

Sheet
Model

Classes
and
Interface Description

Axis
model

BaseSheetAxisModel
('BaseSheetAxisModel
Class'
in
the
on-line
documentation)

DefaultSheetAxisModel
('DefaultSheetAxisModel
Class'
in
the
on-line
documentation)

ISheetAxisModel
('ISheetAxisModel
Interface'
in
the
on-line
documentation)

Basis
for
how
the
sheet
of
cells
is
structured
in
terms
of
rows
and
columns.

Data
model

BaseSheetDataModel
('BaseSheetDataModel
Class'
in
the
on-line
documentation)

DefaultSheetDataModel
('DefaultSheetDataModel
Class'
in
the
on-line
documentation)

ISheetDataModel
('ISheetDataModel
Interface'
in
the
on-line
documentation)

Basis
for
the
manipulation
of
data
in
the
cells
in
the
sheet.

Selection
model

BaseSheetSelectionModel
('BaseSheetSelectionModel
Class'
in
the
on-line
documentation)

DefaultSheetSelectionModel
('DefaultSheetSelectionModel
Class'
in
the
on-line
documentation)

ISheetSelectionModel
('ISheetSelectionModel
Interface'
in
the
on-line
documentation)

Basis
for
the
behavior
of
and
interaction
of
selected
cells
in
the
sheet.

Span
model

BaseSheetSpanModel
('BaseSheetSpanModel
Class'
in
the
on-line
documentation)

DefaultSheetSpanModel
('DefaultSheetSpanModel
Class'
in
the
on-line
documentation)

ISheetSpanModel
('ISheetSpanModel
Interface'
in
the
on-line
documentation)

Basis
for
how
cells
in
the
sheet
are
spanned.

Style
model

BaseSheetStyleModel
('BaseSheetStyleModel
Class'
in
the
on-line
documentation)

DefaultSheetStyleModel
('DefaultSheetStyleModel
Class'
in
the
on-line
documentation)

ISheetStyleModel
('ISheetStyleModel
Interface'
in
the
on-line
documentation)

Basis
for
the
appearance
of
the
cells
in
the
sheet.

Each
model
object
is
provided
as
a
base
model
and
a
default
model.
The
base
model
is
the
base
on
which
the
default
model
is
created.
The
base
model
has
the
fewest
built-in
features,
and
the
default
model
extends
the
base
model.

The
default
models
are
provided
as
the
models
with
which
you
will
most
likely
want
to
work
in
Spread.
They
provide
the
default
features
that
the
Spread
component
offers.

However,
if
you
want
to
provide
different
features,
you
might
want
to
extend
the
base
models
yourself,
creating
new
classes.
One
reason
you
might
do
this
is
if
you
want
to
create
a
"template"
component
for
all
the
developers
in
your

Spread for ASP.NET Developer’s Guide 72

Copyright © GrapeCity, Inc. All rights reserved.

organization
to
use.
By
creating
your
own
class
based
on
one
of
the
Spread
base
models,
you
could
provide
such
a
template.

The
shortcut
objects
access
the
interfaces
in
the
model
namespace.
When
you
work
with
shortcut
objects,
you
are
actually
working
with
the
interfaces
of
the
models
in
the
component.
For
example,
if
you
change
the
background
color
of
a
cell
using
the
Cells
shortcut
object,
the
interface
for
the
sheet
style
model
is
updated
with
that
information.
For
more
information
on
the
shortcut
objects,
refer
to
Shortcut
Objects.

For
more
in-depth
information
on
the
models,
refer
to
Using
Sheet
Models.

Cell Types

There
are
several
different
cell
types
that
can
be
set
for
cells
in
a
sheet.
You
can
specify
the
cell
type
for
individual
cells,
columns,
rows,
a
range
of
cells,
or
an
entire
sheet.
For
each
cell
type
there
are
properties
of
a
cell
that
can
be
set.
In
general,
working
with
cell
types
includes
defining
the
cell
type,
setting
the
properties,
and
applying
that
cell
type
to
cells.

While
you
can
assign
a
cell
type
to
the
cells
in
the
row
header
or
column
header,
the
cell
type
is
only
used
for
painting
purposes.

A
cell
has
both
an
editor
and
a
renderer.
The
editor
is
an
actual
control
instance
that
we
create
and
place
in
the
location
of
the
cell
when
you
go
into
edit
mode.
The
formatter
decides
how
the
displayed
text
appears.
The
renderer
is
simply
code
that
paints
that
control
inside
the
cell
rectangle
when
the
editor
is
not
there.

For
more
detailed
information
on
these
objects,
refer
to
the
individual
interfaces
in
the
Assembly
Reference
(on-
line
documentation).
For
more
general
information
about
cell
types
and
applying
them
to
cells,
columns,
rows,
or
whole
sheets,
refer
to
Customizing
with
Cell
Types.

SheetView versus FpSpread

In
Spread,
there
are
several
objects
that
should
not
be
confused.
The
sheet
in
a
multiple-sheet
workbook
corresponds
to
a
SheetView
object.
In
a
hierarchical
data
display,
each
child
(expanded)
sheet
of
the
parent
sheet
corresponds
to
a
separate
SheetView
object.
The
FpSpread
object
is
somewhat
like
a
workbook.

For
more
detailed
information
on
these
objects,
refer
to
the
FarPoint.Web.Spread.SheetView
('SheetView
Class'
in
the
on-line
documentation)
object
and
the
FarPoint.Web.Spread.FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
object
in
the
API
reference
documentation.

Formatted versus Unformatted Data

Spread
for
ASP.NET
provides
both
text
(formatted
data)
and
value
(unformatted
data)
properties
for
a
cell.
For
example,
in
a
currency
cell,
the
formatted
data
could
be
$1,432.56,
but
the
value
would
be
1432.56.
The
Text
('Text
Property'
in
the
on-line
documentation)
property
would
return
the
entire
formatted
string
with
currency
symbol
and
thousand
separator.
The
Value
('Value
Property'
in
the
on-line
documentation)
property
could
be
used
in
formulas
or
other
calculations.
Remember
that
each
cell
has
both
properties.
For
cell
types
that
have
buttons
or
check
boxes,
the
distinction
is
also
important.

For
more
detailed
information
on
the
text
and
value
data
for
specific
cell
types
in
Spread
for
ASP.NET,
refer
to
the

Spread for ASP.NET Developer’s Guide 73

Copyright © GrapeCity, Inc. All rights reserved.

FarPoint.Web.Spread
assembly
and
namespace,
the
Cell
('Cell
Class'
in
the
on-line
documentation)
class,
the
Text
('Text
Property'
in
the
on-line
documentation)
and
Value
('Value
Property'
in
the
on-line
documentation)
properties,
and
Understanding
How
Cell
Types
Display
Data.
Refer
to
Placing
and
Retrieving
Data
for
more
information
about
data
in
cells.

Zero-Based Indexing

For
most
objects
in
Spread,
zero-based
indexing
is
used.
Rows
and
columns
are
numbered
starting
with
zero
(0,
1,
2,
and
so
on).
Note
that
the
default
header
labels
are
numbered
starting
with
one
(1,
2,
3,
and
so
on).

Client-Side Scripting

Scripting
refers
to
running
small
programs,
or
scripts,
in
your
pages.
Scripts
are
written
in
a
scripting
language,
such
as
VB
Script
or
JavaScript.
For
more
information
on
how
to
perform
client-side
scripting,
refer
to
the
Spread
for
ASP.NET
Client-Side
Scripting
Reference
(on-line
documentation).

Maintaining State

You
can
and
should
maintain
the
session
state
when
the
page
is
refreshed,
so
that
user
data
remains
in
the
page.
You
have
probably
experienced
pages
that
do
not
maintain
state;
when
the
page
is
refreshed,
such
as
to
remind
you
to
complete
part
of
a
form,
your
information
is
lost,
and
you
must
complete
the
entire
page
again.
Understandably,
users
prefer
pages
that
maintain
the
state.

You
need
to
set
up
your
application’s
state
management
to
optimize
performance
while
maintaining
the
state.
For
more
information
about
the
best
ways
to
optimize
performance,
refer
to
Maintaining
State.

Spread for ASP.NET Developer’s Guide 74

Copyright © GrapeCity, Inc. All rights reserved.

Namespaces Overview

In
Spread
for
ASP.NET,
namespaces
are
organized
to
contain
objects
according
to
how
they
are
used
in
the
Spread
component.
The
Spread
component
comprises
six
namespaces.
The
objects
in
the
component
fall
into
these
categories:

objects
that
represent
parts
of
the
spreadsheet,
like
column,
rows,
and
cells
objects
that
represent
parts
of
the
component
for
editing
cells
in
the
spreadsheet
objects
that
represent
parts
of
the
component
for
the
underlying
template
or
model
of
the
spreadsheet
objects
that
represent
parts
of
the
component
for
rendering
or
displaying
the
spreadsheet
objects
that
represent
the
chart
control
objects
that
represent
data
binding

For
each
of
these
there
is
a
specific
namespace.
The
namespaces
are
organized
as
follows:

Namespace Description
FarPoint.Web.Spread Provides
the
base
classes,
interfaces,
enumerations,
and
delegates
for
Spread.

FarPoint.Web.Spread.Chart Provides
the
base
classes,
interfaces,
and
enumerations
for
the
Spread
Chart
component.

FarPoint.Web.Spread.Data Provides
the
base
classes
and
interfaces
for
data
binding
for
the
Spread
spreadsheet
component.

FarPoint.Web.Spread.Editor Provides
the
base
classes
and
interface
for
the
controls
used
to
edit
cells.

FarPoint.Web.Spread.Model Provides
the
base
classes,
interfaces,
and
enumerations
for
the
Spread
models.

FarPoint.Web.Spread.Renderer Provides
the
base
classes
and
interfaces
for
the
controls
used
to
render
cells.

The
spreadsheet
objects
and
event
arguments
are
in
classes
in
the
main
Spread
namespace.
For
a
discussion
of
how
to
work
with
these
objects,
refer
to
Shortcut
Objects.

The
conceptual
objects,
the
more
abstract
objects,
are
referred
to
as
"models."
These
models
are
responsible
for
managing
the
style
information,
formatting,
and
data
in
the
Spread
component.
These
are
found
in
the
Model
namespace.
In
Spread,
you
can
use
the
default
models
or
extend
them
through
inheritance.
Refer
to
Underlying
Models
for
more
information
on
models.

The
spreadsheet
and
cell
type
objects
call
the
model
objects.
If
you
are
new
to
working
with
Spread,
or
are
new
to
developing
in
an
object-oriented
environment,
you
might
want
to
use
the
spreadsheet
and
cell
type
objects
at
first,
as
you
become
familiar
with
features
of
Spread.
However,
intensive
use
of
these
objects
can
degrade
your
application’s
performance.

If
you
are
an
experienced
programmer,
you
might
want
to
use
the
model
objects
directly,
instead
of
accessing
them
through
the
shortcut
objects.
If
you
want
to
extend
Spread
for
ASP.NET,
you
must
use
the
model
objects
to
do
so.

Spread for ASP.NET Developer’s Guide 75

Copyright © GrapeCity, Inc. All rights reserved.

Working with the Spread Designer

You
can
quickly
customize
a
spreadsheet
component
using
the
Spread
Designer.
Whether
you
are
prototyping
a
complete
spreadsheet
component
or
simply
customizing
some
aspect
of
your
spreadsheet
component,
the
dedicated
graphical
interface
offers
many
features
to
save
time
and
effort.
It
also
provides
a
way
for
you
to
add
data
to
and
set
properties
for
the
component
easily,
including
properties
that
are
not
available
at
design
time
in
Visual
Studio.
You
can
set
both
design-time
and
run-time
properties.
In
most
cases
you
can
preview
changes
before
applying
them
to
the
spreadsheet.

The
Spread
Designer
requires
Microsoft
Internet
Explorer
(IE)
7
or
higher.

The
Spread
Designer
creates
a
snapshot
of
the
spreadsheet
component.
Once
all
the
changes
are
made,
you
apply
the
changes
to
the
spreadsheet
component
on
your
form.
You
can
also
open
files
from
within
Spread
Designer
and
save
your
design
as
a
file.

Throughout
the
rest
of
the
documentation,
where
there
is
a
procedure
that
could
be
done
in
code
or
in
the
Spread
Designer,
a
brief
procedure
for
using
Spread
Designer
is
given.
Because
Spread
Designer
has
so
many
features,
a
topic
dedicated
to
the
designer
is
given
here.
This
topic
provides
information
about
general
tasks
specific
to
the
designer
and
about
the
designer
user
interface
in
general.
It
is
not
a
comprehensive
explanation
of
all
the
dialogs
within
the
Spread
Designer.

The
following
topics
provide
information
about
using
Spread
Designer:

Starting
the
Spread
Designer
Understanding
the
Spread
Designer
Interface
Using
the
Spread
Designer

Starting the Spread Designer

You
can
start
Spread
Designer
from
inside
your
Visual
Studio
.NET
project
by
performing
either
of
these
steps:
right-
clicking
on
the
control
and
selecting
the
context
menu
or
selecting
the
designer
verb
area
of
the
Smart
Tags,
both
shown
below.

Description Picture
Context
(right-click)
menu
of
the
FpSpread
component
selected
on
the
form
in
Visual
Studio

Verb
area
of
the
Smart
Tags
(that
shows
up
after
clicking
on
the
arrow
to
the
right)
of
the
FpSpread
component
selected
on
the
design
form
in
Visual
Studio

Understanding the Spread Designer Interface

Use
the
Spread
Designer
as
a
way
to
quickly
set
properties
of
the
FpSpread
component
in
the
Microsoft
.NET
framework
by
accessing
the
properties
in
an
organized
and
easy-to-use
interface.
There
are
several
places
where
the
Spread
Designer
offers
additional
capabilities
beyond
the
Properties
window
in
the
.NET
framework.
The
parts
of
the
user

Spread for ASP.NET Developer’s Guide 76

Copyright © GrapeCity, Inc. All rights reserved.

interface
of
the
Spread
Designer
are
shown
in
this
figure.

To
set
the
properties
for
a
part
of
the
spreadsheet,
select
the
item
in
the
Property
Grid
(Spread,
Sheet,
etc.)
that
corresponds
with
that
item.
The
figure
above
shows
what
appears
when
you
click
on
the
Spread
item.
The
properties
related
to
this
item
are
displayed
in
the
Property
Grid
where
you
can
set
them
as
you
would
in
Visual
Studio.
You
can
also
use
the
menus
and
toolbars
to
make
changes
to
properties
quickly
and
easily.
The
preview
area
offers
a
quick
visual
indication
of
the
results
of
your
changes.

In
this
example,
the
Spread
menu
includes
those
properties
of
the
overall
component,
including
the
border
or
outline
of
the
entire
component,
the
command
bar,
the
page
navigation
bar,
the
scroll
bars,
and
many
other
design
time
properties.
You
can
also
add
styles
(that
apply
to
an
entire
Spread
or
an
individual
sheet)
and
you
can
add
sheets.
The
drop-down
combo
box
allows
you
to
select
the
Spread,
Sheet,
or
Selected
Item
menus.
You
can
then
set
properties
for
the
component,
a
specific
sheet,
or
a
selected
item
such
as
a
column
or
a
row.

The
Spread
Designer
offers
a
quick
and
easy
way
to
change
appearance
and
functionality
of
an
FpSpread
component
at
design
time.
Remember
that
this
changes
properties
at
design
time
in
the
component
itself
and
no
code
is
added
for
these
changes.
Some
properties
cannot
be
seen
at
design
time
and
the
effect
is
not
seen
until
you
preview
the
spreadsheet
or
until
you
run
the
spreadsheet.

The
Spread
Designer
has
several
areas
where
you
can
change
designer
settings
or
change
properties
of
the
Spread
component.
The
following
topics
describe
the
different
areas:

Spread
Designer
Menus
Spread
Designer
Toolbars
Spread
Designer
Editors
Spread
Designer
Context
Menus

Spread Designer Menus

You
can
use
the
designer
menus
to
save
or
load
a
designer
file,
show
or
hide
toolbars,
edit,
set
various
formatting
properties
for
the
component,
or
bring
up
the
help.

Spread for ASP.NET Developer’s Guide 77

Copyright © GrapeCity, Inc. All rights reserved.

The
following
menus
are
available:

File
Menu
Home
Menu
Insert
Menu
Data
Menu
View
Menu
Settings
Menu
Chart
Tools
Menu
Sparklines
Menu

For
more
tasks
within
Spread
Designer,
return
to
Understanding
the
Spread
Designer
Interface.

File Menu

The
File
menu
or
Spread
button
can
be
used
to
open
and
save
files,
apply
changes
to
the
designer
or
apply
and
exit,
reset
the
settings,
print,
preview
the
printing,
various
save
options,
or
exit
the
Designer.
The
File
menu
is
shown
in
the
following
figure:

Home Menu

Spread for ASP.NET Developer’s Guide 78

Copyright © GrapeCity, Inc. All rights reserved.

The
Home
menu
can
be
used
to
cut,
copy,
or
paste
cell
data,
select
cells,
set
cell
fonts
and
alignment,
lock
cells,
set
cell
types,
find
text
or
formatting,
set
conditional
formatting,
and
clear
or
refresh
the
control.
The
Home
menu
is
shown
in
the
following
figure:

Insert Menu

The
Insert
menu
can
be
used
to
add
or
delete
a
chart
control
or
a
sparkline.
The
Insert
menu
is
shown
in
the
following
figure:

Data Menu

The
Data
menu
can
be
used
to
insert
or
delete
rows,
columns,
or
sheets.
You
can
also
use
it
to
protect,
move,
or
copy
a
sheet.
The
Protect
Workbook
option
allows
you
to
protect
the
structure
of
the
workbook
(changes
such
as
moving
or
adding
sheets).
The
Data
menu
is
shown
in
the
following
figure:

View Menu

The
View
menu
can
be
used
to
show
or
hide
headers,
grid
lines,
the
formula
bar,
column
footers,
the
group
bar,
group
footers,
the
header
selection,
scrolling
content,
Spread
or
sheet
titles,
or
the
preview
row.
The
View
menu
can
also
be
used
to
freeze
columns
or
rows.
The
View
menu
is
shown
in
the
following
figure:

Spread for ASP.NET Developer’s Guide 79

Copyright © GrapeCity, Inc. All rights reserved.

Settings Menu

The
Settings
menu
can
be
used
to
format
cells,
the
sheet,
or
the
Spread
component.
The
Settings
menu
has
a
Spread
Setting
section
that
contains
options
for
creating
titles,
setting
the
focus
rectangle
color,
setting
edit
properties,
paging,
command
bar
options,
scrollbar
options,
and
tab
settings.

The
Sheet
Setting
section
can
be
used
to
set
the
column
and
row
count,
freeze
columns
and
rows,
set
paging
and
sorting
options,
set
operation
mode,
set
the
locked
and
selection
colors,
set
header
and
footer
properties
(including
the
sheet
corner),
set
grid
lines
(type
and
color),
and
set
formula
properties
such
as
reference
style.

The
Appearance
Settings
section
can
be
used
to
create
sheet
skins
and
named
styles.

The
Other
Settings
section
has
editors
for
the
row
template,
header
and
groups,
alternating
rows,
and
cells,
columns,
and
rows.

The
Designer
Settings
section
allows
you
to
make
changes
to
the
designer
such
as
showing
on
start
up
and
resizing.

The
Settings
menu
is
shown
in
the
following
figure:

Chart Tools Menu

The
Chart
Tools
menu
can
be
used
to
make
changes
to
a
chart
control.
You
can
change
the
chart
type,
switch
the
column
and
row
data,
move
to
the
front
or
back,
move
the
chart,
or
allow
the
user
to
move
or
resize
the
chart.
The
Chart
Tools
menu
is
shown
in
the
following
figure:

Sparklines Menu

The
Sparklines
menu
can
be
used
to
make
changes
to
a
sparkline.
This
menu
is
displayed
after
you
add
a
sparkline
to
a
cell.
The
Sparklines
menu
is
shown
in
the
following
figure:

The
Sparklines
menu
can
be
used
to
edit
an
existing
sparkline,
display
markers
and
specific
points,
set
colors
and

Spread for ASP.NET Developer’s Guide 80

Copyright © GrapeCity, Inc. All rights reserved.

weights,
show
an
axis,
and
group
and
ungroup
sparklines.

Spread Designer Toolbars

You
can
use
the
toolbars
to
provide
quick
access
to
some
features
of
the
Spread
Designer
such
as
saving
or
loading
a
file
and
creating
formulas.

The
following
toolbars
are
available:

Formula
Toolbar

The
Formula
toolbar
allows
you
to
enter
formulas
directly
or
open
the
Formula
Editor
to
specify
a
formula
for
a
cell
or
range
of
cells.
This
toolbar
is
shown
in
the
following
figure.

General
Toolbar

The
General
toolbar
can
be
used
to
open
and
save
files.
This
toolbar
is
shown
in
the
following
figure
(next
to
the
file
button
icon):

For
more
tasks
within
Spread
Designer,
return
to
Understanding
the
Spread
Designer
Interface.

Spread Designer Editors

You
can
use
the
collection
editors
to
format
specific
areas
of
the
component
such
as
groups,
sheet
views,
and
named
styles.
The
following
editors
are
available:

Alternating
Rows
Editor
Cells,
Columns,
and
Rows
Editor
ContextMenu
Collection
Editor
DataKey
Names
(String
Collection)
Editor
Formula
Editor
GroupInfo
Collection
Editor
Header
Editor
NamedStyle
Collection
Editor
Row
Template
Editor
SheetSkin
Editor
SheetView
Collection
Editor

For
more
tasks
within
Spread
Designer,
return
to
Understanding
the
Spread
Designer
Interface.

Alternating Rows Editor

You
can
customize
alternating
rows.
You
can
specify
borders,
colors,
cell
types,
and
other
options
with
the
Alternating
Rows
editor
in
the
Spread
Designer.
From
the
Settings
menu,
select
the
AlternatingRow
icon
under
the
Other
Settings
section.

Spread for ASP.NET Developer’s Guide 81

Copyright © GrapeCity, Inc. All rights reserved.

Cells, Columns, and Rows Editor

You
can
customize
the
appearance
of
cells,
columns
or
rows
with
the
Cells,
Columns,
or
Rows
Editor
of
the
Spread
Designer.
This
editor
is
launched
from
the
Properties
window
by
selecting
sheet
in
the
drop-down
box
on
the
right
side
of
the
designer
and
then
clicking
on
the
button
for
the
Cells,
Columns,
or
Rows
property.

Spread for ASP.NET Developer’s Guide 82

Copyright © GrapeCity, Inc. All rights reserved.

For
more
information
about
customizing
the
appearance
of
cells,
refer
to
Customizing
the
Appearance
of
a
Cell.
For
more
information
on
rows
and
columns,
refer
to
Customizing
the
Appearance
of
Rows
and
Columns.

ContextMenu Collection Editor

You
can
use
the
ContextMenu
Collection
Editor
to
create
menus
for
the
row
header,
column
header,
or
viewport
area.
You
can
also
create
menu
items
and
set
menu
properties.
From
the
Properties
window,
select
ContextMenus
to
see
this
editor.

Spread for ASP.NET Developer’s Guide 83

Copyright © GrapeCity, Inc. All rights reserved.

Use
the
Add
button
to
add
the
type
of
menu
(row
header,
column
header,
or
viewport).

You
can
use
the
MenuItem
Collection
Editor
to
add
menu
items
after
you
add
a
menu
type.

Spread for ASP.NET Developer’s Guide 84

Copyright © GrapeCity, Inc. All rights reserved.

After
you
add
a
menu
item,
you
can
specify
menu
properties
such
as
visible
or
add
submenu
items
with
the
ChildItems
collection.
The
CommandArgument
and
CommandName
properties
are
used
to
separate
which
menu
item
is
clicked
in
code.
The
ImageUrl
property
is
a
small
image
displayed
to
the
left
of
the
menu
item.
Text
is
the
title
of
the
menu
item.

Spread for ASP.NET Developer’s Guide 85

Copyright © GrapeCity, Inc. All rights reserved.

DataKey Names (String Collection) Editor

You
can
set
the
names
of
key
fields
for
the
data
source.
Select
DataKeyNames
under
the
Data
section
after
selecting
Sheet
in
the
drop-down
box
to
the
right
side
of
the
designer.

Spread for ASP.NET Developer’s Guide 86

Copyright © GrapeCity, Inc. All rights reserved.

Formula Editor

In
the
Formula
bar,
when
you
type
an
equals
sign,
(“=”)
then
the
drop-down
list
displays
all
the
built-in
functions
for
you
to
choose
from.
Or
if
you
click
on
the
Choose
Formula
button
on
the
Formula
bar,
the
Formula
Editor
is
displayed.
The
Formula
Editor
allows
you
to
select
any
of
the
built-in
functions.

Spread for ASP.NET Developer’s Guide 87

Copyright © GrapeCity, Inc. All rights reserved.

The
Formula
Editor
gives
you
a
list
of
the
built-in
functions
that
you
can
use
and
displays
a
brief
description
and
syntax
of
the
selected
function.
To
choose
a
function,
double-click
on
the
function
name
and
it
appears
in
the
Formula
field.
You
may
also
type
operators
and
constants
to
construct
your
formula.

For
more
information
on
formulas,
refer
to
Managing
Formulas
and
to
the
Formula
Reference.

GroupInfo Collection Editor

You
can
set
basic
formatting
for
group
headers
with
the
GroupInfo
Collection
Editor
of
the
Spread
Designer.
You
can
launch
the
GroupInfo
Collection
Editor
from
the
Spread
Designer
by
selecting
the
sheet
from
the
drop
down
on
the
right
side
of
the
designer
and
choosing
GroupInfos
under
the
Misc
section.

Spread for ASP.NET Developer’s Guide 88

Copyright © GrapeCity, Inc. All rights reserved.

http://sphelp.grapecity.com/WebHelp/SpreadNet10/FR/webframe.html#FormulaCover.html

For
more
information
on
grouping
and
grouping
headers,
refer
to
Customizing
Grouping
of
Rows
of
User
Data.

Header Editor

You
can
customize
column
and
row
headers
by
selecting
which
headers
display
and
by
customizing
the
properties
of
the
headers.
In
the
Spread
Designer,
from
the
Settings
menu,
select
the
Header
Editor
icon.
An
example
of
a
header
dialog
with
customized
header
appearances
is
shown
here.

Spread for ASP.NET Developer’s Guide 89

Copyright © GrapeCity, Inc. All rights reserved.

First,
select
which
headers
these
customizations
apply
to
by
choosing
from
the
drop-down
list
at
the
top
of
the
dialog.
Then
select
the
formatting
from
the
format
bar
at
the
top
or
the
various
properties
listed
in
the
Property
window
to
the
right.
The
preview
pane
on
the
left
displays
how
those
customizations
appear.
When
done,
click
Apply
or
OK.

For
more
information
on
customizing
headers,
refer
to
Customizing
the
Appearance
of
Headers.

NamedStyle Collection Editor

You
can
customize
the
appearance
of
cells
by
defining
a
named
style.
You
can
do
this
within
the
Spread
Designer
using
the
Named
Style
Editor.
This
editor
is
launched
from
the
Properties
window
by
first
selecting
the
Spread
and
then
clicking
on
the
button
in
the
NamedStyle
property.

Spread for ASP.NET Developer’s Guide 90

Copyright © GrapeCity, Inc. All rights reserved.

For
more
information
on
named
styles,
refer
to
Creating
and
Applying
a
Custom
Style
for
Cells.

Row Template Editor

The
row
template
editor
allows
you
to
design
the
layout
of
the
column
headers
and
the
data
rows.
From
the
Settings
menu,
select
the
RowTemplate
icon
(Other
Settings
section).

Spread for ASP.NET Developer’s Guide 91

Copyright © GrapeCity, Inc. All rights reserved.

You
can
use
the
Span
icon
to
span
cells
in
the
data
row
or
column
header.
Select
the
cells
to
span
and
then
select
the
Span
icon.

SheetSkin Editor

You
can
customize
various
sheet
properties
and
save
them
as
a
set
called
a
skin.
That
skin
can
be
saved
and
used
in
other
projects.
You
can
also
use
pre-defined
built-in
skins
and
apply
a
set
of
appearance
settings
at
once.

Select
the
Settings
menu
in
the
Spread
Designer,
then
select
the
SheetSkin
menu
under
the
Appearance
Settings
section.
The
SheetSkin
editor
is
shown
here.

Spread for ASP.NET Developer’s Guide 92

Copyright © GrapeCity, Inc. All rights reserved.

For
information
about
using
skins,
refer
to
Applying
a
Skin
to
a
Sheet
and
Creating
a
Skin
for
Sheets.

SheetView Collection Editor

You
can
customize
the
appearance
of
sheets
with
the
Sheet
View
Collection
Editor.
Select
Spread
in
the
drop-down
box
on
the
right
side
of
the
designer.
Then
click
on
the
Sheets
collection
under
the
Data
section.

Spread for ASP.NET Developer’s Guide 93

Copyright © GrapeCity, Inc. All rights reserved.

For
more
information
on
sheet
appearance
settings,
refer
to
Customizing
the
Appearance
of
the
Sheet.

Spread Designer Context Menus

In
the
spreadsheet
preview
area
of
the
Spread
Designer
you
right-click
and
bring
up
a
context
menu
depending
on
whether
you
are
clicking
on
an
individual
cell
or
the
entire
sheet
or
component.

For
more
tasks
within
Spread
Designer,
return
to
Understanding
the
Spread
Designer
Interface.

Cell
Context
Menu

With
the
cell
selected,
you
can
display
the
cell
context
menu.

Spread for ASP.NET Developer’s Guide 94

Copyright © GrapeCity, Inc. All rights reserved.

Sheet
Context
Menu

You
can
select
the
sheet
or
component
and
right-click
to
display
the
sheet
context
menu.
The
Move
or
Copy
menu
option
allows
you
to
make
a
copy
of
a
sheet.

Using the Spread Designer

Spread
Designer
helps
you
design
your
FpSpread
component
by
letting
you
see
most
of
the
settings
you
make
at
the
time
you
make
them,
and
by
letting
you
access
settings
that
you
cannot
access
in
Visual
Studio
at
design
time.
You
can
use
Spread
Designer
for
many
aspects
of
design,
including
customizing
the
appearance
of
your
component.
You
can
also

Spread for ASP.NET Developer’s Guide 95

Copyright © GrapeCity, Inc. All rights reserved.

load
data
into
the
sheets
in
your
component,
if
you
want
to
do
so.

The
tasks
you
can
do
using
Spread
Designer
are
described
throughout
this
guide
in
the
"how‑to"
instructions
provided.
The
following
topics
describe
some
specific
tasks
you
need
to
do
in
Spread
Designer
to
work
with
the
component
and
the
Designer.
Refer
to
these
topics
if
you
have
questions
while
working
through
tasks
described
in
other
sections
in
this
guide.

The
following
sections
describe
working
inside
the
Spread
Designer:

Customizing
Sheets,
Rows,
and
Columns
in
Spread
Designer
Customizing
Cells
in
Spread
Designer
Adding
Formulas
to
Cells
Saving
and
Opening
Design
Files
Applying
Changes
and
Closing
Spread
Designer

For
more
information
about
Spread
Designer,
return
to
Working
with
the
Spread
Designer.

Customizing Sheets, Rows, and Columns in Spread Designer

Using
the
Spread
Designer,
you
can
set
several
types
of
properties
to
customize
the
sheet
appearance.
This
includes
the
following
sheet
properties:

Colors
Grid
lines
Sheet
names
Alternating
rows
Group
bar
colors
Header
starting
numbers
Automatic
recalculation

For
example,
the
grid
lines
properties
are
shown
in
the
following
figure.

Besides
the
Sheet
properties,
you
can
also
set
several
types
of
properties
to
customize
the
appearance
of
rows
and
columns
and
headers
using
the
Spread
Designer.
Use
the
Row
menu
for
rows
and
row
headers.
Use
the
Column
menu
for
columns
and
column
headers.
The
figure
below
shows
the
types
of
properties
that
are
available
for
rows.

Spread for ASP.NET Developer’s Guide 96

Copyright © GrapeCity, Inc. All rights reserved.

For
more
information
on
setting
cell
types
for
a
cell
or
range
of
cells,
refer
to
Customizing
Cells
in
Spread
Designer.

For
more
tasks
within
Spread
Designer,
return
to
Using
the
Spread
Designer.

Customizing Cells in Spread Designer

Using
the
Spread
Designer,
you
can
set
the
cell
types
of
cells
in
the
data
area
of
the
spreadsheet.

Select
the
cells
in
the
window
of
the
Designer
for
which
you
want
to
set
the
cell
type.

Spread for ASP.NET Developer’s Guide 97

Copyright © GrapeCity, Inc. All rights reserved.

If
you
are
setting
cell
types
for
a
given
cell
or
range
of
cells,
use
the
cell
types
right-click
menu
to
quickly
apply
the
cell
type.
After
making
one
or
more
settings,
click
Apply
to
apply
the
changes
to
Spread.

Several
editable
celltypes
have
a
Format
tab
that
can
be
used
to
set
the
NumberFormat
property.
The
NumberFormat
property
uses
the
NumberFormatInfo
class.
The
NumberFormatInfo
class
may
have
properties
that
the
cell
type
does
not
support.
Unsupported
properties
are
ignored.

Select
the
culture
type
and
then
set
any
of
the
number
format
properties.

Spread for ASP.NET Developer’s Guide 98

Copyright © GrapeCity, Inc. All rights reserved.

You
can
enter
a
formula
into
a
cell
or
range
of
cells
using
the
Formula
property
from
the
Formula
tab
of
the
Cell
page
in
the
Spread
Designer.
For
more
information,
refer
to
Adding
Formulas
to
Cells.
For
more
information
on
formulas
and
functions,
refer
to
the
Formula
Reference.

For
more
information
on
setting
other
properties
for
a
cell
or
range
of
cells,
refer
to
Customizing
Sheets,
Rows,
and
Columns
in
Spread
Designer.

For
more
tasks
within
Spread
Designer,
return
to
Using
the
Spread
Designer.

Adding Formulas to Cells

You
can
enter
a
formula
into
a
cell
or
range
of
cells
using
the
Formula
bar
and
the
Formula
Editor
in
the
Spread
Designer.

Spread for ASP.NET Developer’s Guide 99

Copyright © GrapeCity, Inc. All rights reserved.

http://sphelp.grapecity.com/WebHelp/SpreadNet10/FR/webframe.html#FormulaCover.html

In
the
Formula
bar,
when
you
type
an
equals
sign,
(“=”)
then
the
drop-down
list
displays
all
the
built-in
functions
for
you
to
choose
from.
Or
if
you
click
on
the
Choose
Formula
button
on
the
Formula
bar,
the
Formula
Editor
is
displayed.
The
Formula
Editor
allows
you
to
select
any
of
the
built-in
functions.

Spread for ASP.NET Developer’s Guide 100

Copyright © GrapeCity, Inc. All rights reserved.

The
Formula
Editor
gives
you
a
list
of
the
built-in
functions
that
you
can
use
and
displays
a
brief
description
and
syntax
of
the
selected
function.
Functions
are
organized
by
category;
you
can
select
a
category
to
show
only
functions
of
a
given
category.
To
choose
a
function,
double-click
on
the
function
name
and
it
appears
in
the
Formula
field.
You
may
also
type
operators
and
constants
to
construct
your
formula.

You
can
enter
the
formula
in
the
Formula
field
in
the
Formula
Editor
or
in
the
formula
box
in
the
Formula
bar.
When
you
are
done
entering
the
formula
with
the
Formula
Editor,
click
Apply
or
OK.
When
you
are
done
typing
the
formula
in
the
formula
box,
click
Enter
(the
check
mark
button).
This
applies
the
formula
to
the
selected
cell
or
range
of
cells.
When
you
click
OK
or
Apply,
the
Formula
Editor
evaluates
the
formula
to
see
if
it
is
a
valid
formula.
For
more
information
on
formulas
and
functions,
refer
to
the
Formula
Reference.

To
display
or
hide
the
formula
bar,
from
the
View
menu,
select
Formula
Bar.

From
the
File
menu
choose
Apply
and
Exit
to
apply
your
changes
to
the
FpSpread
component
and
exit
Spread
Designer.

For
more
tasks
within
Spread
Designer,
return
to
Using
the
Spread
Designer.

Saving and Opening Design Files

When
you
have
finished
working
on
a
design,
you
can
save
the
design
to
a
file
as
any
of
several
file
types:

Spread
XML
Excel
(BIFF)
XLS
Excel
2007
XLSX
Text
file

Spread for ASP.NET Developer’s Guide 101

Copyright © GrapeCity, Inc. All rights reserved.

http://sphelp.grapecity.com/WebHelp/SpreadNet10/FR/webframe.html#FormulaCover.html

From
the
File
menu,
select
Save
or
Save
As
New
and
specify
a
file
name,
the
file
type,
and
the
location
of
the
file.

To
open
an
existing
file,
from
the
File
menu,
select
Open
and
select
the
file
from
the
File
dialog,
or
Open
Recent
and
select
the
name
from
the
recent
files
list.

For
saving
Spread
Designer
to
an
XML
file,
the
Spread
element
contains
these
elements

Data
Presentation
Settings
Style

For
more
information
on
the
save
and
open
options
from
the
File
menu,
refer
to
File
Menu.

For
details
of
what
is
exported
to
the
BIFF-compatible
file,
refer
to
the
Import
and
Export
Reference
(on-line
documentation).

For
more
tasks
within
Spread
Designer,
return
to
Using
the
Spread
Designer.

Applying Changes and Closing Spread Designer

When
you
have
finished
setting
the
properties
you
want
to
set
in
Spread
Designer,
you
can
apply
your
changes
to
the
component,
and
then
either
continue
to
work
in
Spread
Designer
or
close
Spread
Designer.

To
apply
your
changes,
do
one
of
the
following.
From
the
Designer
File
menu,

choose
Apply
choose
Apply
and
Exit

For
more
tasks
within
Spread
Designer,
return
to
Using
the
Spread
Designer.

Spread for ASP.NET Developer’s Guide 102

Copyright © GrapeCity, Inc. All rights reserved.

Customizing User Interaction

You
can
customize
how
the
user
interacts
with
the
spreadsheet.
The
tasks
that
relate
to
customizing
the
way
the
user
interacts
with
the
spreadsheet
include:

Customizing
Interaction
with
the
Overall
Component
Working
with
AJAX
Customizing
the
Tool
Bars
Customizing
Interaction
with
Rows
and
Columns
Managing
Filtering
of
Rows
of
User
Data
Customizing
Grouping
of
Rows
of
User
Data
Customizing
Sorting
of
Rows
of
User
Data
Customizing
Interaction
with
Cells
Customizing
Selections
of
Cells
Managing
Printing

Customizing Interaction with the Overall Component

You
can
customize
some
aspects
of
the
user
interaction
with
the
overall
component.
To
customize
user
interaction,
you
may
perform
the
following
tasks:

Displaying
Scroll
Bars
Displaying
Scroll
Bar
Text
Tips
Customizing
the
Scroll
Bar
Colors
Allowing
Load
on
Demand
Customizing
Interaction
Based
on
Events
Handling
the
Tab
Key
Customizing
the
Graphical
Interface
Searching
for
Data
with
Code
Adding
a
Context
Menu
Using
the
Formula
Extender
Control
(on-line
documentation)

For
information
about
the
appearance
of
the
component,
refer
to
Customizing
the
Appearance
of
the
Overall
Component.

For
information
about
displaying
the
sheet
names,
refer
to
Displaying
the
Sheet
Names.

Displaying Scroll Bars

You
can
customize
how
and
if
to
display
the
scroll
bars
in
the
component.
You
can
display
the
individual
scroll
bars
(horizontal
or
vertical)
only
when
needed,
as
shown
in
the
figure.

Spread for ASP.NET Developer’s Guide 103

Copyright © GrapeCity, Inc. All rights reserved.

Using
the
Properties
Window

1.
 Select
the
FpSpread
component.
2.
 With
the
Properties
window
open,
select
the
HorizontalScrollBarPolicy
property
and
VerticalScrollBarPolicy
(under
the
Behavior
category)
and
from
the
drop-down
list,
select
a
value
for
each.

3.
 The
scroll
bar
policy
is
now
set.

Using
Code

Determine
when
to
display
the
scroll
bars
by
setting
the
HorizontalScrollBarPolicy
('HorizontalScrollBarPolicy
Property'
in
the
on-line
documentation)
property
and
VerticalScrollBarPolicy
('VerticalScrollBarPolicy
Property'
in
the
on-line
documentation)
property
for
the
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
component
and
the
settings
of
the
ScrollBarPolicy
('ScrollBarPolicy
Enumeration'
in
the
on-line
documentation)
enumeration.

Example

The
following
example
sets
the
horizontal
and
vertical
scroll
bar
policies.

C#
FpSpread1.HorizontalScrollBarPolicy = FarPoint.Web.Spread.ScrollBarPolicy.Always;
FpSpread1.VerticalScrollBarPolicy = FarPoint.Web.Spread.ScrollBarPolicy.AsNeeded;

VB
FpSpread1.HorizontalScrollBarPolicy = FarPoint.Web.Spread.ScrollBarPolicy.Always
FpSpread1.VerticalScrollBarPolicy = FarPoint.Web.Spread.ScrollBarPolicy.AsNeeded

Using
the
Spread
Designer

1.
 Select
the
Settings
menu.
2.
 Select
the
Scrollbar
icon
under
the
Spread
Settings
section.
3.
 Set
the
policy
options.
4.
 Click
OK
to
apply
the
changes.
5.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Spread for ASP.NET Developer’s Guide 104

Copyright © GrapeCity, Inc. All rights reserved.

Displaying Scroll Bar Text Tips

You
can
display
scroll
bar
text
tips
for
the
sheet
when
the
user
scrolls.
The
text
tip
displays
information
for
the
leftmost
column
or
the
topmost
row
in
the
viewing
area.

You
can
also
customize
the
scrolling
text
tip
when
using
virtual
paging
with
the
VirtualScrollPagingFormatString
('VirtualScrollPagingFormatString
Property'
in
the
on-line
documentation)
property.

Using
the
Properties
Window

1.
 Select
the
FpSpread
component.
2.
 Select
the
Sheets
collection
in
the
properties
window.
3.
 Select
the
ScrollingContentVisible
property
in
the
Sheets
collection
editor.

Using
Code

Use
the
ScrollingContentVisible
('ScrollingContentVisible
Property'
in
the
on-line
documentation)
property
to
enable
tips
for
the
scroll
bar.

Example

The
following
example
enables
the
tips
for
the
scroll
bar.

C#
FpSpread1.Sheets[0].ScrollingContentVisible = true;

VB
FpSpread1.Sheets(0).ScrollingContentVisible = True

Using
the
Spread
Designer

1.
 Select
the
Settings
menu.
2.
 Select
the
Scrollbar
icon
under
the
Spread
Settings
section.
3.
 Select
the
Scrolling
Content
option.
4.
 Click
OK
to
apply
the
changes.
5.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Customizing the Scroll Bar Colors

You
can
customize
the
colors
of
the
various
parts
of
the
scroll
bars
in
the
component.
The
scroll
box
is
the
rectangular
part
that
moves
on
a
track
to
change
the
position
of
the
displayed
contents
when
clicked
and
dragged.
The
boxes
with
arrows
are
the
square
buttons
at
each
end
of
a
scroll
bar
that
move
the
content
on
the
screen
in
small
increments
when
clicked.
The
track
is
the
element
on
which
the
scroll
box
can
slide.
The
face
refers
to
the
scroll
box,
scroll
buttons,
and
the
corner.
The
corner
is
the
square
in
the
lower
right.
The
scroll
bars
are
displayed
based
on
the
scroll
bar
policy;
for
more
information,
refer
to
Displaying
Scroll
Bars.

The
base
color
is
the
color
assigned
to
the
entire
scroll
bar
(scroll
box,
corner,
arrow
boxes,
and
track).
This
color
is
only
visible
if
the
colors
for
the
individual
scroll
bar
items
are
not
set.

The
individual
colors
that
can
be
set
are
shown
in
the
figure
below.
The
corresponding
properties
and
code
for
these
are
given
in
the
procedures
below.

Using
the
Properties
Window

1.
 Select
the
FpSpread
component.
2.
 With
the
Properties
window
open,
select
the
various
scroll
bar
color
properties
(under
the
Appearance

category)
and
from
the
drop-down
list,
select
a
color.

Using
Code

Determine
when
to
display
the
scroll
bars
by
setting
the
policy
properties
for
the
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
component
and
then
set
the
color
properties
of
the
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
component.

Example

The
following
example
sets
the
scroll
bar
colors.
The
ScrollBarBaseColor
('ScrollBarBaseColor
Property'
in
the
on-line
documentation)
property
in
this
example
is
overridden
by
the
individual
color
settings.

C#
FpSpread1.VerticalScrollBarPolicy = FarPoint.Web.Spread.ScrollBarPolicy.AsNeeded;
FpSpread1.VerticalScrollBarPolicy = FarPoint.Web.Spread.ScrollBarPolicy.AsNeeded;
FpSpread1.Sheets[0].ColumnCount = 10;
FpSpread1.Sheets[0].RowCount = 10;
FpSpread1.ScrollBarBaseColor = Color.Brown
FpSpread1.ScrollBar3DLightColor = Color.Yellow;
FpSpread1.ScrollBarArrowColor = Color.Green;
FpSpread1.ScrollBarDarkShadowColor = Color.Purple;

Spread for ASP.NET Developer’s Guide 105

Copyright © GrapeCity, Inc. All rights reserved.

FpSpread1.ScrollBarFaceColor = Color.Orange;
FpSpread1.ScrollBarHighlightColor = Color.White;
FpSpread1.ScrollBarShadowColor = Color.Blue;
FpSpread1.ScrollBarTrackColor = Color.Pink;

VB
FpSpread1.VerticalScrollBarPolicy = FarPoint.Web.Spread.ScrollBarPolicy.AsNeeded
FpSpread1.VerticalScrollBarPolicy = FarPoint.Web.Spread.ScrollBarPolicy.AsNeeded
FpSpread1.Sheets(0).ColumnCount = 10
FpSpread1.Sheets(0).RowCount = 10
FpSpread1.ScrollBar3DLightColor = Color.Yellow
FpSpread1.ScrollBarArrowColor = Color.Green
FpSpread1.ScrollBarBaseColor = Color.Brown
FpSpread1.ScrollBarDarkShadowColor = Color.Purple
FpSpread1.ScrollBarFaceColor = Color.Orange
FpSpread1.ScrollBarHighlightColor = Color.White
FpSpread1.ScrollBarShadowColor = Color.Blue
FpSpread1.ScrollBarTrackColor = Color.Pink

Allowing Load on Demand

You
can
allow
the
Web
page
to
load
on
demand
--
as
the
user
scrolls
further
down
the
spreadsheet
the
Spread
component
on
the
client
loads
another
set
of
rows
from
the
server
as
needed.
The
height
of
the
component
should
be
smaller
than
the
height
needed
for
the
initial
number
of
rows
to
load
(LoadInitRowCount
('LoadInitRowCount
Property'
in
the
on-line
documentation)
property);
otherwise,
the
scroll
bar
will
not
be
visible
and
you
will
need
to
use
the
next
page
icon
instead
of
the
scroll
bar.
The
load
on
demand
feature
scrolls
up
to
the
maximum
number
of
rows
you
have
set
with
the
page
size.
If
the
row
count
is
greater
than
the
page
size,
you
will
need
to
use
the
next
page
icon
to
display
the
rows
beyond
the
page
size
setting.

The
following
properties
are
used
to
set
the
allow
load
on
demand
feature.
They
can
be
set
at
the
control
level
or
the
sheet
level.

FpSpread
class:

FpSpread.AllowLoadOnDemand
('AllowLoadOnDemand
Property'
in
the
on-line
documentation)
FpSpread.LoadInitRowCount
('LoadInitRowCount
Property'
in
the
on-line
documentation)
FpSpread.LoadRowIncrement
('LoadRowIncrement
Property'
in
the
on-line
documentation)

SheetView
class:

SheetView.AllowLoadOnDemand
('AllowLoadOnDemand
Property'
in
the
on-line
documentation)
SheetView.LoadInitRowCount
('LoadInitRowCount
Property'
in
the
on-line
documentation)
SheetView.LoadRowIncrement
('LoadRowIncrement
Property'
in
the
on-line
documentation)

You
can
specify
whether
to
use
the
standard
or
background
load
on
demand
options
with
the
LoadOnDemandMode
('LoadOnDemandMode
Property'
in
the
on-line
documentation)
property.

The
load
on
demand
feature
is
not
intended
to
work
with
a
hierarchical
display
(parent
sheet
expanding
into
child
sheets)
so
it
is
disabled
in
a
hierarchical
Spread.

Standard
Load
on
Demand

The
standard
mode
only
loads
the
next
set
of
rows
if
there
are
rows
that
are
hidden
from
the
view.
The
default
value
for
the
LoadOnDemandMode
('LoadOnDemandMode
Property'
in
the
on-line
documentation)
property
is
standard.

Spread for ASP.NET Developer’s Guide 106

Copyright © GrapeCity, Inc. All rights reserved.

Background
Load
on
Demand

You
can
load
new
rows
in
the
background
before
the
last
row
is
displayed.
For
example,
if
20
rows
are
loaded
and
the
user
scrolls
to
row
15,
the
next
set
of
rows
is
loaded.
Set
the
LoadOnDemandMode
('LoadOnDemandMode
Property'
in
the
on-line
documentation)
property
to
Background
to
load
the
new
rows
before
the
last
row
is
displayed.
You
can
also
specify
whether
to
load
the
new
rows
using
a
time
interval
or
when
the
scrolling
is
a
specified
number
of
rows
from
the
bottom
of
the
view.
Use
the
LoadOnDemandTriggerMode
('LoadOnDemandTriggerMode
Property'
in
the
on-line
documentation)
property
to
specify
whether
to
use
a
time
interval
or
an
offset
from
the
bottom
of
the
view.

The
background
load
on
demand
allows
other
pending
AJAX
requests
while
rows
are
being
loaded
(rows
are
loaded
without
locking
the
Spread).
The
actions
are
put
in
a
queue
of
pending
requests
to
be
processed
later.
When
load
on
demand
is
finished,
pending
requests
in
the
queue
are
processed
until
there
are
no
more
requests
in
the
queue.

Virtual
Paging

Another
option
for
loading
pages
as
the
user
scrolls
vertically
is
the
AllowVirtualScrollPaging
('AllowVirtualScrollPaging
Property'
in
the
on-line
documentation)
property.
This
can
be
used
instead
of
the
allow
load
on
demand
properties.
The
virtual
paging
feature
will
not
work
with
load
on
demand.
The
EnableClientScript
('EnableClientScript
Property'
in
the
on-line
documentation)
property
must
be
true
for
the
virtual
paging.
For
the
best
performance,
you
may
also
wish
to
set
EnableAjaxCall
('EnableAjaxCall
Property'
in
the
on-line
documentation)
to
true
since
the
virtual
paging
uses
Ajax
calls.

The
virtual
scrolling
option
scrolls
from
the
first
row
to
the
last
row
of
the
page
size.
If
the
row
count
is
greater
than
the
page
size,
then
when
you
scroll
past
the
maximum
page
size
row,
the
next
set
of
rows
is
loaded
(a
wait
icon
is
displayed
while
the
next
page
is
loading
in
this
case).

You
can
also
display
rows
from
the
previous
page
with
the
VirtualScrollPagingPrevRowCount
('VirtualScrollPagingPrevRowCount
Property'
in
the
on-line
documentation)
property.

The
scroll
bar
button
size
reflects
the
total
number
of
rows
with
virtual
scrolling
(rather
than
the
number
of
currently
loaded
rows).

Using
the
Properties
Window

You
can
set
several
of
the
properties
at
design
time
using
the
Properties
window
of
Visual
Studio
.NET
or
the
Property
grid
in
the
designer.

1.
 Select
the
sheet.
2.
 Set
the
AllowLoadOnDemand
property
to
true
to
allow
loading
on
demand.
3.
 Set
the
LoadInitRowCount
property
to
specify
the
initial
number
of
rows
to
load.
4.
 Set
the
LoadRowIncrement
property
to
specify
how
many
rows
to
load
after
the
initial
set
of
rows
is
loaded.

Using
Code

Use
the
AllowLoadOnDemand
('AllowLoadOnDemand
Property'
in
the
on-line
documentation)
property
to
allow
load
on
demand.
Set
the
LoadInitRowCount
('LoadInitRowCount
Property'
in
the
on-line
documentation)
property
to
load
the
initial
set
of
rows.
Set
the
LoadRowIncrement
('LoadRowIncrement
Property'
in
the
on-line
documentation)
property
to
specify
the
number
of
rows
to
load
after
the
initial
page
is
loaded.

Example

The
height
of
the
component
should
be
smaller
than
the
height
of
ten
rows
(for
this
example).

C#
FpSpread1.Sheets[0].RowCount = 40;

Spread for ASP.NET Developer’s Guide 107

Copyright © GrapeCity, Inc. All rights reserved.

FpSpread1.Sheets[0].AllowLoadOnDemand = True;
FpSpread1.Sheets(0).PageSize = 40;
FpSpread1.Sheets[0].LoadInitRowCount = 10;
FpSpread1.Sheets[0].LoadRowIncrement = 10;
long i;
for (i = 1; i <= 20; i++)
{
FpSpread1.Sheets[0].Cells[i, 0].Value = i;
}

VB
FpSpread1.Sheets(0).RowCount = 40
FpSpread1.Sheets(0).AllowLoadOnDemand = True
FpSpread1.Sheets(0).PageSize = 40
FpSpread1.Sheets(0).LoadInitRowCount = 10
FpSpread1.Sheets(0).LoadRowIncrement = 10
Dim i As Long
For i = 1 To 20
FpSpread1.Sheets(0).Cells(i, 0).Value = i
Next

Customizing Interaction Based on Events

You
can
customize
user
interaction
based
on
events
in
the
FpSpread
component.
In
the
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
class
there
are
several
events,
from
ButtonCommand
('ButtonCommand
Event'
in
the
on-line
documentation)
to
InsertCommand
('InsertCommand
Event'
in
the
on-line
documentation)
to
SaveOrLoadSheetState
('SaveOrLoadSheetState
Event'
in
the
on-line
documentation).
Use
these
events
to
initiate
actions.

For
a
list
of
events
with
code
samples,
refer
to
the
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
class
in
the
Assembly
Reference
(on-line
documentation).

Handling the Tab Key

You
can
customize
the
use
of
the
Tab
key.
By
default
the
user
can
press
the
Tab
key
to
advance
the
focus
to
the
next
active
cell.
You
can
turn
off
this
behavior
so
that
the
component
does
not
pay
attention
to
the
Tab
key
being
pressed.
To
control
this
behavior,
set
the
ProcessTab
('ProcessTab
Property'
in
the
on-line
documentation)
property
of
the
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
class.

Using
Code

Use
the
ProcessTab
('ProcessTab
Property'
in
the
on-line
documentation)
property.

Example

Set
the
ProcessTab
('ProcessTab
Property'
in
the
on-line
documentation)
property.

C#
FpSpread1.ProcessTab = false;

VB
FpSpread1.ProcessTab = False

Spread for ASP.NET Developer’s Guide 108

Copyright © GrapeCity, Inc. All rights reserved.

Customizing the Graphical Interface

You
can
customize
the
graphical
user
interface
of
the
component
by
using
your
own
graphics
for
certain
parts
of
the
interface.
You
can
customize
these
aspects
of
the
component:

Sort
indicator
that
is
displayed
in
the
column
header
Expand
and
collapse
icons
in
the
hierarchical
display
Icons
in
the
filter
bar

The
following
image
displays
custom
icons
in
the
hierarchical
display.

To
display
or
hide
the
sort
indicator,
use
the
SortIndicator
('SortIndicator
Enumeration'
in
the
on-line
documentation)
enumeration
settings
and
the
SortIndicator
('SortIndicator
Property'
in
the
on-line
documentation)
property
of
the
Column
('Column
Class'
in
the
on-line
documentation)
class.

Use
the
GetImage
('GetImage
Method'
in
the
on-line
documentation)
method
and
SetImage
('SetImage
Method'
in
the
on-line
documentation)
method
in
the
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
component
to
work
with
the
image.
Use
the
SpreadImages
('SpreadImages
Enumeration'
in
the
on-line
documentation)
enumeration
to
specify
the
images
to
customize.

You
can
also
manage
whether
users
can
expand
rows
to
see
child
views.
For
more
information,
refer
to
Handling
Row
Expansion.

For
more
information
on
sorting,
refer
to
Customizing
Sorting
of
Rows
of
User
Data.

Using
Code

You
can
use
the
SetImage
('SetImage
Method'
in
the
on-line
documentation)
method
to
add
your
own
image
to
the
control.
Specify
which
image
to
replace
and
the
URL
of
the
image
with
this
method.

Example

The
following
example
uses
the
SetImage
('SetImage
Method'
in
the
on-line
documentation)
method
with
a
control
that
has
been
bound
to
a
hierarchical
data
set.

C#
System.Data.DataSet ds = new System.Data.DataSet();
DataTable name;
DataTable city;
name = ds.Tables.Add("Customers");
name.Columns.AddRange(new DataColumn[] {new DataColumn("LastName", typeof(string)), new
DataColumn("FirstName", typeof(string)), new DataColumn("ID", typeof(Int32))});
name.Rows.Add(new object[] {"Fielding", "William", 0});
name.Rows.Add(new object[] {"Williams", "Arthur", 1});
name.Rows.Add(new object[] {"Zuchini", "Theodore", 2});
city = ds.Tables.Add("City/State");
city.Columns.AddRange(new DataColumn[] {new DataColumn("City", typeof(string)), new
DataColumn("Owner", typeof(Int32)), new DataColumn("State", typeof(string))});

Spread for ASP.NET Developer’s Guide 109

Copyright © GrapeCity, Inc. All rights reserved.

city.Rows.Add(new object[] {"Atlanta", 0, "Georgia"});
city.Rows.Add(new object[] {"Boston", 1, "Mass."});
city.Rows.Add(new object[] {"Tampa", 2, "Fla."});
ds.Relations.Add("City/State", name.Columns["ID"], city.Columns["Owner"]);
FpSpread1.DataSource = ds;
FpSpread1.SetImage(FarPoint.Web.Spread.SpreadImages.Expand, "icon1.ico");
FpSpread1.SetImage(FarPoint.Web.Spread.SpreadImages.Collapse, "icon2.ico");

VB
Dim ds As New System.Data.DataSet
Dim name As DataTable
Dim city As DataTable
name = ds.Tables.Add("Customers")
name.Columns.AddRange(New DataColumn() {New DataColumn("LastName",
Type.GetType("System.String")), New DataColumn("FirstName",
Type.GetType("System.String")), New DataColumn("ID", Type.GetType("System.Int32"))})
name.Rows.Add(New Object() {"Fielding", "William", 0})
name.Rows.Add(New Object() {"Williams", "Arthur", 1})
name.Rows.Add(New Object() {"Zuchini", "Theodore", 2})
city = ds.Tables.Add("City/State")
city.Columns.AddRange(New DataColumn() {New DataColumn("City",
Type.GetType("System.String")), New DataColumn("Owner", Type.GetType("System.Int32")),
New DataColumn("State", Type.GetType("System.String"))})
city.Rows.Add(New Object() {"Atlanta", 0, "Georgia"})
city.Rows.Add(New Object() {"Boston", 1, "Mass."})
city.Rows.Add(New Object() {"Tampa", 2, "Fla."})
ds.Relations.Add("City/State", name.Columns("ID"), city.Columns("Owner"))
FpSpread1.DataSource = ds
FpSpread1.SetImage(FarPoint.Web.Spread.SpreadImages.Expand, "icon1.ico")
FpSpread1.SetImage(FarPoint.Web.Spread.SpreadImages.Collapse, "icon2.ico")

Searching for Data with Code

To
search
for
data
in
any
of
the
cells
of
a
sheet,
use
either
of
these
sets
of
methods
in
the
FpSpread
class:

Search
('Search
Method'
in
the
on-line
documentation)
methods
SearchHeaders
('SearchHeaders
Method'
in
the
on-line
documentation)
methods

The
parameters
of
the
various
search
methods
allow
you
to
specify
the
sheet
to
search,
the
string
for
which
to
search,
and
the
matching
criteria.
For
a
list
of
qualifications
(restrictions)
of
the
search,
refer
to
the
set
of
methods
listed
above
for
more
details.

Using
Code

Use
the
Search
('Search
Method'
in
the
on-line
documentation)
method
for
the
FpSpread
component
to
perform
a
search.

Example

Use
the
Search
method
to
perform
an
exact-match
search
on
the
third
sheet
(Sheet
2)
for
the
word
"Total"
and
return
the
values
of
the
row
index
and
column
index
of
the
found
cell.

C#
fpSpread1.Search(2,"Total",true,true,false,false,1,1,56,56,ref rowindx,ref colindx));

Spread for ASP.NET Developer’s Guide 110

Copyright © GrapeCity, Inc. All rights reserved.

VB
FpSpread1.Search(2,"Total",True,True,False,False,1,1,56,56,ref rowindx,ref colindx))

Adding a Context Menu

You
can
display
a
Spread
context
menu
when
right-clicking
on
the
Spread
control.
The
context
menu
can
be
displayed
when
the
user
right-clicks
on
the
column
header,
row
header,
or
viewport
area
(data
area
and
empty
area).

You
can
add
menu
items
to
the
menu
and
set
the
height
or
other
properties.
Specify
the
type
of
menu
with
the
ContextMenuType
('ContextMenuType
Enumeration'
in
the
on-line
documentation)
enumeration.
You
can
create
a
menu
using
markup
code,
the
ContextMenus
('ContextMenus
Property'
in
the
on-line
documentation)
property
in
the
Properties
window,
or
server
code.

The
CommandArgument
('CommandArgument
Property'
in
the
on-line
documentation)
and
CommandName
('CommandName
Property'
in
the
on-line
documentation)
properties
are
used
to
separate
which
menu
item
is
clicked
in
code.
So
in
the
MenuItemClicked
('MenuItemClicked
Event'
in
the
on-line
documentation)
event
on
the
server
side
you
could
add
code
such
as
switch(eventArgs.SelectedItem.CommandName)
or
switch(eventArgs.SelectedItem.CommandArgument).

Using
the
Properties
Window

1.
 In
the
Properties
windows
select
Spread.
2.
 Under
the
Behavior
section
select
the
ContextMenus
property.
3.
 Use
the
ContextMenu
Collection
editor
to
add
menus,
menu
items,
and
set
any
menu
properties.
4.
 Click
OK
when
finished.

Using
Code

1.
 Create
a
viewport
menu
using
markup
or
the
ContextMenus
('ContextMenus
Property'
in
the
on-line
documentation)
property
in
the
property
window
at
design
time.

2.
 Set
the
EnableContextMenu
('EnableContextMenu
Property'
in
the
on-line
documentation)
property
to
true.

3.
 Create
a
row
header
menu
with
code.

Example

This
example
code
creates
one
menu
at
design
time
and
one
menu
at
run
time.

Code

Spread for ASP.NET Developer’s Guide 111

Copyright © GrapeCity, Inc. All rights reserved.

//Markup code

<ContextMenus>
 <FarPoint:ContextMenu Type="Viewport">
 <Items>
 <FarPoint:MenuItem Enabled="True" ImageUrl="http://linktoimagehere/abc.jpc"
Text="Menu item 1">
 <ItemTemplate>
 <asp:TextBox ID="bac" runat="server" />
 </ItemTemplate>
 </FarPoint:MenuItem>
 <FarPoint:MenuItem Text="Sort" ImageUrl="http://linktoimagehere/abc.jpc">
 <ChildItems >
 <FarPoint:MenuItem Text="Child Item1"
ImageUrl="http://avc/abc.jpc"></FarPoint:MenuItem>
 <FarPoint:MenuItem Text="Child Item2"></FarPoint:MenuItem>
 </ChildItems>
 </FarPoint:MenuItem>
 <FarPoint:MenuItem Enabled="True"
ImageUrl="http://linktoimagehere/abc.jpc">Menu item 3</FarPoint:MenuItem>
 </Items>
 </FarPoint:ContextMenu>
 </ContextMenus>

C#
protected void Page_Load(object sender, System.EventArgs e)
{
if (this.IsPostBack) return;
FpSpread1.EnableContextMenu = true;
//Create this viewport menu using markup or the ContextMenus property in the property
window
FarPoint.Web.Spread.ContextMenu viewportMenu =
FpSpread1.ContextMenus[FarPoint.Web.Spread.ContextMenuType.Viewport];
FarPoint.Web.Spread.MenuItem customViewportItem = new
FarPoint.Web.Spread.MenuItem("Viewport item 1");
customViewportItem.ChildItems.Add(new FarPoint.Web.Spread.MenuItem("Child item 1"));
customViewportItem.ChildItems.Add(new FarPoint.Web.Spread.MenuItem("Child item 2"));
viewportMenu.Items.Add(customViewportItem);

//This row header menu is created here (no markup or design properties)
FarPoint.Web.Spread.ContextMenu rowHeaderContextMenu = new
FarPoint.Web.Spread.ContextMenu();
rowHeaderContextMenu.Type = FarPoint.Web.Spread.ContextMenuType.RowHeader;
FarPoint.Web.Spread.MenuItem rowHeaderItem = new
FarPoint.Web.Spread.MenuItem("RowHeader item 1");
rowHeaderItem.ChildItems.Add(new FarPoint.Web.Spread.MenuItem("Child item 1"));
rowHeaderItem.ChildItems.Add(new FarPoint.Web.Spread.MenuItem("Child item 2"));
rowHeaderContextMenu.Items.Add(rowHeaderItem);
FpSpread1.ContextMenus.Add(rowHeaderContextMenu);
}

VB
Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
If (IsPostBack) Then

Spread for ASP.NET Developer’s Guide 112

Copyright © GrapeCity, Inc. All rights reserved.

http://linktoimagehere/abc.jpc
http://linktoimagehere/abc.jpc
http://avc/abc.jpc"></FarPoint:MenuItem
http://linktoimagehere/abc.jpc">Menu

 Return
End If
FpSpread1.EnableContextMenu = True
'Create this viewport menu using markup or the ContextMenus property in the property
window
Dim viewportMenu As FarPoint.Web.Spread.ContextMenu =
FpSpread1.ContextMenus(FarPoint.Web.Spread.ContextMenuType.Viewport)
Dim customViewportItem As New FarPoint.Web.Spread.MenuItem("Viewport item 1")
customViewportItem.ChildItems.Add(New FarPoint.Web.Spread.MenuItem("Child item 1"))
customViewportItem.ChildItems.Add(New FarPoint.Web.Spread.MenuItem("Child item 2"))
viewportMenu.Items.Add(customViewportItem)

'This row header menu is created here (no markup or design properties)
Dim rowHeaderContextMenu As New FarPoint.Web.Spread.ContextMenu()
rowHeaderContextMenu.Type = FarPoint.Web.Spread.ContextMenuType.RowHeader
Dim rowHeaderItem As New FarPoint.Web.Spread.MenuItem("RowHeader item 1")
rowHeaderItem.ChildItems.Add(New FarPoint.Web.Spread.MenuItem("Child item 1"))
rowHeaderItem.ChildItems.Add(New FarPoint.Web.Spread.MenuItem("Child item 2"))
rowHeaderContextMenu.Items.Add(rowHeaderItem)
FpSpread1.ContextMenus.Add(rowHeaderContextMenu)
End Sub

Working with AJAX

You
can
use
AJAX
and
ASP.NET
AJAX
to
extend
the
capability
of
Spread
by
providing
additional
cell
types
and
page
refresh
options.
You
may
perform
the
following
tasks:

Enabling
AJAX
Support
Using
ASP.NET
AJAX
Extenders

Enabling AJAX Support

AJAX
allows
the
component
to
refresh
without
refreshing
the
entire
page.
You
can
add
AJAX
support
to
the
FpSpread
component
by
setting
the
EnableAjaxCall
('EnableAjaxCall
Property'
in
the
on-line
documentation)
property.
Setting
this
property
to
True
prevents
Spread
from
doing
a
full
page
postback
when
implementing
the
following
features
-
expanding
and
collapsing
child
sheets
in
a
hierarchical
display,
column
sorting,
inserting
rows,
or
paging.

If
the
ClientAutoCalculation
('ClientAutoCalculation
Property'
in
the
on-line
documentation)
property
is
true,
then
after
a
cell
value
is
changed,
an
AJAX
call
is
made
to
the
FpSpread
component.
Then
the
component
calculates
the
formulas
and
sends
the
values
to
the
client
side.
The
component
then
updates
the
values
at
the
client
side.

Use
the
EnableAjaxCall
('EnableAjaxCall
Property'
in
the
on-line
documentation)
property
to
enable
AJAX
support
or
use
EnableAjaxCall
and
the
ClientAutoCalculation
('ClientAutoCalculation
Property'
in
the
on-
line
documentation)
properties
to
enable
AJAX
support
of
formulas.

Using
Code

You
can
set
the
EnableAjaxCall
('EnableAjaxCall
Property'
in
the
on-line
documentation)
property
and
the
ClientAutoCalculation
('ClientAutoCalculation
Property'
in
the
on-line
documentation)
property
in
code.

Example

The
following
code
allows
AJAX
support
and
AJAX
support
of
formulas.

Spread for ASP.NET Developer’s Guide 113

Copyright © GrapeCity, Inc. All rights reserved.

C#
FpSpread1.EnableAjaxCall = true;
FpSpread1.ClientAutoCalculation = true;

VB
FpSpread1.EnableAjaxCall = True
FpSpread1.ClientAutoCalculation = True<

Using
the
Spread
Designer

1.
 Select
the
Settings
menu.
2.
 Select
the
General
icon
under
the
Spread
Settings
section.
3.
 Select
the
General
tab
and
check
the
Enable
AJAX
Call
box.
4.
 Select
the
Edit
tab
in
order
to
set
the
Client
Auto
Calculation
check
box.
5.
 Click
OK.
6.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Using ASP.NET AJAX Extenders

You
can
use
the
many
cell
types
in
the
FarPoint.Web.Spread.Extender
assembly
to
provide
controls
that
are
available
as
ASP.NET
AJAX
extender
controls.
The
extender
controls
enhance
the
client
capabilities
of
other
controls.

For
more
information
about
extender
cell
types,
refer
to
Working
with
ASP.NET
AJAX
Extender
Cell
Types.

The
various
cell
types
that
use
ASP.NET
AJAX
extender
controls
include:

Setting
an
Automatic-Completion
Cell
Setting
a
Calendar
Cell
Setting
a
Filtered
Text
Cell
Setting
a
Masked
Edit
Cell
Setting
a
Mutually
Exclusive
Check
Box
Cell
Setting
a
Numeric
Spin
Cell
Setting
a
Rating
Cell
Setting
a
Slider
Cell
Setting
a
Slide
Show
Cell
Setting
a
Text
Box
with
Watermark
Cell

Using
the
AJAX
Extenders

1.
 The
current
AJAX
toolkit
and
setup
is
available
at
https://ajaxcontroltoolkit.codeplex.com/.
2.
 After
installing
the
setup,
add
references
to
the
new
AjaxControlToolkit.dll
files.

If
you
are
using
Ajax
Control
Toolkit
15.1.2,
check
http://www.nuget.org/packages/AjaxControlToolkit/
for
information
about
adding
the
references
to
the
project.

Check
the
https://ajaxcontroltoolkit.codeplex.com/
web
site
for
the
current
location
of
the
dll
if
you
are
using
Ajax
Control
Toolkit
15.1
or
older.

Earlier
versions
of
the
AJAX
toolkit
are
available
at
the
Microsoft
ASP.NET
AJAX
Controls
page
(http://ajax.asp.net/ajaxtoolkit/)
and
require
downloading
the
zip
file
with
the
AJAX
Control
extenders
and
adding
the
references.

Spread for ASP.NET Developer’s Guide 114

Copyright © GrapeCity, Inc. All rights reserved.

https://ajaxcontroltoolkit.codeplex.com/
http://www.nuget.org/packages/AjaxControlToolkit/
https://ajaxcontroltoolkit.codeplex.com/
http://ajax.asp.net/ajaxtoolkit/

3.
 To
use
the
AJAX
Extender
CellType,
add
a
Script
Manager
to
the
page.
From
the
Toolbox,
under
the
AJAX
Extenders
category
select
Script
Manager
and
drag
it
to
the
ASPX
page
(Web
Form)
where
you
have
the
Spread
component.

The
AJAX
Control
Toolkit
15.1
stopped
supporting
ToolkitScriptManager
and
now
supports
the
standard
ScriptManager.
For
more
information,
refer
to
https://ajaxcontroltoolkit.codeplex.com.

Spread
supports
multiple
versions
of
AJAX
so
the
oldest
version
is
used
in
the
development
environment.
If
you
use
AJAX
Control
Toolkit
15.1
when
deploying
to
a
server,
the
following
configuration
information
about
assembly
binding
must
be
added
so
that
the
web
server
loads
the
correct
version.

Web.config
<configuration>
 <system.web>
 </system.web>
 <runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <dependentAssembly>
 <assemblyIdentity name="AjaxControlToolkit" publicKeyToken="28f01b0e84b6d53e"
culture="neutral"/>
 <bindingRedirect oldVersion="3.0.30930.28736" newVersion="15.1.2.0" />
 </dependentAssembly>
 </assemblyBinding>
 </runtime>
</configuration>

Customizing the Tool Bars

There
are
a
set
of
tasks
that
allow
you
to
customize
how
the
user
can
interact
with
the
spreadsheet,
namely
the
parts
of
the
component
that
involve
navigation
and
buttons
in
the
tool
bars
that
FpSpread
displays
above
and
below
any
sheet
of
data.
Not
all
of
the
tool
bars
are
displayed
automatically;
some
are
optional.
The
tasks
involved
in
customizing
the
various
tool
bars
include:

Customizing
the
Command
Bar
on
the
Component
Customizing
the
Command
Buttons
Changing
the
Command
Button
Images
Hiding
a
Specific
Command
Button
Working
with
the
SaveExcel
button
on
the
CommandBar
(on-line
documentation)
Displaying
the
Sheet
Names
Customizing
Page
Navigation
Customizing
Page
Navigation
Buttons
on
the
Client
Customizing
the
Hierarchy
Bar

For
information
about
the
scroll
bars,
refer
to
Displaying
Scroll
Bars.
For
information
about
the
graphical
user
interface,
refer
to
Customizing
the
Graphical
Interface.

Customizing the Command Bar on the Component

The
command
bar
is
a
tool
bar
that
is
displayed
at
the
top
or
bottom
of
the
component.
This
bar
includes
the
sheet
name
tabs
(if
there
is
more
than
one
sheet)
and
the
command
buttons.
By
default,
page
navigation
aids
are
also
displayed
on
the
command
bar
but
can
be
repositioned
or
not
displayed
on
the
command
bar.

Spread for ASP.NET Developer’s Guide 115

Copyright © GrapeCity, Inc. All rights reserved.

https://ajaxcontroltoolkit.codeplex.com/wikipage?title=ToolkitScriptManager Removed in v15.1, Use ScriptManager

Customizations

The
customizations
are
made
possible
with
the
CommandBarInfo
('CommandBarInfo
Class'
in
the
on-line
documentation)
object.
You
can
do
the
following
customizations:

Customize
the
color
of
the
command
bar
Customize
the
font
style
of
the
text
in
the
sheet
name
tabs
and
buttons
Hide
the
command
bar
if
there
is
only
one
sheet
Set
the
position
of
the
command
bar
to
be
either
at
the
top
or
bottom
of
the
component

To
set
the
color
of
the
command
bar,
use
the
BackColor
('BackColor
Property'
in
the
on-line
documentation)
property.
To
change
the
font
of
the
text
that
appears
in
the
buttons,
use
the
Font
('Font
Property'
in
the
on-line
documentation)
property.

To
hide
the
command
bar
when
there
is
only
one
sheet
(and
thus
no
sheet
name
tabs
to
display),
use
the
Visible
('Visible
Property'
in
the
on-line
documentation)
property.

By
default,
the
command
bar
is
displayed
at
the
bottom
of
the
component.
You
can
display
it
at
the
top
by
setting
the
CommandBarOnBottom
('CommandBarOnBottom
Property'
in
the
on-line
documentation)
property
in
the
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
class.

Command
Bar
Position Example
Spread

On
Top

On
Bottom

Postbacks

Several,
but
not
all,
of
the
buttons
in
the
command
bar
trigger
a
postback
to
the
server.
These
include:

Spread for ASP.NET Developer’s Guide 116

Copyright © GrapeCity, Inc. All rights reserved.

Delete
button
(AJAX
postback)
Print
button
Pager
buttons
(AJAX
postback)
Sheet
buttons
(AJAX
postback)
Update
button
(AJAX
postback)

For
information
on
other
aspects
of
the
appearance
of
the
command
bar
buttons,
refer
to
Customizing
the
Command
Buttons.

Using
the
Properties
Window

1.
 Select
the
FpSpread
component.
2.
 With
the
Properties
window
open,
select
the
CommandBar
property
drop-down
list,
and
set
any
of
the

command
bar
properties.
In
order
to
set
the
BackColor
setting
for
the
command
bar,
set
the
Enable
property
to
False
in
the
Background
section.

Using
Code

Use
the
properties
of
the
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
class
to
define
the
position
of
the
command
bar
and
use
the
command
bar
properties
to
customize
the
look
of
the
command
bar.

Example

In
this
example,
set
the
command
bar
to
display
at
the
top
of
the
component
and
set
the
color
to
yellow.

C#
FpSpread1.CommandBarOnBottom = false;
FpSpread1.CommandBar.Background = null;
FpSpread1.CommandBar.BackColor = Color.Yellow;

VB
FpSpread1.CommandBarOnBottom = False
FpSpread1.CommandBar.Background = Nothing
FpSpread1.CommandBar.BackColor = Color.Yellow

Using
the
Spread
Designer

1.
 Select
the
Settings
menu.
2.
 Select
the
Command
Bar
icon
under
the
Spread
Settings
section
(the
property
grid
has
additional
settings

that
are
not
available
in
the
designer).
3.
 Select
the
various
options.
4.
 Click
Apply
and
OK.
5.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Customizing the Command Buttons

You
can
customize
how
(and
if)
the
command
buttons
are
shown
in
the
command
bar.
The
figure
below
shows
the
default
display
of
the
command
buttons
using
the
images
(or
icon)
type
of
display.

Spread for ASP.NET Developer’s Guide 117

Copyright © GrapeCity, Inc. All rights reserved.

The
various
settings
of
the
command
bar
are
handled
using
the
CommandBarInfo
('CommandBarInfo
Class'
in
the
on-line
documentation)
class.

You
can
display
the
command
buttons
as
images
(also
called
icons),
push
buttons
(with
text),
or
links
(with
text).
The
default
is
to
display
them
as
images.
This
is
the
type
of
buttons
displayed.
You
can
also
specify
themes
for
the
button
images.
You
can
change
the
appearance
of
the
text
of
the
command
buttons
(if
you
are
using
the
button
type)
using
the
Font
('Font
Property'
in
the
on-line
documentation)
property.
You
can
change
the
appearance
of
the
command
buttons
using
various
button
properties.
You
can
display
or
not
display
the
buttons
on
the
command
bar
using
the
Visible
('Visible
Property'
in
the
on-line
documentation)
property.
You
can
change
the
images
(as
described
in
Changing
the
Command
Button
Images)
You
can
hide
or
show
the
Save
Excel
button
on
the
CommandBar
to
quickly
export
your
spreadsheets
to
Excel
(using
the
ShowExcelButton
('ShowExcelButton
Property'
in
the
on-line
documentation)
property
in
the
CommandBarInfo
('CommandBarInfo
Class'
in
the
on-line
documentation)
class).

For
more
information,
please
refer
to
Working
with
the
SaveExcel
button
on
the
CommandBar
(on-line
documentation).

You
can
hide
or
show
a
PDF
button
for
printing
to
PDF
(using
the
ShowPDFButton
('ShowPDFButton
Property'
in
the
on-line
documentation)
property
in
the
CommandBarInfo
('CommandBarInfo
Class'
in
the
on-line
documentation)
class).

Which
command
buttons
appear
in
the
command
bar
change
if
you
set
the
EnableClientScript
('EnableClientScript
Property'
in
the
on-line
documentation)
property
to
false
for
the
component.
Fewer
buttons
are
displayed,
due
to
the
limitations
of
not
providing
scripting
on
the
client.

Command
Bar
Button
Types

The
type
of
buttons
displayed
in
the
command
bar
can
be
any
of
these
types:

Button
Type

Enumeration
Setting

Typical
Default
Display

Images
(or
icons)

ImageButton

Text
links LinkButton

Push-
buttons

PushButton

Refer
to
the
ButtonType
('ButtonType
Enumeration'
in
the
on-line
documentation)
enumeration
and
the

Spread for ASP.NET Developer’s Guide 118

Copyright © GrapeCity, Inc. All rights reserved.

ButtonType
('ButtonType
Property'
in
the
on-line
documentation)
property.
Note
that
the
buttons
appear
grayed
out
or
inactive
until
they
can
be
used.
The
figures
shown
above
show
all
the
buttons
active.
The
link
type
command
button
option
requires
that
the
client-side
scripting
be
disabled
(FpSpread
('FpSpread
Class'
in
the
on-
line
documentation)
class,
EnableClientScript
('EnableClientScript
Property'
in
the
on-line
documentation)
property
set
to
false).
Client-side
operations
such
as
cut,
copy,
and
paste
are
not
available
when
scripting
is
disabled
so
buttons
for
those
operations
do
not
appear
on
the
command
bar.

The
properties
that
affect
the
appearance
of
the
buttons
include
these:

CommandBarInfo
Property Appearance
Description
ButtonFaceColor
('ButtonFaceColor
Property'
in
the
on-line
documentation)

the
background
color
of
the
buttons

ButtonHighlightColor
('ButtonHighlightColor
Property'
in
the
on-line
documentation)

the
color
of
the
top
and
left
outline
of
the
buttons

ButtonShadowColor
('ButtonShadowColor
Property'
in
the
on-
line
documentation)

the
color
of
the
bottom
and
right
outline
of
the
buttons

Font
('Font
Property'
in
the
on-line
documentation) the
color
of
text
in
the
buttons

Remember
that
to
update
the
data
on
the
server,
changes
must
be
saved
from
the
client.
Changes
from
the
client
can
be
saved
either
by
using
the
SaveChanges
('SaveChanges
Method'
in
the
on-line
documentation)
method
in
code
or
by
having
the
user
click
the
Update
button
on
the
command
bar.

For
other
ways
to
customize
parts
of
the
command
bar,
refer
to
Customizing
the
Command
Bar
on
the
Component.

Using
the
Properties
Window

1.
 Select
the
FpSpread
component.
2.
 With
the
Properties
window
open,
select
the
CommandBar
property
drop-down
list,
and
set
any
of
the
button

properties.

Using
Code

Use
the
properties
of
the
CommandBarInfo
('CommandBarInfo
Class'
in
the
on-line
documentation)
class
to
define
the
appearance
of
the
buttons.

Example

In
this
example,
some
of
the
button
properties
of
the
command
bar
are
set.
The
result
is
shown
in
this
figure.

C#
FpSpread1.CommandBar.Background = null;
FpSpread1.CommandBar.BackColor = Color.Yellow;
FpSpread1.CommandBar.ButtonFaceColor = Color.YellowGreen;
FpSpread1.CommandBar.ButtonTextColor = Color.RoyalBlue;
FpSpread1.CommandBar.ButtonType = FarPoint.Web.Spread.ButtonType.PushButton;
FpSpread1.CommandBar.Font.Bold = true;
FpSpread1.CommandBar.Font.Name = "Comic Sans MS";
FpSpread1.CommandBar.Visible = true;

VB
FpSpread1.CommandBar.Background = Nothing

Spread for ASP.NET Developer’s Guide 119

Copyright © GrapeCity, Inc. All rights reserved.

FpSpread1.CommandBar.BackColor = Color.Yellow
FpSpread1.CommandBar.ButtonFaceColor = Color.YellowGreen
FpSpread1.CommandBar.ButtonTextColor = Color.RoyalBlue
FpSpread1.CommandBar.ButtonType = FarPoint.Web.Spread.ButtonType.PushButton
FpSpread1.CommandBar.Font.Bold = True
FpSpread1.CommandBar.Font.Name = "Comic Sans MS"
FpSpread1.CommandBar.Visible = True

Using
the
Spread
Designer

1.
 Select
Spread
in
the
Property
grid.
2.
 Select
the
CommandBar
property
drop-down
list,
and
set
any
of
the
button
properties.
3.
 Click
Apply
and
OK.
4.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Note:
While
you
set
any
of
the
button
properties
above,
make
sure
that
the
UseSheetSkin
('UseSheetSkin
Property'
in
the
on-line
documentation)
property
of
the
CommandBarInfo
Class
(on-line
documentation)
is
set
to
false.

Changing the Command Button Images

You
can
change
the
images
used
for
the
buttons
in
the
command
bar.
By
default,
the
command
buttons
are
displayed
as
images
(or
icons)
since
the
ButtonType
('ButtonType
Property'
in
the
on-line
documentation)
property
in
the
CommandBarInfo
('CommandBarInfo
Class'
in
the
on-line
documentation)
class
is
set
to
ImageButton
by
default.
You
can
change
the
images
by
providing
replacement
images
or
by
adding
your
own
buttons
in
code.
In
addition,
you
can
change
the
buttons
by
setting
the
Theme
('Theme
Property'
in
the
on-line
documentation)
property.

You
can
put
images
of
any
size
in
the
command
bar;
the
only
limit
to
the
size
is
the
size
of
the
command
bar.

You
can
change
the
existing
images
by
replacing
them
in
the
images
subdirectory
of
the
fp_client
folder.

For
information
on
other
aspects
of
the
appearance
of
the
command
bar
buttons,
refer
to
Customizing
the
Command
Buttons.

Using
Code

Use
the
properties
of
the
CommandBarInfo
('CommandBarInfo
Class'
in
the
on-line
documentation)
class
to
define
the
appearance
of
the
buttons.

Example

In
this
example,
the
default
images
are
changed
to
XP
theme
images.

C#
FpSpread1.Sheets[0].RowCount = 20;
FpSpread1.CommandBar.ButtonType = FarPoint.Web.Spread.ButtonType.ImageButton;
FpSpread1.CommandBar.Theme = FarPoint.Web.Spread.ImageButtonTheme.Xp;

VB
FpSpread1.Sheets(0).RowCount = 20
FpSpread1.CommandBar.ButtonType = FarPoint.Web.Spread.ButtonType.ImageButton
FpSpread1.CommandBar.Theme = FarPoint.Web.Spread.ImageButtonTheme.Xp

Spread for ASP.NET Developer’s Guide 120

Copyright © GrapeCity, Inc. All rights reserved.

Using
Code

Change
the
image
for
the
Print
button
using
the
CreateButton
('CreateButton
Event'
in
the
on-line
documentation)
event.

Example

In
this
example,
the
print
button
image
is
changed.

C#
private void FpSpread1_CreateButton(object sender,
FarPoint.Web.Spread.CreateButtonEventArgs e)
{
if (e.Command == "Print")
{
e.EnabledImgUrl = "happy.bmp";
}
}

VB
Protected Sub FpSpread1_CreateButton(ByVal sender As Object, ByVal e As
FarPoint.Web.Spread.CreateButtonEventArgs) Handles FpSpread1.CreateButton
If e.Command = "Print" Then
e.EnabledImgUrl = "happy.bmp"
End If
End Sub

Using
Code

1.
 You
can
also
create
your
own
buttons
with
code
as
displayed
by
the
above
image.
2.
 Override
the
Render
event.
3.
 Create
a
new
table
cell.
4.
 Create
a
button
control
and
set
the
button
properties.
5.
 Add
the
button
to
the
table
cell.

Example

In
this
example,
add
the
My
Button
button.

C#
protected override void Render(System.Web.UI.HtmlTextWriter writer)
{
Control updateBtn = FpSpread1.FindControl("Update");
if ((updateBtn != null))
{
TableCell tc = (TableCell)updateBtn.Parent;
TableRow tr = (TableRow)tc.Parent;
TableCell tc1 = new TableCell();
tr.Cells.Add(tc1);
Button btn = new Button();
btn.CausesValidation = false;

Spread for ASP.NET Developer’s Guide 121

Copyright © GrapeCity, Inc. All rights reserved.

btn.Text = "My Button";
btn.Attributes.Add("onclick", "javascript:" +
this.Page.GetPostBackEventReference(FpSpread1, "my command") + "; return false;");
tc1.Controls.Add(btn);
}
base.Render(writer);
}

VB
Protected Overrides Sub Render(ByVal writer As System.Web.UI.HtmlTextWriter)
 Dim updateBtn As Control = FpSpread1.FindControl("Update")
 If Not updateBtn Is Nothing Then

 Dim tc As TableCell = updateBtn.Parent
 Dim tr As TableRow = tc.Parent

 Dim tc1 As New TableCell()
 tr.Cells.Add(tc1)

 Dim btn As New Button()
 btn.CausesValidation = False
 btn.Text = "My Button"
 btn.Attributes.Add("onclick", "javascript:" +
Me.Page.GetPostBackEventReference(FpSpread1, "my command") + "; return false;")
 tc1.Controls.Add(btn)
 End If

 MyBase.Render(writer)
End Sub

You
can
process
the
button
command
by
adding
an
event
handler
to
the
ButtonCommand
('ButtonCommand
Event'
in
the
on-line
documentation)
event.

C#
private void FpSpread1ButtonCommand(object sender,
FarPoint.Web.Spread.SpreadCommandEventArgs e)
{
}

VB
Private Sub FpSpread1_ButtonCommand(ByVal sender As Object, ByVal e As
 FarPoint.Web.Spread.SpreadCommandEventArgs) HandlesFpSpread1.ButtonCommand
End Sub

Hiding a Specific Command Button

You
can
customize
the
display
of
the
command
buttons
in
the
command
bar
by
hiding
any
or
all
of
the
command
buttons.

To
hide
a
command
button,
set
the
Visible
('Visible
Property'
in
the
on-line
documentation)
property
to
false
in
the
event
that
creates
the
button.

Using
Code

Spread for ASP.NET Developer’s Guide 122

Copyright © GrapeCity, Inc. All rights reserved.

Use
the
CreateButton
('CreateButton
Event'
in
the
on-line
documentation)
event
to
hide
certain
buttons.

Example

This
example
uses
code
to
hide
the
print
icon
by
adding
the
Visible
('Visible
Property'
in
the
on-line
documentation)
property
to
the
CreateButton
('CreateButton
Event'
in
the
on-line
documentation)
event.
The
result
is
shown
in
this
figure.

C#
private void FpSpread1_CreateButton(object sender,
FarPoint.Web.Spread.CreateButtonEventArgs e)
{
 if (e.Command == "Print")
 {
 e.Visible = false;
 }
}

VB
Private Sub FpSpread1CreateButton(ByVal sender As Object, ByVal e As
FarPoint.Web.Spread.CreateButtonEventArgs) Handles FpSpread1.CreateButton
If e.Command = "Print" Then
e.Visible = False
End If
End Sub

Displaying the Sheet Names

You
can
customize
how
and
if
to
display
the
sheet
names
in
the
bar
at
the
bottom
of
the
component.
Since
a
component
may
have
more
than
one
sheet,
the
tabs
(or
buttons)
in
the
command
bar
contain
the
sheet
names
and
provide
a
way
to
navigate
to
different
sheets.
These
are
called
sheet
name
tabs.
The
default
sheet
names
are
Sheet0,
Sheet1,
etc.
You
can
specify
other
names
for
the
sheets
and
these
appear
in
the
sheet
name
tabs.
By
default,
the
component
has
only
one
sheet
and
so
no
sheet
name
tabs
are
displayed.
When
you
add
a
sheet,
as
described
in
Adding
a
Sheet,
the
sheet
name
tabs
are
added
to
the
command
bar
for
display.

You
can
set
how
many
sheet
name
tabs
are
displayed.
If
the
number
of
tabs
exceeds
the
value
specified,
an
ellipses
is
displayed.
Click
the
ellipses
to
display
the
next
(or
previous)
set
of
sheet
names.
You
can
also
set
the
increment
for
advancing
the
sheet
names.
Be
sure
not
to
set
the
increment
bigger
than
the
number
displayed
if
you
want
to
be
able
to
see
all
the
sheet
name
tabs.
You
can
set
which
sheet
number
displays
first.
These
are
all
properties
of
the
TabInfo
('TabInfo
Class'
in
the
on-line
documentation)
class.

Note:
The
sheet
changes
when
you
click
a
different
sheet
name
tab
or
when
you
click
on
the
ellipses.
When
you
click
on
the
ellipses,
the
lowest
number
sheet
in
the
set
of
sheet
names
is
displayed.

Spread for ASP.NET Developer’s Guide 123

Copyright © GrapeCity, Inc. All rights reserved.

Using
Code

1.
 To
define
when
the
sheet
name
tabs
are
displayed,
use
the
TabControlPolicy
('TabControlPolicy
Property'
in
the
on-line
documentation)
property
of
the
TabInfo
('TabInfo
Class'
in
the
on-line
documentation)
class
and
the
settings
of
the
TabControlPolicy
('TabControlPolicy
Enumeration'
in
the
on-line
documentation)
enumeration.

2.
 Determine
the
various
settings
using
the
Tab
('Tab
Property'
in
the
on-line
documentation)
property
of
the
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
component.
Determine
how
many
sheet
name
tabs
to
display
using
the
VisibleCount
('VisibleCount
Property'
in
the
on-line
documentation)
property,
how
many
to
increment
with
the
ScrollIncrement
('ScrollIncrement
Property'
in
the
on-line
documentation)
property,
and
which
is
the
first
visible
sheet
name
with
the
FirstVisibleTab
('FirstVisibleTab
Property'
in
the
on-line
documentation)
property
of
the
TabInfo
('TabInfo
Class'
in
the
on-line
documentation)
class.

3.
 Determine
the
appearance
of
the
sheet
name
tabs,
such
as
the
background
color,
the
text
color,
and
the
text
of
the
sheet
name
using
the
properties
of
the
TabInfo
('TabInfo
Class'
in
the
on-line
documentation)
class
for
the
Tab
('Tab
Property'
in
the
on-line
documentation)
property
of
the
component.

Example

In
this
example,
set
the
sheet
name
tabs
to
always
appear
below
the
sheet
at
the
bottom
of
the
component
and
show
only
two
sheet
names
(two
tabs)
and
set
the
background
color
of
the
active
tab
to
green.

C#
FpSpread1.Sheets.Count = 3;
FpSpread1.Tab.TabControlPolicy = FarPoint.Web.Spread.TabControlPolicy.Always;
FpSpread1.Tab.VisibleCount = 2;
FpSpread1.Tab.ScrollIncrement = 2;
FpSpread1.Tab.FirstVisibleTab = 1;
FpSpread1.Tab.TextColor = Color.Yellow;
FpSpread1.Tab.ActiveTabBackColor = Color.Green;
FpSpread1.Tab[0] = "First";
FpSpread1.Tab[1] = "Second";
FpSpread1.Tab[2] = "Third";

VB
FpSpread1.Tab.TabControlPolicy = FarPoint.Web.Spread.TabControlPolicy.Always
FpSpread1.Sheets.Count = 3
FpSpread1.Tab.VisibleCount = 2
FpSpread1.Tab.ScrollIncrement = 2
FpSpread1.Tab.FirstVisibleTab = 1
FpSpread1.Tab.ActiveTabBackColor = Color.Green
FpSpread1.Tab.TextColor = Color.Yellow
FpSpread1.Tab(0) = "First"
FpSpread1.Tab(1) = "Second"
FpSpread1.Tab(2) = "Third"

Spread for ASP.NET Developer’s Guide 124

Copyright © GrapeCity, Inc. All rights reserved.

Using
the
Spread
Designer

1.
 Select
the
Settings
menu.
2.
 Select
the
General
icon
under
the
Spread
Settings
section.
3.
 Select
Tab
and
specify
the
policy
settings.
4.
 Click
OK.
5.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Customizing Page Navigation

A
page
is
the
amount
of
data
in
a
sheet
that
can
be
displayed
at
one
time.
This
is
not
the
same
as
an
HTML
page.
When
the
sheet
contains
more
rows
than
can
be
displayed
in
the
component,
Spread
automatically
creates
pages
that
group
the
rows
and
allows
you
to
navigate
between
the
pages
of
the
sheet.
For
sheets
that
have
more
rows
than
fit
in
the
display
area,
the
sheet
has
multiple
pages.
For
example,
for
a
sheet
that
has
50
rows,
you
may
want
to
display
only
10
rows
at
a
time,
so
each
page
would
be
a
set
of
10
rows.

You
can
advance
through
these
pages
using
the
page
navigation
buttons
that
are
available
at
the
edge
of
the
component.
These
include
next
(right
arrow)
and
previous
(left
arrow)
buttons
as
well
as
page
numbers.
You
can
determine
which
of
these
buttons
are
displayed
by
the
component
and
where
on
the
component
they
are
displayed.
Customizing
these
page
navigation
aids
is
done
with
the
properties
of
the
PagerInfo
('PagerInfo
Class'
in
the
on-line
documentation)
class
and
the
Pager
('Pager
Property'
in
the
on-line
documentation)
property
of
the
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
class.

You
can
customize
the
page
navigation
in
the
following
ways:

Appearance
(mode)
of
the
navigation
aids
Type
of
buttons
(image,
link,
or
push)
and
image
button
themes
Position
of
the
navigation
aids
on
the
component;
in
which
tool
bars
they
appear
Count
of
how
many
page
numbers
are
displayed
as
part
of
the
navigation
aids
Alignment
of
the
navigation
aids
on
the
top
or
bottom
bars
Color
of
the
background
and
color
of
the
text
in
the
bars
with
the
navigation
aids
Font
of
the
navigation
aids
in
the
bars
Labels
(text)
of
the
navigation
aids
in
the
command
bar

Mode:
You
can
display
either
next
(>>)
and
previous
(<<)
arrows,
page
numbers,
or
both
as
page
navigation
aids.
Clicking
on
the
next
and
previous
arrows
has
the
same
effect
as
clicking
on
the
corresponding
page
number:
advancing
through
the
pages
to
see
the
set
of
rows
for
that
page.

Position:
You
can
display
these
page
navigation
aids
at
the
top
of
the
sheet,
the
bottom
of
the
sheet,
on
the
command
bar,
or
some
combination
of
these.
The
page
numbers
do
not
appear
in
the
command
bar,
only
the
next
and
previous
arrows.

This
figure
illustrates
the
various
optional
placements
of
page
navigation
buttons
with
the
default
font
and
alignment:

Spread for ASP.NET Developer’s Guide 125

Copyright © GrapeCity, Inc. All rights reserved.

Note
that
you
cannot
display
the
page
navigation
in
all
these
positions
at
once,
but
you
can
display
them
at
the
top
and
bottom
or
top
and
command
bar
at
the
same
time.
The
illustration
serves
to
show
the
possible
placements
in
one
diagram.

Numbers:
For
sheets
that
consist
of
many
pages,
you
can
set
how
many
page
numbers
are
displayed.
If
the
number
of
pages
for
a
sheet
exceeds
the
value
specified
by
the
PageCount
property,
an
ellipses
(...)
is
displayed.
The
user
clicks
the
ellipses
to
display
the
next
(or
previous)
set
of
page
numbers.

Alignment:
You
can
set
the
alignment
of
the
navigation
aids
when
they
appear
in
the
top
or
bottom
bar
or
both.
When
right
aligned,
for
example,
the
navigation
aids
appear
on
the
right
side
of
the
bar(s).
This
does
not
affect
the
display
in
the
command
bar.

Colors:
You
can
set
both
the
background
color
of
the
page
navigation
aids
and
the
text
color
(foreground
color)
for
display
in
the
top
or
bottom
bar
or
both.
This
does
not
affect
the
display
in
the
command
bar.

Font:
You
can
set
the
font,
when
the
navigation
aids
are
displayed
in
the
top
or
bottom
bar
or
both.
This
does
not
affect
the
display
in
the
command
bar.

Labels:
You
can
customize
the
labels
of
these
buttons
on
the
client
using
the
CreateButton
event.
For
more
information,
refer
to
Customizing
Page
Navigation
Buttons
on
the
Client.

For
more
information
on
setting
the
size
of
the
page,
refer
to
Customizing
the
Page
Size
(Rows
to
Display).

Using
the
Properties
Window

1.
 Select
the
FpSpread
component.
2.
 Select
the
Pager
object
and
set
properties
as
needed.
3.
 Select
the
Sheets
collection
and
set
properties
such
as
PageSize
and
RowCount.

Using
Code

1.
 Use
the
PagerInfo
('PagerInfo
Class'
in
the
on-line
documentation)
class
to
set
the
properties
of
the
Pager
('Pager
Property'
in
the
on-line
documentation)
property
for
the
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
component.

2.
 Specify
what
part
of
the
page
navigation
to
display
by
setting
the
Mode
('Mode
Property'
in
the
on-line
documentation)
property
of
the
PagerInfo
('PagerInfo
Class'
in
the
on-line
documentation)
class
with
the
settings
of
the
PagerMode
('PagerMode
Enumeration'
in
the
on-line
documentation)
enumeration.

3.
 Specify
where
to
display
the
page
navigation
aids
by
setting
the
Position
('Position
Property'
in
the
on-line
documentation)
property
with
the
settings
of
the
PagerPosition
('PagerPosition
Enumeration'
in
the
on-line
documentation)
enumeration
and
how
many
page
numbers
to
display
by
setting
the
PageCount
('PageCount
Property'
in
the
on-line
documentation)
property.

4.
 Specify
the
appearance
of
the
page
navigation
aids
by
setting
the
font
and
color.

Spread for ASP.NET Developer’s Guide 126

Copyright © GrapeCity, Inc. All rights reserved.

Example

In
this
example,
set
the
page
navigation
buttons
to
appear
at
the
top
of
the
component
on
a
separate
tool
bar
above
the
sheet
(and
not
on
the
tool
bars
below
the
sheet).
Display
both
the
page
numbers
and
the
page
arrows
with
the
specified
font
and
colors
and
display
them
on
the
right
side
of
that
top
bar,
as
shown
in
the
figure.

C#
// Set the number of sheets.
FpSpread1.Sheets.Count = 5;
// Set the number of rows on the first sheet
FpSpread1.Sheets[0].RowCount = 136;// Set the number of rows per page in this sheet.
FpSpread1.Sheets[0].PageSize = 13;

// Display the pager only at the top of the component.
FpSpread1.Pager.Position = FarPoint.Web.Spread.PagerPosition.Top;
// Display both numbers and arrows by setting mode.
// Set the mode after the position, otherwise an error.
FpSpread1.Pager.Mode = FarPoint.Web.Spread.PagerMode.Both;
// Format the text in the pager at the top.
FpSpread1.Pager.Align = HorizontalAlign.Right;
FpSpread1.Pager.Font.Bold = true;
FpSpread1.Pager.Font.Name = "Trebuchet MS";
FpSpread1.Pager.ForeColor = Color.Brown;
FpSpread1.Pager.BackColor = Color.Orange;
// Display at most four page numbers at a time.
FpSpread1.Pager.PageCount = 4;

VB
' Set the number of sheets.
FpSpread1.Sheets.Count = 5
' Set the number of rows on the first sheet.
FpSpread1.Sheets(0).RowCount = 136' Set the number of rows per page in this sheet.
FpSpread1.Sheets(0).PageSize = 13

' Display the pager only at the top of the component.
FpSpread1.Pager.Position = FarPoint.Web.Spread.PagerPosition.Top
' Display both numbers and arrows by setting mode.
' Set the mode after the position, otherwise an error.
FpSpread1.Pager.Mode = FarPoint.Web.Spread.PagerMode.Both
' Format the text in the pager at the top.
FpSpread1.Pager.Align = HorizontalAlign.Right
FpSpread1.Pager.Font.Bold = True
FpSpread1.Pager.Font.Name = "Trebuchet MS"
FpSpread1.Pager.ForeColor = Color.Brown

Spread for ASP.NET Developer’s Guide 127

Copyright © GrapeCity, Inc. All rights reserved.

FpSpread1.Pager.BackColor = Color.Orange
' Display at most four page numbers at a time.
FpSpread1.Pager.PageCount = 4

Using
the
Spread
Designer

1.
 Select
the
Settings
menu.
2.
 Select
the
Paging
icon
under
the
Spread
Settings
section.
3.
 Select
the
various
options.
4.
 Click
Apply
and
OK.
5.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Customizing Page Navigation Buttons on the Client

If
the
command
bar
is
displayed,
you
can
customize
the
labels
of
the
page
navigation
buttons,
as
well
as
other
aspects
of
the
button
appearance
by
using
the
CreateButton
('CreateButton
Event'
in
the
on-line
documentation)
event.
Refer
to
the
CreateButtonEventArgs
('CreateButtonEventArgs
Class'
in
the
on-line
documentation)
class
members
for
more
details.

If
the
command
bar
is
not
displayed,
there
are
no
buttons
being
created
so
you
cannot
use
the
CreateButton
('CreateButton
Event'
in
the
on-line
documentation)
event.
But
you
can
still
customize
the
appearance
using
client
code
to
achieve
the
same
results.
On
the
client
side,
the
page
navigation
links
are
drawn
in
a
table
cell
on
the
resulting
HTML
page.
You
can
get
access
to
that
table
cell
and
draw
your
own
label
instead.

Using
Code

Here
is
the
client
code
to
display
a
version
of
the
links
to
the
next
and
previous
pages
by
manipulating
the
table
cells
and
creating
buttons
for
these.

Client
Code
function window.onload()
 {
 var pager=document.all("FpSpread1_Pager1");
 for(var i=0;i<pager.childNodes.length;i++) {
 switch (pager.childNodes(i).nodeType) {
 case 1:
 switch (pager.childNodes(i).innerText) {
 case "<<":
 pager.childNodes(i).innerText = "<<Prev ";
 break;
 case ">>":
 pager.childNodes(i).innerText = " Next>>";
 break;
 }
 case 3:
 switch (pager.childNodes(i).data) {
 case "<<":
 pager.childNodes(i).data = "<< Prev";
 break;
 case ">>":
 pager.childNodes(i).data = " Next >>";
 break;
 }
 }

Spread for ASP.NET Developer’s Guide 128

Copyright © GrapeCity, Inc. All rights reserved.

 }
}

Customizing the Hierarchy Bar

When
you
nest
an
entire
sheet
in
a
cell,
you
have
a
hierarchy.
As
an
alternative
to
displaying
the
entire
hierarchy
of
sheets,
you
can
display
only
one
sheet
at
a
time
with
its
hierarchy
information
displayed
in
the
tool
bars
above
the
sheet.
This
hierarchy
information
displays
the
names
of
the
different
sheet
levels
(the
whole
path)
on
one
line
and
lets
you
click
on
any
of
those
levels,
and
it
displays
the
information
about
the
parent
row
(the
row
above
the
displayed
sheet)
on
another
line.
You
can
decide
whether
to
display
one
or
both
of
these
with
the
HierBar
('HierBar
Property'
in
the
on-line
documentation)
property.

You
can
customize
how
the
hierarchy
information
is
displayed
for
cells
that
have
sheets
within
them.
You
can
display
the
parent
row
information,
the
whole
path
information,
or
both.

For
more
information
on
the
hierarchical
display
of
data,
typically
with
a
component
bound
to
a
data
set,
refer
to
Displaying
Data
as
a
Hierarchy.

For
more
information
on
Outlook-style
grouping
for
hierarchical
display
of
data,
refer
to
Customizing
Grouping
of
Rows
of
User
Data.

For
information
about
how
to
customize
the
expand
and
collapse
icons,
refer
to
the
Customizing
the
Graphical
Interface.

Using
Code

1.
 Bind
the
Spread
control
to
a
hierarchical
dataset
(refer
to
the
HierBar
('HierBar
Property'
in
the
on-line
documentation)
property
to
see
an
example
of
how
to
bind
the
control
to
a
hierarchical
dataset).

2.
 Add
code
that
sets
the
specific
property
for
the
hierarchy
bar
using
either
the
HierBarInfo
('HierBarInfo
Class'
in
the
on-line
documentation)
class
or
the
HierBar
('HierBar
Property'
in
the
on-line
documentation)
property
of
the
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
component.

Spread for ASP.NET Developer’s Guide 129

Copyright © GrapeCity, Inc. All rights reserved.

Example

In
this
example,
turn
on
the
hierarchy
bar
and
display
it
above
the
sheet
(and
thereby
not
display
the
entire
hierarchy
of
sheets)
and
show
both
pieces
of
information:
the
parent
row
information
and
the
whole
path
to
this
child
sheet.

C#
FpSpread1.HierarchicalView = false;
FpSpread1.HierBar.ShowParentRow = true;
FpSpread1.HierBar.ShowWholePath = true;

VB
FpSpread1.HierarchicalView = False
FpSpread1.HierBar.ShowParentRow = True
FpSpread1.HierBar.ShowWholePath = True

Customizing Interaction with Rows and Columns

You
can
customize
these
aspects
of
user
interaction
with
rows
and
columns:

Allowing
the
User
to
Move
Columns
Allowing
the
User
to
Move
Rows
(on-line
documentation)
Allowing
the
User
to
Resize
Rows
or
Columns
Freezing
Rows
and
Columns
Setting
up
Row
Edit
Templates
Setting
up
Preview
Rows

For
more
information
related
to
rows
and
columns,
refer
to
these
topics:

Customizing
Simple
Filtering
of
Rows
of
User
Data
Customizing
Grouping
of
Rows
of
User
Data
Customizing
Sorting
of
Rows
of
User
Data

For
more
information
related
to
ranges
of
cells,
refer
to
these
topics:

Customizing
Selections
of
Cells
Customizing
the
Appearance
of
a
Cell
Customizing
with
Cell
Types

Allowing the User to Move Columns

You
can
allow
the
user
to
drag
and
move
columns.
Set
the
AllowColumnMove
('AllowColumnMove
Property'
in
the
on-line
documentation)
property
in
the
SheetView
('SheetView
Class'
in
the
on-line
documentation)
class
to
allow
the
user
to
move
columns.

For
the
user
to
move
columns,
they
simply
left
click
on
the
header
of
the
column
to
move
and
drag
the
header
back
or
forth
over
the
header
area
and
release
the
mouse
over
the
header
of
the
desired
destination.

Moving
columns
is
not
supported
in
child
sheets
in
hierarchical
displays.

Using
the
Properties
Window

1.
 At
design
time,
in
the
Properties
window,
select
the
FpSpread
component.
2.
 Select
the
Sheets
property.
3.
 Click
the
button
to
display
the
SheetView
Collection
Editor.

Spread for ASP.NET Developer’s Guide 130

Copyright © GrapeCity, Inc. All rights reserved.

4.
 In
the
Behavior
section,
set
the
AllowColumnMove
property.
5.
 Click
OK
to
close
the
SheetView
Collection
Editor.

Using
a
Shortcut

Set
the
AllowColumnMove
('AllowColumnMove
Property'
in
the
on-line
documentation)
property.

Example

This
example
code
sets
the
AllowColumnMove
('AllowColumnMove
Property'
in
the
on-line
documentation)
property.

C#
FpSpread1.ActiveSheetView.AllowColumnMove = true;

VB
FpSpread1.ActiveSheetView.AllowColumnMove = True

Allowing the User to Resize Rows or Columns

You
can
allow
the
user
to
readjust
the
size
of
a
row
or
column
in
the
sheet.
Set
the
Resizable
('Resizable
Property'
in
the
on-line
documentation)
property
for
the
row
to
allow
the
user
to
resize
rows
and
the
Resizable
('Resizable
Property'
in
the
on-line
documentation)
property
for
the
column
to
allow
the
user
to
resize
columns.

For
users
to
resize
rows
or
columns,
they
simply
left
click
on
the
edge
of
the
header
of
the
row
or
column
to
resize
and
drag
the
side
of
the
header
and
release
the
mouse
at
the
desired
size.
While
the
left
mouse
button
is
down,
a
bar
is
displayed
along
with
the
resize
pointer
as
shown
in
the
figure
below.
Be
sure
to
click
on
the
right
edge
of
the
column
and
bottom
edge
of
the
row.

By
default,
user
resizing
of
rows
or
columns
is
allowed
for
rows
and
columns
in
the
data
area
and
not
allowed
for
the
header
area.
In
code,
you
can
resize
row
and
column
headers,
not
just
data
area
rows
and
columns.
You
can
override
the
default
behavior
using
the
Resizable
property
and
prevent
the
user
from
resizing.

You
can
determine
if
a
row
or
column
can
be
resized
by
the
user
with
these
methods
in
the
SheetView
('SheetView
Class'
in
the
on-line
documentation)
class:

GetColumnSizeable
('GetColumnSizeable
Method'
in
the
on-line
documentation)
SetColumnSizeable
('SetColumnSizeable
Method'
in
the
on-line
documentation)
GetRowSizeable
('GetRowSizeable
Method'
in
the
on-line
documentation)
SetRowSizeable
('SetRowSizeable
Method'
in
the
on-line
documentation)

Using
Code

Set
the
Resizable
('Resizable
Property'
in
the
on-line
documentation)
property.

Example

This
example
code
sets
the
Resizable
('Resizable
Property'
in
the
on-line
documentation)
property.

C#

Spread for ASP.NET Developer’s Guide 131

Copyright © GrapeCity, Inc. All rights reserved.

FpSpread1.Sheets[0].Columns[0].Resizable = true;
FpSpread1.Sheets[0].Rows[0].Resizable = true;
FpSpread1.Sheets[0].Columns[1].Resizable = false;
FpSpread1.Sheets[0].Rows[1].Resizable = false;

VB
FpSpread1.Sheets(0).Columns(0).Resizable = True
FpSpread1.Sheets(0).Rows(0).Resizable = True
FpSpread1.Sheets(0).Columns(1).Resizable = False
FpSpread1.Sheets(0).Rows(1).Resizable = False

Using
the
Spread
Designer

1.
 Select
a
column
or
row.
2.
 Set
the
Resizable
property
in
the
Property
Grid.
3.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Freezing Rows and Columns

Frozen
rows
and
frozen
columns
do
not
scroll
when
the
user
uses
the
scroll
bar
or
navigation
keys
in
the
component.
This
is
useful
if
you
need
information
in
non-header
rows
or
columns
to
stay
visible
regardless
of
where
in
the
sheet
the
user
navigates.
Frozen
rows
and
frozen
columns
are
supported
with
Microsoft
Internet
Explorer
(IE)
and
Mozilla
Firefox
when
the
FpSpread
EnableClientScript
('EnableClientScript
Property'
in
the
on-line
documentation)
property
is
true.

Using
the
Properties
Window

1.
 At
design
time,
in
the
Properties
window,
select
the
FpSpread
component.
2.
 Select
the
Sheets
property.
3.
 Click
the
button
to
display
the
SheetView
Collection
Editor.
4.
 In
the
Appearance
section,
set
the
number
of
frozen
rows
or
columns
using
FrozenRowCount
or
FrozenColumnCount.

5.
 Click
OK
to
close
the
SheetView
Collection
Editor.

Using
a
Shortcut

Set
the
FrozenColumnCount
('FrozenColumnCount
Property'
in
the
on-line
documentation)
or
FrozenRowCount
('FrozenRowCount
Property'
in
the
on-line
documentation)
property
in
the
sheet
of
the
component.

Example

This
example
code
sets
FrozenColumnCount
('FrozenColumnCount
Property'
in
the
on-line
documentation)
and
FrozenRowCount
('FrozenRowCount
Property'
in
the
on-line
documentation).

C#
FpSpread1.Sheets[0].FrozenColumnCount = 2;
FpSpread1.Sheets[0].FrozenRowCount = 1;

VB
FpSpread1.Sheets(0).FrozenColumnCount = 2

Spread for ASP.NET Developer’s Guide 132

Copyright © GrapeCity, Inc. All rights reserved.

FpSpread1.Sheets(0).FrozenRowCount = 1

Using
the
Spread
Designer

1.
 Select
Sheet
from
the
drop-down
combo
box
to
the
right
of
the
designer.
2.
 In
the
Appearance
section,
set
the
number
for
FrozenColumnCount
or
FrozenRowCount.
3.
 From
the
File
menu
choose
Apply
and
Exit
to
apply
your
changes
to
the
component
and
exit
Spread
Designer.

Setting up Row Edit Templates

You
can
allow
a
row
edit
template
to
be
displayed
so
the
user
can
edit
the
contents
of
an
entire
row
using
a
specified
template
or
form.
In
the
example
shown
here,
the
entire
row
of
data
is
presented
to
the
user
as
a
vertical
form
with
an
Update
and
Cancel
button
at
the
bottom
of
the
form.

The
API
members
that
are
involved
with
this
feature
include:

FpSpread.RowEditTemplate
('RowEditTemplate
Property'
in
the
on-line
documentation)
property
SheetView.RowEditTemplate
('RowEditTemplate
Property'
in
the
on-line
documentation)
property
RowEditTemplateContainer
('RowEditTemplateContainer
Class'
in
the
on-line
documentation)
class
and
its
members

In
most
cases,
you
can
use
RowEditTemplateContainer
('RowEditTemplateContainer
Class'
in
the
on-line
documentation)
for
the
template
control.
But
the
editing
template
can
contain
other
kinds
of
controls.
In
these
cases,
you
must
develop
code
to
update
the
data
of
these
controls.

When
users
double
click
a
row,
the
row
edit
template
appears.
Then
users
can
edit
the
data
of
the
row,
and
press
the
Update
link
button
to
commit
changes
or
press
the
Cancel
link
button
to
discard
the
changes.

The
row
edit
template
supports
XML
serialization
so
custom
editing
template
can
be
saved
and
loaded
along
with
Spread.

You
can
create
the
row
edit
template
at
design
time
or
run
time.

Spread for ASP.NET Developer’s Guide 133

Copyright © GrapeCity, Inc. All rights reserved.

Using
Code

Set
the
EnableRowEditTemplate
('EnableRowEditTemplate
Property'
in
the
on-line
documentation),
EnableClientScript
('EnableClientScript
Property'
in
the
on-line
documentation),
and
OperationMode
('OperationMode
Property'
in
the
on-line
documentation)
properties.

Example

This
example
code
sets
the
EnableRowEditTemplate
('EnableRowEditTemplate
Property'
in
the
on-line
documentation)
property.

C#
FpSpread1.ActiveSheetView.EnableRowEditTemplate = true;
FpSpread1.EnableClientScript = true;
FpSpread1.ActiveSheetView.OperationMode = FarPoint.Web.Spread.OperationMode.RowMode;

VB
FpSpread1.ActiveSheetView.EnableRowEditTemplate = True
FpSpread1.EnableClientScript = True
FpSpread1.ActiveSheetView.OperationMode = FarPoint.Web.Spread.OperationMode.RowMode

Using
Design
Settings

1.
 Select
Edit
Templates
from
the
Spread
smart
tag.
2.
 Select
Editing
Template
from
the
drop-down.
3.
 Drag
the
FpSpreadTemplateReplacement
control
from
the
Visual
Studio
toolbox
to
the
edit
template
area.
4.
 Select
a
task
(such
as
CellType)
and
specify
the
column
index.
5.
 Add
code
to
set
EnableRowEditTemplate
to
true
and
OperationMode
to
row
mode
(see
above
code).
6.
 Run
the
project
and
double-click
a
cell
in
column
0
to
edit
it.

Setting up Preview Rows

You
can
display
a
preview
row
to
provide
more
information
about
a
record.
The
preview
row
is
displayed
below
the
row
it
provides
information
for.
You
can
specify
colors
and
other
formatting
for
the
preview
row
as
well.
The
gray
rows
in
the
following
picture
are
preview
rows.

Use
the
Edit
Template
verb
at
design
time
to
create
a
preview
template.

Set
the
PreviewRowVisible
('PreviewRowVisible
Property'
in
the
on-line
documentation)
property
to
true

Spread for ASP.NET Developer’s Guide 134

Copyright © GrapeCity, Inc. All rights reserved.

in
order
to
see
the
preview
row.
Use
the
PreviewRowColumnIndex
('PreviewRowColumnIndex
Property'
in
the
on-line
documentation)
property
to
specify
which
column’s
text
you
wish
to
see
in
the
preview
row.
You
can
use
the
PreviewRowStyle
('PreviewRowStyle
Property'
in
the
on-line
documentation)
property
to
provide
additional
formatting
using
a
style
element.
Or
you
can
set
various
properties
for
the
PreviewRowStyle
('PreviewRowStyle
Property'
in
the
on-line
documentation)
such
as
BackColor,
Border,
Font,
and
so
on.

The
API
members
involved
in
this
feature
include:

PreviewRowInfo
('PreviewRowInfo
Class'
in
the
on-line
documentation)
class
PreviewRowTemplateContainer
('PreviewRowTemplateContainer
Class'
in
the
on-line
documentation)
class
SheetView.PreviewRowColumnIndex
('PreviewRowColumnIndex
Property'
in
the
on-line
documentation)
property
SheetView.PreviewRowStyle
('PreviewRowStyle
Property'
in
the
on-line
documentation)
property
SheetView.PreviewRowTemplate
('PreviewRowTemplate
Property'
in
the
on-line
documentation)
property
SheetView.PreviewRowVisible
('PreviewRowVisible
Property'
in
the
on-line
documentation)
property

Using
Design
Settings

1.
 Click
on
Edit
Templates
from
the
Spread
smart
tag.
2.
 Select
Preview
Row
Template
from
the
drop-down.
3.
 Drag
the
a
control
from
the
Visual
Studio
toolbox
to
the
edit
template
area
or
use
a
default
template.
4.
 Set
colors
or
other
properties.
5.
 Select
End
Template
Editing
when
you
are
done
editing
the
template.

Managing Filtering of Rows of User Data

You
can
create
filters
for
data.
The
basic
steps
are
to
create
a
filter
and
then
assign
the
filter
to
a
column.
You
can
specify
certain
details
for
the
filter
such
as
creating
a
background
color
for
filtered
and
non-filtered
rows
with
a
style
filter
or
creating
a
hide
row
filter
that
hides
the
rows.

Spread
provides
several
types
of
filtering,
simple
and
enhanced.
The
simple
filtering
is
the
style
of
filtering
provided
in
this
and
previous
releases
of
Spread.
The
enhanced
filtering
is
similar
to
Excel's
filter
feature.
Spread
also
provides
a
filter
bar
that
uses
the
enhanced
filtering
options.

Each
type
of
filtering
provides
a
way
for
users
to
change
data's
appearance
or
temporarily
hide
data
based
on
conditions
that
they
specify,
as
shown
in
the
following
figures.
This
figure
illustrates
the
simple
filter.

The
following
figure
illustrates
the
enhanced
filter.

Spread for ASP.NET Developer’s Guide 135

Copyright © GrapeCity, Inc. All rights reserved.

The
filter
bar
provides
a
text
box,
a
list
of
enhanced
filter
choices,
and
a
filter
icon.
This
figure
illustrates
a
filter
bar.

You
can
customize
many
features
for
each
type
of
filtering,
as
well
as
the
display
of
filtered
rows,
as
described
in
the
following
sections.

Creating
Filtered
Rows
and
Setting
the
Appearance
Customizing
Simple
Filtering
of
Rows
of
User
Data
Using
Enhanced
Filtering
Using
the
Filter
Bar

Spread for ASP.NET Developer’s Guide 136

Copyright © GrapeCity, Inc. All rights reserved.

Creating Filtered Rows and Setting the Appearance

You
can
customize
the
appearance
of
filtered
rows
to
allow
you
to
see
which
rows
are
filtered
in
and
which
ones
are
filtered
out.
Rows
that
meet
the
criteria
for
the
row
filter
are
said
to
be
"filtered
in";
rows
that
do
not
meet
the
criteria
are
said
to
be
"filtered
out."
Filtering
may
either
hide
the
rows
that
are
filtered
out,
or
change
the
styles
such
as
the
background
color
for
both
filtered-in
and
filtered-out
rows.
If
you
want
the
styles
to
change,
so
that
you
can
continue
to
display
all
the
data
but
highlight
rows
that
match
some
criteria,
then
you
must
define
a
filtered-in
style
and
a
filtered-out
style.

Hidden
rows
are
not
displayed
even
if
they
match
the
filter
criteria.

A
row
filter
uses
a
style
row
filter
or
a
hide
row
filter.
The
style
row
filter
changes
the
appearance
of
the
filtered
row.
The
hide
row
filter
hides
the
rows
that
do
not
meet
the
filter
criteria.

You
define
styles
by
creating
NamedStyle
objects
that
contain
all
the
style
settings.
Then
when
the
row
filtering
is
applied
to
a
column,
you
specify
those
defined
style
settings
by
referring
to
the
NamedStyle
object
for
that
filtered
state.
For
more
information
about
the
row
filter
that
uses
styles,
refer
to
the
StyleRowFilter
('StyleRowFilter
Class'
in
the
on-line
documentation)
class.

You
can
create
a
hide
or
style
row
filter
using
the
Spread
Designer.
Select
the
Spread
control
in
the
property
grid
drop-
down
of
the
designer,
then
select
the
Sheets
Collection
(under
Data),
and
then
select
the
Row
Filter
option
in
the
SheetView
Collection
editor.

In
addition
to
creating
row
filters
for
the
user
to
select
the
item;
you
can
also
programmatically
filter
a
row.

You
can
specify
simple
filtering,
enhanced
filtering,
or
the
filter
bar
with
the
AutoFilterMode
('AutoFilterMode
Property'
in
the
on-line
documentation)
property.

For
detailed
information
on
the
objects
involved,
refer
to
these
classes.

BaseFilterItem
('BaseFilterItem
Class'
in
the
on-line
documentation)
Class
DefaultFilterItem
('DefaultFilterItem
Class'
in
the
on-line
documentation)
Class
DefaultRowFilter
('DefaultRowFilter
Class'
in
the
on-line
documentation)
Class
FilterColumnDefinition
('FilterColumnDefinition
Class'
in
the
on-line
documentation)
Class
FilterColumnDefinitionCollection
('FilterColumnDefinitionCollection
Class'
in
the
on-line
documentation)
Class
FilterItemCollection
('FilterItemCollection
Class'
in
the
on-line
documentation)
Class
FilterListBehavior
('FilterListBehavior
Enumeration'
in
the
on-line
documentation)
Enumeration
HideRowFilter
('HideRowFilter
Class'
in
the
on-line
documentation)
Class
StyleRowFilter
('StyleRowFilter
Class'
in
the
on-line
documentation)
Class

Using
Code

Create
a
named
style
and
then
set
the
style
row
filter.

Example

This
example
code
sets
a
style
row
filter.

C#
FarPoint.Web.Spread.NamedStyle instyle = new FarPoint.Web.Spread.NamedStyle();
FarPoint.Web.Spread.NamedStyle outstyle = new FarPoint.Web.Spread.NamedStyle();
instyle.BackColor = Color.Yellow;
outstyle.BackColor = Color.Aquamarine;
FarPoint.Web.Spread.FilterColumnDefinition fcd = new
FarPoint.Web.Spread.FilterColumnDefinition(1,
FarPoint.Web.Spread.FilterListBehavior.SortByMostOccurrences |

Spread for ASP.NET Developer’s Guide 137

Copyright © GrapeCity, Inc. All rights reserved.

FarPoint.Web.Spread.FilterListBehavior.Default);
FarPoint.Web.Spread.FilterColumnDefinition fcd1 = new
FarPoint.Web.Spread.FilterColumnDefinition(2);
FarPoint.Web.Spread.FilterColumnDefinition fcd2 = new
FarPoint.Web.Spread.FilterColumnDefinition();
FarPoint.Web.Spread.StyleRowFilter sf = new
FarPoint.Web.Spread.StyleRowFilter(FpSpread1.Sheets[0], instyle, outstyle);
sf.AddColumn(fcd);
sf.AddColumn(fcd1);
sf.AddColumn(fcd2);
FpSpread1.Sheets[0].RowFilter = sf;

VB
Dim instyle As New FarPoint.Web.Spread.NamedStyle()
Dim outstyle As New FarPoint.Web.Spread.NamedStyle()
instyle.BackColor = Color.Yellow
outstyle.BackColor = Color.Aquamarine
Dim fcd As New FarPoint.Web.Spread.FilterColumnDefinition(1,
FarPoint.Web.Spread.FilterListBehavior.SortByMostOccurrences Or
FarPoint.Web.Spread.FilterListBehavior.Default)
Dim fcd1 As New FarPoint.Web.Spread.FilterColumnDefinition(2)
Dim fcd2 As New FarPoint.Web.Spread.FilterColumnDefinition()
Dim sf As New FarPoint.Web.Spread.StyleRowFilter(FpSpread1.Sheets(0), instyle,
outstyle)
sf.AddColumn(fcd)
sf.AddColumn(fcd1)
sf.AddColumn(fcd2)
FpSpread1.Sheets(0).RowFilter = sf

Using
Code

Create
a
column
filter
definition
and
set
a
hide
row
filter.

Example

This
example
code
uses
the
hide
row
filter.

C#
FarPoint.Web.Spread.FilterColumnDefinition fcd = new
FarPoint.Web.Spread.FilterColumnDefinition(1,
FarPoint.Web.Spread.FilterListBehavior.SortByMostOccurrences |
FarPoint.Web.Spread.FilterListBehavior.Default);
FarPoint.Web.Spread.FilterColumnDefinition fcd1 = new
FarPoint.Web.Spread.FilterColumnDefinition(2,
FarPoint.Web.Spread.FilterListBehavior.Default);
FarPoint.Web.Spread.FilterColumnDefinition fcd2 = new
FarPoint.Web.Spread.FilterColumnDefinition(3);
FarPoint.Web.Spread.HideRowFilter hf = new
FarPoint.Web.Spread.HideRowFilter(FpSpread1.Sheets[0]);
hf.AddColumn(fcd);
hf.AddColumn(fcd1);
hf.AddColumn(fcd2);
FpSpread1.Sheets[0].RowFilter = hf;

VB

Spread for ASP.NET Developer’s Guide 138

Copyright © GrapeCity, Inc. All rights reserved.

Dim fcd As New FarPoint.Web.Spread.FilterColumnDefinition(1,
FarPoint.Web.Spread.FilterListBehavior.SortByMostOccurrences Or
FarPoint.Web.Spread.FilterListBehavior.Default)
Dim fcd1 As New FarPoint.Web.Spread.FilterColumnDefinition(2)
Dim fcd2 As New FarPoint.Web.Spread.FilterColumnDefinition(3)
Dim hf As New FarPoint.Web.Spread.HideRowFilter(FpSpread1.Sheets(0))
hf.AddColumn(fcd)
hf.AddColumn(fcd1)
hf.AddColumn(fcd2)
FpSpread1.Sheets(0).RowFilter = hf

Using
Code

Create
a
column
filter
definition
and
set
a
row
filter.

Example

This
example
applies
a
filter
programmatically
with
the
AutoFilterColumn
('AutoFilterColumn
Method'
in
the
on-line
documentation)
method.

C#
FpSpread1.Sheets[0].Cells[0, 2].Text = "test";
FarPoint.Web.Spread.NamedStyle instyle = new FarPoint.Web.Spread.NamedStyle();
FarPoint.Web.Spread.NamedStyle outstyle = new FarPoint.Web.Spread.NamedStyle();
instyle.BackColor = Color.Yellow;
outstyle.BackColor = Color.Aquamarine;
FarPoint.Web.Spread.FilterColumnDefinition fcd = new
FarPoint.Web.Spread.FilterColumnDefinition(1,
FarPoint.Web.Spread.FilterListBehavior.SortByMostOccurrences |
FarPoint.Web.Spread.FilterListBehavior.Default);
FarPoint.Web.Spread.FilterColumnDefinition fcd1 = new
FarPoint.Web.Spread.FilterColumnDefinition(2);
FarPoint.Web.Spread.FilterColumnDefinition fcd2 = new
FarPoint.Web.Spread.FilterColumnDefinition();
FarPoint.Web.Spread.StyleRowFilter sf = new
FarPoint.Web.Spread.StyleRowFilter(FpSpread1.Sheets[0], instyle, outstyle);
sf.AddColumn(fcd);
sf.AddColumn(fcd1);
sf.AddColumn(fcd2);
FpSpread1.Sheets[0].RowFilter = sf;
FpSpread1.Sheets[0].AutoFilterColumn(2, "test");

VB
FpSpread1.Sheets(0).Cells(0, 2).Text = "test"
Dim instyle As New FarPoint.Web.Spread.NamedStyle()
Dim outstyle As New FarPoint.Web.Spread.NamedStyle()
instyle.BackColor = Color.Yellow
outstyle.BackColor = Color.Aquamarine
Dim fcd As New FarPoint.Web.Spread.FilterColumnDefinition(1,
FarPoint.Web.Spread.FilterListBehavior.SortByMostOccurrences Or
FarPoint.Web.Spread.FilterListBehavior.Default)
Dim fcd1 As New FarPoint.Web.Spread.FilterColumnDefinition(2)
Dim fcd2 As New FarPoint.Web.Spread.FilterColumnDefinition()
Dim sf As New FarPoint.Web.Spread.StyleRowFilter(FpSpread1.Sheets(0), instyle,
outstyle)

Spread for ASP.NET Developer’s Guide 139

Copyright © GrapeCity, Inc. All rights reserved.

sf.AddColumn(fcd)
sf.AddColumn(fcd1)
sf.AddColumn(fcd2)
FpSpread1.Sheets(0).RowFilter = sf
FpSpread1.Sheets(0).AutoFilterColumn(2, "test")

Customizing Simple Filtering of Rows of User Data

You
can
customize
certain
details
for
simple
filtering
as
well
as
create
a
custom
filter.
The
following
topics
provide
more
information
about
using
and
customizing
simple
filters:

Using
Row
Filtering
Customizing
the
List
of
Filter
Items
Creating
a
Completely
Custom
Filter

For
information
on
selections
of
cells,
refer
to
Customizing
Selections
of
Cells.

For
information
on
how
to
change
the
appearance
of
cells,
refer
to
Customizing
the
Appearance
of
a
Cell.
For
information
on
setting
the
cell
type,
refer
to
Customizing
with
Cell
Types.

Using Row Filtering

This
topic
summarizes
how
the
end
user
can
interact
with
the
simple
row
filtering
feature.

Once
you
have
row
filtering
applied
to
a
column,
an
indicator
appears
in
the
column
header
as
in
the
following
figure:

If
you
want
to
display
a
label
for
the
header,
you
must
add
another
row
of
column
headers
and
put
the
label
in
that
row.

The
column
header
displays
the
row
filtering
indicator,
a
drop-down
arrow
symbol.
Clicking
on
this
indicator
provides
a
drop-down
list
of
the
filter
choices.
Picking
an
item
from
this
list
causes
that
filter
to
be
applied
and
all
the
rows
meeting
that
condition
(in
this
column)
are
filtered.
The
default
drop-down
list
contains
all
the
unique
text
values
in
cells
in
this
column.
The
figure
below
shows
an
example
of
a
drop-down
list
of
filters:

The
table
below
summarizes
the
entries
in
the
drop-down
list.

Filter
List
Item

Description

(All) Include
or
allow
all
the
rows
in
this
column
regardless
of
content

[contents] Include
or
allow
only
those
rows
with
this
particular
cell
content
in
this
column

(Blanks) Include
or
allow
only
rows
that
have
blanks
(empty
cells)
in
this
column

(NonBlanks) Include
or
allow
only
rows
that
have
non-blanks
(non-empty
cells)
in
this
column,
in
other
words
any
cell
that
has
any
content

You
can
customize
the
filter
list.
For
more
information,
see
Customizing
the
List
of
Filter
Items.

Using
Code

Spread for ASP.NET Developer’s Guide 140

Copyright © GrapeCity, Inc. All rights reserved.

Create
a
named
style
and
then
set
the
style
row
filter.

Example

This
example
code
sets
a
style
row
filter.

C#
FpSpread1.ActiveSheetView.AutoFilterMode =
FarPoint.Web.Spread.AutoFilterMode.FilterGadget;

FarPoint.Web.Spread.NamedStyle instyle = new FarPoint.Web.Spread.NamedStyle();
FarPoint.Web.Spread.NamedStyle outstyle = new FarPoint.Web.Spread.NamedStyle();
instyle.BackColor = Color.Yellow;
outstyle.BackColor = Color.Aquamarine;
FarPoint.Web.Spread.FilterColumnDefinition fcd = new
FarPoint.Web.Spread.FilterColumnDefinition(1,
FarPoint.Web.Spread.FilterListBehavior.SortByMostOccurrences |
FarPoint.Web.Spread.FilterListBehavior.Default);
FarPoint.Web.Spread.FilterColumnDefinition fcd1 = new
FarPoint.Web.Spread.FilterColumnDefinition(2);
FarPoint.Web.Spread.FilterColumnDefinition fcd2 = new
FarPoint.Web.Spread.FilterColumnDefinition();
FarPoint.Web.Spread.StyleRowFilter sf = new
FarPoint.Web.Spread.StyleRowFilter(FpSpread1.Sheets[0], instyle, outstyle);
sf.AddColumn(fcd);
sf.AddColumn(fcd1);
sf.AddColumn(fcd2);
FpSpread1.Sheets[0].RowFilter = sf;

VB
FpSpread1.ActiveSheetView.AutoFilterMode =
FarPoint.Web.Spread.AutoFilterMode.FilterGadget

Dim instyle As New FarPoint.Web.Spread.NamedStyle()
Dim outstyle As New FarPoint.Web.Spread.NamedStyle()
instyle.BackColor = Color.Yellow
outstyle.BackColor = Color.Aquamarine
Dim fcd As New FarPoint.Web.Spread.FilterColumnDefinition(1,
FarPoint.Web.Spread.FilterListBehavior.SortByMostOccurrences Or
FarPoint.Web.Spread.FilterListBehavior.Default)
Dim fcd1 As New FarPoint.Web.Spread.FilterColumnDefinition(2)
Dim fcd2 As New FarPoint.Web.Spread.FilterColumnDefinition()
Dim sf As New FarPoint.Web.Spread.StyleRowFilter(FpSpread1.Sheets(0), instyle,
outstyle)
sf.AddColumn(fcd)
sf.AddColumn(fcd1)
sf.AddColumn(fcd2)
FpSpread1.Sheets(0).RowFilter = sf

Customizing the List of Filter Items

You
can
customize
the
text
of
the
default
filter
items
in
the
drop-down
filter
list.
The
items
that
are
displayed
in
the
drop-down
filter
list
are
column
filter
definitions.
You
can
customize
the
text
of
those
by
changing
the
value
of
the

Spread for ASP.NET Developer’s Guide 141

Copyright © GrapeCity, Inc. All rights reserved.

AllString
('AllString
Property'
in
the
on-line
documentation),
BlanksString
('BlanksString
Property'
in
the
on-line
documentation),
and
NonBlanksString
('NonBlanksString
Property'
in
the
on-line
documentation)
properties.

Using
Code

Create
a
row
filter
and
set
the
filter
strings.

Example

This
example
creates
custom
filter
items
for
the
drop-down
list.

C#
FarPoint.Web.Spread.NamedStyle instyle = new FarPoint.Web.Spread.NamedStyle();
FarPoint.Web.Spread.NamedStyle outstyle = new FarPoint.Web.Spread.NamedStyle();
instyle.BackColor = Color.Yellow;
outstyle.BackColor = Color.Gray;
FarPoint.Web.Spread.StyleRowFilter rf = new
FarPoint.Web.Spread.StyleRowFilter(FpSpread1.Sheets[0], instyle, outstyle);
FpSpread1.Sheets[0].RowFilter = rf;
// Assign filter and customize filter options.
FpSpread1.Sheets[0].RowFilter.AddColumn(1);
FpSpread1.Sheets[0].RowFilter.ShowFilterIndicator = true;
FpSpread1.Sheets[0].RowFilter.AllString = "Show All";
FpSpread1.Sheets[0].RowFilter.BlanksString = "Show The Blanks";
FpSpread1.Sheets[0].RowFilter.NonBlanksString = "Show The Non-Blanks";

VB
Dim instyle As New FarPoint.Web.Spread.NamedStyle()
Dim outstyle As New FarPoint.Web.Spread.NamedStyle()
instyle.BackColor = Color.Yellow
outstyle.BackColor = Color.Gray
Dim rf As New FarPoint.Web.Spread.StyleRowFilter(FpSpread1.Sheets(0), instyle,
outstyle)
FpSpread1.Sheets(0).RowFilter = rf
' Assign filter and customize filter options.
FpSpread1.Sheets(0).RowFilter.AddColumn(1)
FpSpread1.Sheets(0).RowFilter.ShowFilterIndicator = True
FpSpread1.Sheets(0).RowFilter.AllString = "Show All"
FpSpread1.Sheets(0).RowFilter.BlanksString = "Show The Blanks"
FpSpread1.Sheets(0).RowFilter.NonBlanksString = "Show The Non-Blanks"

Creating a Completely Custom Filter

You
can
create
a
custom
filter
that
you
can
then
include
in
the
filter
column
definition
collection.
In
order
to
create
a
custom
filter,
follow
these
steps:

1.
 Create
a
class
that
inherits
from
FarPoint.Web.Spread.BaseFilterItem
or
FarPoint.Web.Spread.DefaultFilterItem.
2.
 Override
DisplayName
property
to
return
the
name
to
be
displayed
in
the
drop-down
list
of
filter
items.
3.
 Override
the
ShowInDropDown
method
to
specify
if
this
filter
item
should
be
displayed
in
the
drop-down
list

given
the
current
filtered
in
rows.
If
the
custom
filter
does
not
contain
this
item
then
the
filter
is
not
applied.
4.
 Override
the
Filter
method
to
perform
the
filter
action
on
the
specified
column.
5.
 Override
the
Serialize
and
Deserialize
methods.
Make
calls
to
the
base.Serialize
and
base.Deserialize
methods
unless
your
methods
handle
persisting
the
default
properties.

Spread for ASP.NET Developer’s Guide 142

Copyright © GrapeCity, Inc. All rights reserved.

6.
 Create
a
HideRowFilter
or
StyleRowFilter
object.
7.
 Add
the
custom
filter
to
the
custom
filter’s
list
of
the
column
filter
definition
in
the
row
filtering
object
from
the
previous
step.

If
you
are
creating
a
custom
filter
item
and
you
display
a
modal
dialog
inside
the
Filter
method
of
the
filter
item,
then
after
the
dialog
goes
away,
call
the
IRowFilter
interface
ResetCachedIntersectedFilteredInRowIndexes
method.

C#
FpSpread1.Sheets(0).RowFilter.ResetCachedIntersectedFilteredInRowIndexes

More
information
about
creating
custom
filters
is
available
on
our
online
technical
support
forum
(see
the
Read
Me
for
more
information).

Using Enhanced Filtering

When
the
control
has
enhanced
filtering
turned
on,
the
user
can
drop-down
a
list
of
available
filters
to
apply
to
the
data.

The
default
filter
that
is
displayed
depends
on
the
data
in
the
column.
The
filter
can
be
a
number,
text,
date,
or
color
filter.

The
filters
are
described
in
the
following
table.

Filter
Type Description
Number
Filters

Equals Values
in
rows
are
equal
to
condition

Does
Not
Equal Values
in
rows
do
not
equal
condition

Greater
Than Values
in
rows
are
greater
than
condition

Greater
Than
Or
Equal
To Values
in
rows
are
greater
than
or
equal
to
condition

Less
Than Values
in
rows
are
less
than
condition

Less
Than
Or
Equal
To Values
in
rows
are
less
than
or
equal
to
condition

Between Values
in
rows
are
greater
than
one
condition
and
less
than
another
condition

Top
10 Values
in
the
rows
with
the
ten
highest
values

Above
Average Values
in
the
rows
that
are
above
the
average
of
the
values
in
all
the
rows

Below
Average Values
in
the
rows
that
are
below
the
average
of
the
values
in
all
the
rows

Custom
Filter Values
in
rows
that
meet
the
conditions
of
a
custom
filter

Text
Filters

Equals Values
in
rows
equal
the
condition

Does
Not
Equal Values
in
rows
do
not
equal
the
condition

Begins
With Values
in
rows
begin
with
the
specified
characters

Ends
With Values
in
rows
end
with
the
specified
characters

Contains Values
in
rows
contain
the
specified
characters

Does
Not
Contain Values
in
rows
do
not
contain
the
specified
characters

Custom
Filter Values
in
rows
that
meet
the
conditions
of
a
custom
filter

Date
Filters

Equals Values
in
rows
equal
the
condition

Spread for ASP.NET Developer’s Guide 143

Copyright © GrapeCity, Inc. All rights reserved.

Before Values
in
rows
are
dates
before
the
condition

After Values
in
rows
are
dates
after
the
condition

Between Values
in
rows
are
dates
between
two
specified
dates
for
the
condition

Tomorrow Values
in
rows
are
tomorrow's
date

Today Values
in
rows
are
today's
date

Yesterday Values
in
rows
are
yesterday's
date

Next
Week Values
in
rows
are
during
next
week

This
Week Values
in
rows
are
during
current
week

Last
Week Values
in
rows
are
during
last
week

Next
Month Values
in
rows
are
during
next
month

This
Month Values
in
rows
are
during
current
month

Last
Month Values
in
rows
are
during
last
month

Next
Quarter Values
in
rows
are
during
next
quarter

This
Quarter Values
in
rows
are
during
current
quarter

Last
Quarter Values
in
rows
are
during
last
quarter

Next
Year Values
in
rows
are
during
next
year

This
Year Values
in
rows
are
during
current
year

Last
Year Values
in
rows
are
during
last
year

Year
to
Date Values
in
rows
are
during
current
year
to
present
date

All
Dates
in
the
Period Values
in
rows
are
within
a
specified
period

Custom
Filter Values
in
rows
that
meet
the
conditions
of
a
custom
filter

Users
can
specify
wildcards
in
conditions.
The
"?"
character
represents
any
single
character.
The
"*"
character
represents
any
series
of
characters.

When
the
user
chooses
a
filter,
the
control
either
filters
the
data
to
display
only
the
items
that
match
the
filter
criteria,
or
the
control
displays
the
rows
that
meet
the
criteria
with
one
appearance,
and
the
rows
that
do
not
meet
the
criteria
with
another
appearance.
For
information
about
setting
the
styles
for
rows,
see
Creating
Filtered
Rows
and
Setting
the
Appearance.

Using
Code

Set
the
AutoFilterMode
('AutoFilterMode
Property'
in
the
on-line
documentation)
property
to
Enhanced,
create
a
filter
style,
and
then
apply
the
filter
to
the
sheet.

Example

The
following
example
creates
an
enhanced
filter
in
the
first
three
columns.
Add
different
types
of
data
to
see
the
various
filter
options.

C#
FpSpread1.Sheets[0].AutoFilterMode = FarPoint.Web.Spread.AutoFilterMode.Enhanced;
FarPoint.Web.Spread.NamedStyle instyle = new FarPoint.Web.Spread.NamedStyle();
FarPoint.Web.Spread.NamedStyle outstyle = new FarPoint.Web.Spread.NamedStyle();
instyle.BackColor = Color.Yellow;
outstyle.BackColor = Color.Aquamarine;
FarPoint.Web.Spread.FilterColumnDefinition fcd = new

Spread for ASP.NET Developer’s Guide 144

Copyright © GrapeCity, Inc. All rights reserved.

FarPoint.Web.Spread.FilterColumnDefinition(1,
FarPoint.Web.Spread.FilterListBehavior.SortByMostOccurrences |
FarPoint.Web.Spread.FilterListBehavior.Default);
FarPoint.Web.Spread.FilterColumnDefinition fcd1 = new
FarPoint.Web.Spread.FilterColumnDefinition(2);
FarPoint.Web.Spread.FilterColumnDefinition fcd2 = new
FarPoint.Web.Spread.FilterColumnDefinition();
FarPoint.Web.Spread.StyleRowFilter sf = new
FarPoint.Web.Spread.StyleRowFilter(FpSpread1.Sheets[0], instyle, outstyle);
sf.AddColumn(fcd);
sf.AddColumn(fcd1);
sf.AddColumn(fcd2);
FpSpread1.Sheets[0].RowFilter = sf;

VB
FpSpread1.Sheets(0).AutoFilterMode = FarPoint.Web.Spread.AutoFilterMode.Enhanced
Dim instyle As New FarPoint.Web.Spread.NamedStyle()
Dim outstyle As New FarPoint.Web.Spread.NamedStyle()
instyle.BackColor = Drawing.Color.Yellow
outstyle.BackColor = Drawing.Color.Aquamarine
Dim fcd As New FarPoint.Web.Spread.FilterColumnDefinition(1,
FarPoint.Web.Spread.FilterListBehavior.SortByMostOccurrences Or
FarPoint.Web.Spread.FilterListBehavior.Default)
Dim fcd1 As New FarPoint.Web.Spread.FilterColumnDefinition(2)
Dim fcd2 As New FarPoint.Web.Spread.FilterColumnDefinition()
Dim sf As New FarPoint.Web.Spread.StyleRowFilter(FpSpread1.Sheets(0), instyle,
outstyle)
sf.AddColumn(fcd)
sf.AddColumn(fcd1)
sf.AddColumn(fcd2)
FpSpread1.Sheets(0).RowFilter = sf

Using the Filter Bar

The
filter
bar
allows
filtering
in
all
columns
by
displaying
a
filter
bar
below
the
column
header
area.
The
filter
icon
appears
in
the
filter
bar
instead
of
the
column
header.
The
filter
bar
displays
filter
information
and
allows
users
to
edit
the
condition
criteria
for
each
filter
column.

The
filter
bar
contains
a
text
box,
a
menu
of
choices,
and
the
filter
icon.
The
user
can
enter
a
filter
item
in
the
text
box,
select
a
menu
option,
and
then
click
on
the
filter
icon
to
apply
the
filter.

The
MenuType
('MenuType
Property'
in
the
on-line
documentation)
property
specifies
the
type
of
menu
options
that
are
displayed
for
the
filter
(number,
date
time,
enhanced,
or
text).
If
the
menu
type
is
date,
a
date
time
picker
is
also
available
in
the
filter
bar.
The
automatic
option
displays
the
menu
options
based
on
the
type
of
data
in
the
column.

The
following
image
displays
a
date
picker
in
the
filter
bar
for
column
B.

Spread for ASP.NET Developer’s Guide 145

Copyright © GrapeCity, Inc. All rights reserved.

The
following
table
lists
the
menu
options
for
text,
number,
and
date:

Filter Menu
Options
Text Contains

 DoesNotContain

 StartsWith

 EndsWin

 EqualTo

 NotEqualTo

 Between

 NotBetween

 IsEmpty

 NotIsEmpty

 IsNull

 NotIsNull

Number
and
Date EqualTo

 NotEqualTo

 GreaterThan

 LessThan

 GreaterThanOrEqualTo

 LessThanOrEqualTo

 Between

 NotBetween

 IsNull

 NotIsNull

The
FilterBarMode
('FilterBarMode
Property'
in
the
on-line
documentation)
property
specifies
whether
the
filter
context
menu
data
is
requested
from
the
server
after
the
page
is
loaded
or
loaded
in
the
server
before
the
page
is
rendered.

Set
the
DateTimeFormat
('DateTimeFormat
Property'
in
the
on-line
documentation)
or
FormatString
('FormatString
Property'
in
the
on-line
documentation)
property
to
format
the
value
from
the
date
picker
in
the
filter
bar.
Set
these
properties
if
the
format
of
the
data
in
the
cell
is
different
from
the
format
in
the
filter.
The
EqualTo
menu
option
requires
that
the
cell
format
and
the
filter
bar
format
be
the
same.
A
ScriptManager
is
required
for
the

Spread for ASP.NET Developer’s Guide 146

Copyright © GrapeCity, Inc. All rights reserved.

DateTimeFormat
('DateTimeFormat
Property'
in
the
on-line
documentation)
and
FormatString
('FormatString
Property'
in
the
on-line
documentation)
properties.

Using
Code

1.
 Create
a
filter
bar
cell
if
you
wish
to
customize
the
default
options
in
the
filter
bar.
2.
 Set
the
AutoFilterMode
('AutoFilterMode
Property'
in
the
on-line
documentation)
property
to

FilterBar.

Example

This
example
code
customizes
the
filter
bar
and
using
a
filter
bar
for
filtering.

C#
protected void Page_Load(object sender, EventArgs e)
 {
 if (IsPostBack) return;
 for (int i = 0; i < FpSpread1.ActiveSheetView.RowCount; i++)
 for (int j = 0; j < FpSpread1.ActiveSheetView.ColumnCount; j++)
 {
 FpSpread1.ActiveSheetView.Cells[i, j].Value = i + j;
 }

 FarPoint.Web.Spread.FilterBarCellType fbc = new
FarPoint.Web.Spread.FilterBarCellType();
 fbc.MenuType = FarPoint.Web.Spread.FilterMenuType.Auto;
 FpSpread1.ActiveSheetView.FilterBar.DefaultStyle.CellType = fbc;
 FpSpread1.ActiveSheetView.AutoFilterMode =
FarPoint.Web.Spread.AutoFilterMode.FilterBar;
 }

VB
Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
If (IsPostBack) Then
 Return
End If
For i As Integer = 0 To FpSpread1.ActiveSheetView.RowCount - 1
 For j As Integer = 0 To FpSpread1.ActiveSheetView.ColumnCount - 1
 FpSpread1.ActiveSheetView.Cells(i, j).Value = i + j
 Next
Next

Dim fbc As New FarPoint.Web.Spread.FilterBarCellType()
fbc.MenuType = FarPoint.Web.Spread.FilterMenuType.Auto

Spread for ASP.NET Developer’s Guide 147

Copyright © GrapeCity, Inc. All rights reserved.

FpSpread1.ActiveSheetView.FilterBar.DefaultStyle.CellType = fbc
FpSpread1.ActiveSheetView.AutoFilterMode = FarPoint.Web.Spread.AutoFilterMode.FilterBar
End Sub

Customizing Grouping of Rows of User Data

You
can
set
the
display
of
the
spreadsheet
component
to
allow
rows
to
be
grouped
according
to
the
column
headers.
You
can
customize
the
user
experience
for
grouping
data
on
a
sheet.
With
grouping,
you
can
allow
the
user
to
group
rows
of
data
according
to
the
column
headers
that
are
dragged
into
the
group
bar.
Special
group
headings
are
displayed
above
the
grouped
rows.
Grouping
of
rows
includes
the
following
tasks.

Using
Grouping
Allowing
the
User
to
Group
Rows
Setting
the
Appearance
of
Grouped
Rows
Customizing
the
Group
Bar
Creating
a
Custom
Group
Compatibility
with
Other
Features

For
information
about
the
GroupInfo
editor
in
the
Spread
Designer,
refer
to
GroupInfo
Collection
Editor.

Using Grouping

You
can
set
up
the
display
to
allow
Outlook-style
grouping
of
rows.
For
large
amounts
of
data,
this
is
helpful
to
display
the
data
in
the
order
the
user
needs.
The
user
selects
columns
by
which
to
sort
and
the
component
then
organizes
and
displays
the
data
in
a
hierarchy
with
rows
organized
accordingly.
To
select
a
column
by
which
to
group
and
display
that
data,
either
double-click
on
the
header
of
that
column
or
click
and
drag
that
column
into
the
grouping
bar
at
the
top
of
the
page.
See
the
figure
below
for
an
example
of
the
terms
used
with
grouping.

You
can
provide
grouping
to
allow
users
to
sort
the
data
with
multiple
levels
of
groups
by
dragging
additional
column
headers
into
the
grouping
area.
An
example
of
the
process
of
setting
up
two
levels
of
grouping
is
shown
in
the
following
figure.

You
can
expand
or
collapse
groups
by
clicking
the
expand
(+)
or
collapse
(-)
indicators.

Spread for ASP.NET Developer’s Guide 148

Copyright © GrapeCity, Inc. All rights reserved.

Before
secondary
grouping:
dragging
the
column
header
into
the
grouping
bar.

After
secondary
grouping:
now
a
second
level
of
hierarchy
is
shown.

When
more
than
one
level
is
chosen,
the
higher
level
is
called
the
parent
group
and
the
lower
level
is
called
the
child
group.
In
the
picture
above
with
secondary
grouping,
the
Employee
ID
is
the
parent
group
and
the
First
Name
is
the
child
group.

Allowing the User to Group Rows

By
default,
the
spreadsheet
does
not
allow
the
user
to
group
the
rows
of
a
spreadsheet.
You
can
turn
on
this
feature
and
allow
grouping
of
rows
for
an
entire
sheet.
Besides
allowing
grouping,
you
also
need
to
allow
columns
to
move,
since
the
user
performs
grouping
by
clicking
and
dragging
a
column
header
into
the
group
bar,
which
is
similar
to
the
act
of
moving
a
column.
Also,
the
group
bar
must
be
visible
and
the
column
headers
(at
least
one
row)
should
be
visible.

Use
the
AllowGroup
('AllowGroup
Property'
in
the
on-line
documentation)
property
of
the
sheet
to
turn
on
grouping.
Use
the
GroupBarVisible
('GroupBarVisible
Property'
in
the
on-line
documentation)
property
of
the
sheet
to
display
the
group
bar
(the
area
at
the
top
of
the
sheet
into
which
the
user
can
drag
column
headers.
Remember
to
set
the
AllowColumnMove
('AllowColumnMove
Property'
in
the
on-line
documentation)
property
of
the
sheet
to
true
to
allow
the
user
to
click
and
drag
column
headers.
Unless
you
are
using
the
default
value,
set
the
ColumnHeaderVisible
('ColumnHeaderVisible
Property'
in
the
on-line
documentation)
property
of
the
sheet
to
true
to
ensure
that
the
column
headers
are
displayed.
The
following
image
shows
the
control
before
the
user
drags
the
column
header:

You
can
turn
on
or
off
the
row
headers;
these
have
no
effect
on
the
display
of
grouping.

You
can
set
the
maximum
number
of
levels
of
grouping
that
the
end
user
can
set.
This
limits
the
number
of
column
headers
that
can
be
dragged
consecutively
to
the
group
bar.

Spread for ASP.NET Developer’s Guide 149

Copyright © GrapeCity, Inc. All rights reserved.

To
understand
how
grouping
works
for
the
end
user,
refer
to
Using
Grouping.

Using
the
Properties
Window

1.
 At
design
time,
in
the
Properties
window,
select
the
FpSpread
component.
2.
 Select
the
Sheets
property.
3.
 Click
the
button
to
display
the
SheetView
Collection
Editor.
4.
 Set
AllowColumnMove,
GroupBarVisible,
and
AllowGroup.
5.
 Click
OK
to
close
the
SheetView
Collection
Editor.

Using
Code

Set
the
AllowGroup
('AllowGroup
Property'
in
the
on-line
documentation),
AllowColumnMove
('AllowColumnMove
Property'
in
the
on-line
documentation),
and
the
GroupBarVisible
('GroupBarVisible
Property'
in
the
on-line
documentation)
properties
to
allow
user
grouping.

Example

This
example
allows
the
user
to
group
rows.

C#
FpSpread1.ActiveSheetView.AllowColumnMove = true;
FpSpread1.ActiveSheetView.GroupBarVisible = true;
FpSpread1.ActiveSheetView.AllowGroup = true;

VB
FpSpread1.ActiveSheetView.AllowColumnMove = True
FpSpread1.ActiveSheetView.GroupBarVisible = True
FpSpread1.ActiveSheetView.AllowGroup = True

Using
the
Spread
Designer

1.
 Select
the
Settings
menu.
2.
 Select
the
Group
icon
in
the
Other
Settings
section.
3.
 Set
the
various
properties.
4.
 Select
Sheet
in
the
Property
Grid
and
set
AllowColumnMove.
5.
 Click
OK
to
close
the
dialog.
6.
 Use
the
View
menu
to
show
or
hide
the
group
bar.
7.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Setting the Appearance of Grouped Rows

You
can
customize
the
appearance
of
the
group
headers
and
the
grouped
rows.
For
an
introduction
to
the
user
interface
for
grouping,
refer
to
Using
Grouping.

You
can
set
up
the
display
so
that
the
items
are
shown
initially
all
expanded
or
all
collapsed
when
grouping
is
performed
with
the
GroupingPolicy
('GroupingPolicy
Property'
in
the
on-line
documentation)
property.

You
can
set
the
colors
and
other
formatting
of
both
the
hierarchy
names
and
the
data
in
the
rows
when
grouping
is
performed
with
the
GroupInfo
('GroupInfo
Class'
in
the
on-line
documentation)
class.

For
more
information
on
other
hierarchical
displays
of
data,
refer
to
Displaying
Data
as
a
Hierarchy.

Spread for ASP.NET Developer’s Guide 150

Copyright © GrapeCity, Inc. All rights reserved.

You
can
also
define
a
set
of
properties
in
an
array
list
called
GroupInfo.
Set
the
appearance
of
grouped
rows
by
adding
styles
to
the
array
list
of
appearance
properties
for
grouping.
A
collection
of
GroupInfo
('GroupInfo
Class'
in
the
on-line
documentation)
objects
is
in
the
GroupInfoCollection.
To
set
the
appearance
settings
in
a
GroupInfo
('GroupInfo
Class'
in
the
on-line
documentation)
to
a
particular
sheet,
set
the
GroupInfos
('GroupInfos
Property'
in
the
on-line
documentation)
property
on
that
sheet.
Appearance
settings
for
grouping
include:

Background
color
Border
CSS
class
Font
Foreground
(text)
color
HorizontalAlignment
VerticalAlignment

Only
column
and
sheet
appearance
settings
remain
when
grouping
is
turned
on.
For
more
information
about
the
group
data
model
and
the
effect
on
the
sheet
data
model,
refer
to
Creating
a
Custom
Group.
Since
rows
and
cells
are
moved
when
the
grouping
feature
is
turned
on,
any
style
or
span
settings
are
ignored.
You
can
use
the
IsGroup
('IsGroup
Method'
in
the
on-line
documentation)
method,
which
determines
whether
a
requested
row
is
a
data
row
or
a
group
header
row.

For
information
about
the
GroupInfo
editor
in
the
Spread
Designer,
for
customizing
the
appearance
settings
of
the
group
headers,
refer
to
GroupInfo
Collection
Editor.

Using
Code

1.
 Set
the
AllowColumnMove
('AllowColumnMove
Property'
in
the
on-line
documentation),
GroupBarVisible
('GroupBarVisible
Property'
in
the
on-line
documentation),
and
AllowGroup
('AllowGroup
Property'
in
the
on-line
documentation)
properties.

2.
 Specify
the
main
group
bar
color
with
the
GroupBarBackColor
('GroupBarBackColor
Property'
in
the
on-line
documentation)
property.

3.
 Specify
colors
for
subgroups
with
the
GroupInfo
('GroupInfo
Class'
in
the
on-line
documentation)
class.

Example

This
example
sets
the
appearance
for
the
group
bar
and
the
grouped
rows.

C#
FpSpread1.ActiveSheetView.AllowColumnMove = true;
FpSpread1.ActiveSheetView.GroupBarVisible = true;
FpSpread1.ActiveSheetView.GroupBarBackColor = Color.Salmon;
FpSpread1.ActiveSheetView.GroupBarHeight = 50;
FpSpread1.ActiveSheetView.GroupMaximumLevel = 5;
FpSpread1.ActiveSheetView.AllowGroup = true;
FarPoint.Web.Spread.GroupInfo gi = new FarPoint.Web.Spread.GroupInfo();
gi.BackColor = Color.Yellow;
FarPoint.Web.Spread.GroupInfo gi2 = new FarPoint.Web.Spread.GroupInfo();
gi2.BackColor = Color.Green;
FarPoint.Web.Spread.GroupInfoCollection gic = new
FarPoint.Web.Spread.GroupInfoCollection();
gic.AddRange(new FarPoint.Web.Spread.GroupInfo[] {gi, gi2});
FpSpread1.ActiveSheetView.GroupInfos.Add(gic[0]);

VB
FpSpread1.ActiveSheetView.AllowColumnMove = True
FpSpread1.ActiveSheetView.GroupBarVisible = True

Spread for ASP.NET Developer’s Guide 151

Copyright © GrapeCity, Inc. All rights reserved.

FpSpread1.ActiveSheetView.GroupBarBackColor = Color.Salmon
FpSpread1.ActiveSheetView.GroupBarHeight = 50
FpSpread1.ActiveSheetView.GroupMaximumLevel = 5
FpSpread1.ActiveSheetView.AllowGroup = True
Dim gi As New FarPoint.Web.Spread.GroupInfo
gi.BackColor = Color.Yellow
Dim gi2 As New FarPoint.Web.Spread.GroupInfo
gi2.BackColor = Color.Green
Dim gic As New FarPoint.Web.Spread.GroupInfoCollection()
gic.Add(gi)
FpSpread1.ActiveSheetView.GroupInfos.Add(gic(0))

Using
the
Spread
Designer

1.
 Select
the
Settings
menu.
2.
 Select
the
Group
icon
in
the
Other
Settings
section.
3.
 Set
the
various
properties.
4.
 Click
OK
to
close
the
dialog.
5.
 Use
the
View
menu
to
show
or
hide
the
group
bar.
6.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Customizing the Group Bar

You
can
customize
the
appearance
of
the
group
bar
at
the
top
of
the
grouping
display
and
you
can
hide
or
display
the
grouping
bar
at
the
top
of
the
sheet.
The
properties
on
the
sheet
(SheetView
('SheetView
Class'
in
the
on-line
documentation)
object)
include:

SheetView
Property Description
GroupBarBackColor
('GroupBarBackColor
Property'
in
the
on-
line
documentation)

Set
the
background
color
of
the
grouping
bar

GroupBarHeight
('GroupBarHeight
Property'
in
the
on-line
documentation)

Set
the
height
of
the
grouping
bar

GroupBarVisible
('GroupBarVisible
Property'
in
the
on-line
documentation)

Set
whether
to
display
the
grouping
bar

GroupMaximumLevel
('GroupMaximumLevel
Property'
in
the
on-line
documentation)

Set
the
maximum
number
of
levels
of
grouping
allowed

Using
Code

1.
 Set
the
AllowColumnMove
('AllowColumnMove
Property'
in
the
on-line
documentation),
GroupBarVisible
('GroupBarVisible
Property'
in
the
on-line
documentation),
and
AllowGroup
('AllowGroup
Property'
in
the
on-line
documentation)
properties.

2.
 Specify
the
main
group
bar
color
with
the
GroupBarBackColor
('GroupBarBackColor
Property'
in
the
on-line
documentation)
property.

3.
 Specify
colors
for
subgroups
with
the
GroupInfo
('GroupInfo
Class'
in
the
on-line
documentation)
class.

Example

This
example
sets
the
appearance
for
the
group
bar
and
the
grouped
rows.

C#

Spread for ASP.NET Developer’s Guide 152

Copyright © GrapeCity, Inc. All rights reserved.

FpSpread1.ActiveSheetView.AllowColumnMove = true;
FpSpread1.ActiveSheetView.GroupBarVisible = true;
FpSpread1.ActiveSheetView.GroupBarBackColor = Color.Salmon;
FpSpread1.ActiveSheetView.GroupBarHeight = 50;
FpSpread1.ActiveSheetView.GroupMaximumLevel = 5;
FpSpread1.ActiveSheetView.AllowGroup = true;
FarPoint.Web.Spread.GroupInfo gi = new FarPoint.Web.Spread.GroupInfo();
gi.BackColor = Color.Yellow;
FarPoint.Web.Spread.GroupInfo gi2 = new FarPoint.Web.Spread.GroupInfo();
gi2.BackColor = Color.Green;
FarPoint.Web.Spread.GroupInfoCollection gic = new
FarPoint.Web.Spread.GroupInfoCollection();
gic.AddRange(new FarPoint.Web.Spread.GroupInfo[] {gi, gi2});
FpSpread1.ActiveSheetView.GroupInfos.Add(gic[0]);

VB
FpSpread1.ActiveSheetView.AllowColumnMove = True
FpSpread1.ActiveSheetView.GroupBarVisible = True
FpSpread1.ActiveSheetView.GroupBarBackColor = Color.Salmon
FpSpread1.ActiveSheetView.GroupBarHeight = 50
FpSpread1.ActiveSheetView.GroupMaximumLevel = 5
FpSpread1.ActiveSheetView.AllowGroup = True
Dim gi As New FarPoint.Web.Spread.GroupInfo
gi.BackColor = Color.Yellow
Dim gi2 As New FarPoint.Web.Spread.GroupInfo
gi2.BackColor = Color.Green
Dim gic As New FarPoint.Web.Spread.GroupInfoCollection()
gic.Add(gi)
FpSpread1.ActiveSheetView.GroupInfos.Add(gic(0))

Using
the
Spread
Designer

1.
 Select
the
Settings
menu.
2.
 Select
the
Group
icon
in
the
Other
Settings
section.
3.
 Set
the
various
properties.
4.
 Click
OK
to
close
the
dialog.
5.
 Use
the
View
menu
to
show
or
hide
the
group
bar.
6.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Creating a Custom Group

When
grouping
is
turned
on
for
a
sheet,
a
separate
target
group
data
model
is
available
to
the
sheet
(or
spreadsheet
component)
and
this
group
data
model
is
flat,
completely
without
a
hierarchy.
This
contains
the
group
headers
and
other
grouping-specific
display
data.
Underneath
that
model
is
a
target
data
model
where
the
row
data
resides.

You
can
customize
grouping
by
specifying
your
own
comparer.
For
example,
you
can
create
a
custom
group
that
is
by
decade
if
the
column
has
year
information.
As
the
Grouping
('Grouping
Event'
in
the
on-line
documentation)
event
is
raised,
you
can
pass
in
your
own
IComparer
(call
it
MyComparer,
for
example).
You
can
determine
what
is
displayed
in
the
group
header
by
setting
the
Text
property
for
that
group.

More
information
about
creating
a
custom
group
is
available
on
our
online
technical
support
forum
(see
the
Read
Me
for
more
information).

Compatibility with Other Features

Spread for ASP.NET Developer’s Guide 153

Copyright © GrapeCity, Inc. All rights reserved.

The
grouping
feature
affects
the
visual
display
and
is
not
intended
to
work
with
some
other
features
of
Spread
that
also
work
with
the
display
of
the
spreadsheet.
When
grouping
happens,
the
data
model
is
changed
and
a
new
model
(the
GroupDataModel)
is
used.
Many
features
are
not
affected
by
grouping
at
all,
but
some
features,
listed
below,
are
not
intended
to
operate
with
grouping.
In
general,
if
the
feature
involves
the
appearance
or
interactivity
of
the
sheet
or
column,
check
the
list
to
see
if
it
is
affected
by
grouping.

Some
formatting
features
can
work
with
grouping,
but
need
to
be
applied
after
grouping
occurs.
If
you
need
to
format
cells
(colors,
locked,
etc.),
you
must
apply
the
formatting
after
grouping.

Features
Influenced
by
Grouping

These
features
do
not
interoperate
with
grouping
in
Spread.

Filtering:
Grouping
and
filtering
do
not
work
together.
If
you
want
to
use
grouping,
you
should
not
use
filtering
and
you
should
clear
the
filter
under
the
Grouping
event.
Conditional
Formatting:
Grouping
and
conditional
formatting
do
not
work
together.
Conditional
formatting
requires
the
default
data
model.
Thus,
these
features
do
not
work
together.
Formulas:
Grouping
and
formulas
do
not
work
together.
Formulas
requires
the
default
data
model.
Thus,
these
features
do
not
work
with
grouping.
Sorting:
Grouping
and
sorting
do
not
work
together.
Grouping
is
a
type
of
sorting.
When
grouping
is
on,
clicking
on
column
headers
will
cause
grouping,
not
sorting.
Thus,
these
features
do
not
work
together.
Count:
After
grouping
rows,
you
should
not
change
the
column
count
and
row
count.
The
GroupDataModel
does
not
support
changing
the
column
or
row
count.
To
add
or
remove
columns
or
rows,
you
need
to
call
the
original
data
model
methods.
You
can
access
the
original
data
model
using
TargetModel
('TargetModel
Property'
in
the
on-line
documentation)
property
of
the
GroupDataModel
('GroupDataModel
Class'
in
the
on-line
documentation)
class.

These
features
work
with
grouping
in
Spread.

Grouping
and
hidden
columns
work
together.
Printing
and
exporting
work
with
grouping.

Customizing Sorting of Rows of User Data

You
can
sort
the
data
displayed
in
the
sheet
either
by
column
or
by
row.
Typically,
all
the
rows
of
a
sheet
are
sorted
by
the
values
in
a
particular
column.
But
Spread
allows
various
ways
of
performing
a
sort
with
various
properties
and
methods
for
each
type
of
sorting.
In
general,
sorting
data
can
be
done
by
any
of
these
ways:

There
are
various
properties
of
sorting.
The
order
of
the
sort
can
be
in
ascending
order
(A
to
Z,
zero
to
9)
or
descending
order
(Z
to
A,
9
to
zero).
The
method
of
comparison
can
be
customized.
You
can
select
which
values
to
use
as
a
key
when
comparing
in
order
to
sort
the
values.
The
sort
indicator,
an
arrow
typically,
can
be
displayed
in
the
header
for
the
column
being
used
as
a
sort
key.
For
more
information
on
customizing
the
sorting,
refer
to
the
SortInfo
('SortInfo
Class'
in
the
on-line
documentation)
object.
With
this
object,
you
can
set
the
parameters
for
sorting
and
then
specify
this
object
in
the
particular
sort
method
you
choose.

The
cell
type
does
not
matter
for
sorting.
The
sorting
is
done
depending
on
the
data
type
of
the
values
in
the
cells.
If
you
sort
cells
with
data
of
the
DateTime
type,
then
it
sorts
those
cells
by
date,
and
if
you
sort
cells
with
data
of
the
string
type,
it
sorts
those
cells
alphabetically.

You
can
sort
entire
rows
or
columns
in
a
sheet.
To
sort
all
the
rows
of
an
entire
sheet
based
on
the
values
of
a
given
column
is
the
most
common
case,
but
Spread
allows
you
to
sort
either
rows
or
columns
and
to
specify
which
column
or
row
to
use
as
a
key
for
sorting.
The
sort
applies
to
the
entire
sheet.

Use
the
SortColumns
('SortColumns
Method'
in
the
on-line
documentation)
(or
SortRows
('SortRows
Method'
in
the
on-line
documentation))
method
to
sort
the
arrangement
of
columns
(or
rows)
in
a
sheet
using
one
or
more
rows
(or
columns)
as
the
key.
This
does
not
affect
the
data
model,
only
how
the
data
is
displayed.
Several
overloads
provide
different
ways
to
sort
the
columns
(or
rows).
To
further
customize
the
way
sorting
is
performed,
use

Spread for ASP.NET Developer’s Guide 154

Copyright © GrapeCity, Inc. All rights reserved.

the
SortInfo
('SortInfo
Class'
in
the
on-line
documentation)
object
in
conjunction
with
these
methods.

Be
aware
of
how
sorting
works
with
the
data
in
the
models.
If
you
use
the
automatic
sorting
by
clicking
the
column
header
or
you
call
the
SortRows
('SortRows
Method'
in
the
on-line
documentation)
method
of
the
sheet,
then
the
data
model
is
not
sorted,
just
the
data
that
is
displayed
to
the
user.
In
this
case,
any
data
that
is
hidden
before
the
sort
is
hidden
after
the
sort,
since
Spread
moves
any
hidden
rows
automatically.
When
you
sort
data,
only
the
data
model
is
getting
sorted.
The
SelectionModel
does
not
get
sorted.
For
more
information
on
the
models,
refer
to
Using
Sheet
Models.

Sorting
executed
by
clicking
column
headers
sorts
only
the
displayed
data
and
does
not
affect
the
order
of
actual
data
in
the
data
model.
So
you
can
reset
the
sorted
data
being
displayed
to
the
order
of
actual
data
by
calling
either
the
ResetViewRowIndexes
('ResetViewRowIndexes
Method'
in
the
on-line
documentation)
method
or
the
ResetViewColumnIndexes
('ResetViewColumnIndexes
Method'
in
the
on-line
documentation)
method.

Also,
sorting
is
not
intended
to
be
used
when
Outlook-style
grouping
is
turned
on.
For
more
information
about
grouping
(which
is
its
own
way
a
type
of
sorting),
refer
to
Customizing
Grouping
of
Rows
of
User
Data.

Note:
Cell
spans
become
invisible
when
sorting
a
sheet.

You
can
allow
the
user
to
sort
with
the
AllowSort
('AllowSort
Property'
in
the
on-line
documentation)
property.
See
the
following
topic
for
more
information:

Allowing
User
Sorting

Allowing User Sorting

You
can
allow
the
user
to
sort
with
the
AllowSort
('AllowSort
Property'
in
the
on-line
documentation)
property.
The
following
image
shows
the
column
after
the
user
has
double-clicked
on
the
header.

Using
Code

Use
the
AllowSort
('AllowSort
Property'
in
the
on-line
documentation)
property
to
allow
user
sorting.

Example

The
following
example
sets
the
AllowSort
('AllowSort
Property'
in
the
on-line
documentation)
property.

C#
FarPoint.Web.Spread.SheetView sv = new FarPoint.Web.Spread.SheetView();
FpSpread1.ActiveSheetView.SetValue(0, 0, 9);
FpSpread1.ActiveSheetView.SetValue(1, 0, 5);
FpSpread1.ActiveSheetView.SetValue(2, 0, 7);
sv = FpSpread1.ActiveSheetView);
sv.AllowSort = true;

VB
Dim sv As FarPoint.Web.Spread.SheetView
FpSpread1.ActiveSheetView.SetValue(0, 0, 9)
FpSpread1.ActiveSheetView.SetValue(1, 0, 5)

Spread for ASP.NET Developer’s Guide 155

Copyright © GrapeCity, Inc. All rights reserved.

FpSpread1.ActiveSheetView.SetValue(2, 0, 7)
sv = FpSpread1.ActiveSheetView
sv.AllowSort = True

Using
the
Spread
Designer

1.
 Select
the
Settings
menu
in
the
Sheet
Settings
section.
2.
 Select
the
General
icon.
3.
 Set
the
AllowSort
check
box.
4.
 Click
OK
to
close
the
dialog.
5.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Customizing Interaction with Cells

You
can
customize
the
user
interaction
with
individual
cells
(or
a
range
of
cells).
To
customize
this
aspect
of
user
interaction,
you
may
perform
the
following
tasks.

Adding
a
Note
to
a
Cell
Adding
a
Tag
to
a
Cell
Locking
a
Cell
Using
Conditional
Formatting
in
Cells

For
information
on
selections
of
cells,
refer
to
Customizing
Selections
of
Cells.

For
information
on
how
to
change
the
appearance
of
cells,
refer
to
Customizing
the
Appearance
of
a
Cell.
For
information
on
setting
the
cell
type,
refer
to
Customizing
with
Cell
Types.

Adding a Note to a Cell

You
can
add
a
note
to
a
cell
or
range
of
cells.
The
note
may
contain
text
such
as
a
comment,
a
question,
or
documentation
describing
the
origin
of
the
cell's
value.
When
the
pointer
is
over
a
cell
that
has
a
note,
the
note
text
displays
in
a
box
next
to
the
cell.
Notes
cannot
be
placed
in
cells
in
the
column
or
row
headers.

Using
the
Properties
Window

1.
 At
design
time,
in
the
Properties
window,
select
the
FpSpread
component.
2.
 Select
the
Sheets
property.
3.
 Click
the
button
to
display
the
SheetView
Collection
Editor.
4.
 Select
the
Cells
drop-down.
5.
 Select
the
cells
for
which
you
want
to
set
the
note.
6.
 Set
the
Note
property.
7.
 Select
OK.

Using
a
Shortcut

Set
the
Note
('Note
Property'
in
the
on-line
documentation)
property
for
the
cells
in
the
sheet
of
the
component.

Spread for ASP.NET Developer’s Guide 156

Copyright © GrapeCity, Inc. All rights reserved.

Example

This
example
code
sets
the
Note
('Note
Property'
in
the
on-line
documentation)
property
for
a
range
of
Cell
objects.

C#
FpSpread1.Sheets[0].ColumnCount = 4;
FpSpread1.Sheets[0].RowCount = 4;
FpSpread1.Sheets[0].Cells[1, 1, 3, 3].Note = "This is the note that describes the
value.";
FpSpread1.Sheets[0].Cells[1, 1, 3, 3].Value = "Value Here";

VB
FpSpread1.Sheets(0).ColumnCount = 4
FpSpread1.Sheets(0).RowCount = 4
FpSpread1.Sheets(0).Cells(1, 1, 3, 3).Note = "This is the note that describes the
value."
FpSpread1.Sheets(0).Cells(1, 1, 3, 3).Value = "Value Here"

Using
Code

Set
the
Note
('Note
Property'
in
the
on-line
documentation)
property
for
the
Cell
('Cell
Class'
in
the
on-line
documentation)
object
for
a
range
of
cells.

Example

This
example
code
sets
the
Note
('Note
Property'
in
the
on-line
documentation)
property
for
a
range
of
Cell
objects.

C#
FarPoint.Web.Spread.Cell range1;
range1 = fpSpread1.ActiveSheetView.Cells[1, 1, 3, 3];
range1.Value = "Value Here";
range1.Note = "This is the note that describes the value.";

VB
Dim range1 As FarPoint.Web.Spread.Cell
range1 = fpSpread1.ActiveSheetView.Cells(1, 1, 3, 3)
range1.Value = "Value Here"
range1.Note = "This is the note that describes the value."

Using
the
Spread
Designer

1.
 In
the
work
area,
select
the
cell
or
cells
for
which
you
want
to
set
the
notes
to
display.
2.
 In
the
properties
list
(in
the
Misc
group),
select
the
Note
property
and
type
in
the
text
of
the
note.

Another
way
is
to
select
the
Cells
property
and
click
on
the
button
to
call
up
the
Cell,
Column,
and
Row
editor
and
select
the
cells
in
that
editor.

3.
 From
the
File
menu
choose
Apply
and
Exit
to
apply
your
changes
to
the
component
and
exit
Spread
Designer.

Adding a Tag to a Cell

Spread for ASP.NET Developer’s Guide 157

Copyright © GrapeCity, Inc. All rights reserved.

You
can
add
a
tag
to
a
cell
or
range
of
cells.
If
you
prefer,
you
can
associate
data
with
any
cell
in
the
spreadsheet,
or
the
cells
in
a
column,
a
row,
or
the
entire
spreadsheet.
The
string
data
can
be
used
to
interact
with
a
cell
or
to
provide
information
to
the
application
you
create.
The
cell
data,
or
cell
tag,
is
similar
to
item
data
you
can
provide
for
the
spreadsheet,
columns,
or
rows.

For
more
information
on
tags,
refer
to
the
Tag
('Tag
Property'
in
the
on-line
documentation)
property
in
the
Cell
('Cell
Class'
in
the
on-line
documentation)
class.

Using
the
Properties
Window

1.
 At
design
time,
in
the
Properties
window,
select
the
FpSpread
component.
2.
 Select
the
Sheets
property.
3.
 Click
the
button
to
display
the
SheetView
Collection
Editor.
4.
 Select
the
Cells
drop-down.
5.
 Select
the
cells
for
which
you
want
to
set
the
tag.
6.
 Set
the
Tag
property.
7.
 Select
OK.

Using
a
Shortcut

Set
the
Tag
('Tag
Property'
in
the
on-line
documentation)
property
for
the
cells
in
the
sheet
of
the
component.

Example

This
example
code
sets
the
Tag
('Tag
Property'
in
the
on-line
documentation)
property
for
a
range
of
Cell
('Cell
Class'
in
the
on-line
documentation)
objects.

C#
FpSpread1.Sheets[0].Cells[1, 1, 3, 3].Tag = "This is the tag that describes the
value.";
FpSpread1.Sheets[0].Cells[1, 1, 3, 3].Value = "Value Here";

VB
FpSpread1.Sheets(0).Cells(1, 1, 3, 3).Tag = "This is the tag that describes the value."
FpSpread1.Sheets(0).Cells(1, 1, 3, 3).Value = "Value Here"

Using
Code

Set
the
Tag
('Tag
Property'
in
the
on-line
documentation)
property
for
the
Cell
('Cell
Class'
in
the
on-line
documentation)
object
for
a
range
of
cells.

Example

This
example
code
sets
the
Tag
('Tag
Property'
in
the
on-line
documentation)
property
for
a
range
of
Cell
('Cell
Class'
in
the
on-line
documentation)
objects.

C#
FarPoint.Web.Spread.Cell range1;
range1 = fpSpread1.ActiveSheetView.Cells[1, 1, 3, 3];
range1.Value = "Value Here";
range1.Tag = "This is the tag.";

VB

Spread for ASP.NET Developer’s Guide 158

Copyright © GrapeCity, Inc. All rights reserved.

Dim range1 As FarPoint.Web.Spread.Cell
range1 = fpSpread1.ActiveSheetView.Cells(1, 1, 3, 3)
range1.Value = "Value Here"
range1.Tag = "This is the tag."

Using
the
Spread
Designer

1.
 In
the
work
area,
select
the
cell
or
cells
for
which
you
want
to
set
the
tag
to
display.
2.
 In
the
properties
list
(in
the
Misc
group),
select
the
Tag
property
and
type
in
the
text.

Another
way
is
to
select
the
Cells
property
and
click
on
the
button
to
display
the
Cell,
Column,
and
Row
editor
and
select
the
cells
in
that
editor.

3.
 From
the
File
menu
choose
Apply
and
Exit
to
apply
your
changes
to
the
component
and
exit
Spread
Designer.

Locking a Cell

You
can
lock
a
cell
or
range
of
cells
and
make
it
unavailable
for
editing
by
the
end
user.

You
can
lock
cells
using
the
Locked
property
in
the
Cell
('Cell
Class'
in
the
on-line
documentation),
Column
('Column
Class'
in
the
on-line
documentation),
Row
('Row
Class'
in
the
on-line
documentation),
AlternatingRow
('AlternatingRow
Class'
in
the
on-line
documentation),
or
SheetView
('SheetView
Class'
in
the
on-line
documentation)
objects.

For
cells
marked
as
locked
to
be
locked
from
user
input,
the
Protect
('Protect
Property'
in
the
on-line
documentation)
property
of
the
sheet
must
be
set
to
True,
which
is
its
default
value.
If
it
is
set
to
False,
the
user
can
still
interact
with
the
cells.

Using
the
Properties
Window

1.
 At
design
time,
in
the
Properties
window,
select
the
FpSpread
component.
2.
 Select
the
Sheets
property.
3.
 Click
the
button
to
display
the
SheetView
Collection
Editor.
4.
 Select
the
Cells
drop-down.
5.
 Select
the
cells
that
you
wish
to
lock.
6.
 Set
the
Locked
property.
7.
 Select
OK.

Using
a
Shortcut

Using
the
Locked
property
for
the
Cell
('Cell
Class'
in
the
on-line
documentation),
Column
('Column
Class'
in
the
on-line
documentation),
or
Row
('Row
Class'
in
the
on-line
documentation)
object,
you
can
mark
some
cells
as
locked.
The
Protect
('Protect
Property'
in
the
on-line
documentation)
property,
for
the
sheet,
must
be
set
to
true
if
you
want
the
cells
to
be
locked
from
user
input.

Example

Making
sure
that
the
Protect
('Protect
Property'
in
the
on-line
documentation)
property
is
True
for
the
sheet,
you
can
lock
some
columns
of
cells
and
then
unlock
some
of
the
cells
in
one
row.

C#
FpSpread1.ActiveSheetView.Protect = true;
FpSpread1.ActiveSheetView.Columns[0, 3].Locked = true;
FpSpread1.ActiveSheetView.Cells[1,1,1,2].Locked = false;

Spread for ASP.NET Developer’s Guide 159

Copyright © GrapeCity, Inc. All rights reserved.

VB
FpSpread1.ActiveSheetView.Protect = True
FpSpread1.ActiveSheetView.Columns[0, 3].Locked = True
FpSpread1.ActiveSheetView.Cells[1,1,1,2].Locked = False

Using
Code

Using
the
Locked
property
for
the
Cell
('Cell
Class'
in
the
on-line
documentation),
Column
('Column
Class'
in
the
on-line
documentation),
or
Row
('Row
Class'
in
the
on-line
documentation)
object,
you
can
mark
some
cells
as
locked.
The
Protect
('Protect
Property'
in
the
on-line
documentation)
property,
for
the
sheet,
must
be
set
to
True
if
you
want
the
cells
to
be
locked
from
user
input.

Example

Making
sure
that
the
Protect
('Protect
Property'
in
the
on-line
documentation)
property
is
True
for
the
sheet,
you
can
lock
some
columns
of
cells
and
then
unlock
some
of
the
cells
in
one
row.

C#
FpSpread1.ActiveSheetView.Protect = true;
FpSpread1.ActiveSheetView.LockBackColor = Color.LightCyan;
FpSpread1.ActiveSheetView.LockForeColor = Color.Green;

FarPoint.Web.Spread.Column columnobj;
columnobj = fpSpread1.ActiveSheetView.Columns[0, 3];
columnobj.Locked = true;
FarPoint.Web.Spread.Cell cellobj;
cellobj = fpSpread1.ActiveSheetView.Cells[1,1,1,2];
cellobj.Locked = false;

FpSpread1.ActiveSheetView.Cells[1,0,1,4].Text = "First Five";

VB
FpSpread1.ActiveSheetView.Protect = True
FpSpread1.ActiveSheetView.LockBackColor = Color.LightCyan
FpSpread1.ActiveSheetView.LockForeColor = Color.Green

Dim columnobj As FarPoint.Web.Spread.Column
columnobj = fpSpread1.ActiveSheetView.Columns(0, 3)
columnobj.Locked = True
Dim cellobj As FarPoint.Web.Spread.Cell
cellobj = fpSpread1.ActiveSheetView.Cells(1,1,1,2)
cellobj.Locked = False

FpSpread1.ActiveSheetView.Cells(1,0,1,4).Text = "First Five"

Using
the
Spread
Designer

1.
 In
the
work
area,
select
the
cell
or
cells
for
which
you
want
to
lock
the
cells
either
by
dragging
over
a
range
of
cells
or
selecting
row
or
column
headers
(for
entire
rows
or
columns).

2.
 In
the
Misc
section,
select
the
Locked
property
and
choose
True.
(Another
way
of
doing
that
is
to
select
the
Cells
property,
click
on
the
button
to
call
up
the
Cell,
Column,
and
Row
editor,
and
select
the
cells
in
that
editor.)

3.
 Choose
the
sheet
from
the
drop-down
combo
to
the
right
of
the
designer.
From
the
properties
list
(in
the
Misc

Spread for ASP.NET Developer’s Guide 160

Copyright © GrapeCity, Inc. All rights reserved.

section),
set
the
Protect
property.
4.
 In
the
Properties
window
in
the
SheetView
Collection
Editor,
in
the
Misc
section,
select
the
Protect

property
and
set
it
to
True
if
you
want
the
cells
to
be
locked
from
user
input.
5.
 From
the
File
menu
choose
Apply
and
Exit
to
apply
your
changes
to
the
component
and
exit
Spread
Designer.

Using
the
Spread
Designer

The
following
steps
list
a
different
way
to
lock
cells
in
the
designer.

1.
 In
the
work
area,
select
the
cell
or
cells
that
you
want
to
lock.
2.
 Select
the
Home
menu.
3.
 Select
the
Lock
icon
from
the
Editing
section.
4.
 From
the
File
menu
choose
Apply
and
Exit
to
apply
your
changes
to
the
component
and
exit
Spread
Designer.

Using Conditional Formatting in Cells

You
can
customize
the
user
interaction
with
individual
cells
(or
a
range
of
cells).
You
can
use
rules
or
conditional
operators
in
the
conditional
format.

To
customize
this
aspect
of
user
interaction,
you
may
perform
the
following
tasks:

Creating
Conditional
Formatting
with
Rules
Conditional
Formatting
of
Cells

Creating Conditional Formatting with Rules

You
can
set
the
visual
appearance
of
cells
using
rules.
The
following
classes
are
available
when
creating
conditional
formatting
with
rules:

AverageConditionalFormattingRule
Class
(on-line
documentation)
BetweenValuesConditionalFormattingRule
Class
(on-line
documentation)
BlankConditionalFormattingRule
Class
(on-line
documentation)
DatabarConditionalFormattingRule
Class
(on-line
documentation)
ErrorConditionalFormattingRule
Class
(on-line
documentation)
FormulaConditionalFormattingRule
Class
(on-line
documentation)
IconSetConditionalFormattingRule
Class
(on-line
documentation)
PrePaintConditionalFormattingRule
Class
(on-line
documentation)
PrePaintTextConditionalFormattingRule
Class
(on-line
documentation)
TextConditionalFormattingRule
Class
(on-line
documentation)
ThreeColorScaleConditionalFormattingRule
Class
(on-line
documentation)
TimePeriodConditionalFormattingRule
Class
(on-line
documentation)
TopRankedValuesConditionalFormattingRule
Class
(on-line
documentation)
TwoColorScaleConditionalFormattingRule
Class
(on-line
documentation)
UnaryComparisonConditionalFormattingRule
Class
(on-line
documentation)
UniqueOrDuplicatedConditionalFormattingRule
Class
(on-line
documentation)

The
average
rule
checks
for
values
above
or
under
the
average.
The
cell
value
rule
compares
values.
The
date
rule
compares
dates.
The
formula
rule
allows
you
to
use
formulas
when
checking
the
condition.
The
scale
rule
uses
a
sliding
color
scale.
For
example
if
1
is
yellow
and
50
is
green,
then
25
would
be
light
green.
The
specific
text
rule
searches
for
text
strings.
The
top
10
rule
checks
for
values
in
the
top
or
bottom
of
the
range.
The
unique
rule
checks
to
see
if
the
value
is
the
only
one
of
that
value
in
the
range
(if
the
duplicate
option
is
false).
The
duplicate
rule
checks
for
duplicate
values.

The
data
bar
rule
displays
a
bar
in
the
cell
based
on
the
cell
value
in
the
range.
The
icon
set
rule
displays
icons
based
on

Spread for ASP.NET Developer’s Guide 161

Copyright © GrapeCity, Inc. All rights reserved.

the
values.

The
following
topics
provide
additional
information
about
specific
conditional
formatting
rules.

Color
Scale
Rules
Data
Bar
Rule
Highlighting
Rules
Icon
Set
Rule
Top
or
Average
Rules

Color Scale Rules

Color
scales
are
visual
guides
that
help
you
understand
data
distribution
and
variation.
A
two-color
scale
compares
a
range
of
cells
by
using
a
gradation
of
two
colors.
The
shade
of
the
color
represents
higher
or
lower
values.
For
example,
in
a
green
and
red
color
scale,
you
can
specify
that
higher
value
cells
are
closer
to
a
green
color
and
lower
value
cells
are
closer
to
a
red
color.
You
can
specify
the
value
type,
value,
and
color
for
the
minimum
and
maximum
properties.

A
three-color
scale
compares
a
range
of
cells
by
using
a
gradation
of
three
colors.
The
shade
of
the
color
represents
higher,
middle,
or
lower
values.
For
example,
in
a
green,
yellow,
and
red
color
scale,
you
can
specify
that
higher
value
cells
have
a
green
color,
middle
value
cells
have
a
yellow
color,
and
lower
value
cells
have
a
red
color.
You
can
specify
the
value
type,
value,
and
color
for
the
minimum,
middle,
and
maximum
properties.

The
following
image
uses
the
three
color
rule:

Using
Code

Set
the
properties
of
the
TwoColorScaleConditionalFormattingRule
('TwoColorScaleConditionalFormattingRule
Class'
in
the
on-line
documentation)
class
or
the
ThreeColorScaleConditionalFormattingRule
('ThreeColorScaleConditionalFormattingRule
Class'
in
the
on-line
documentation)
class
and
then
apply
the
formatting.

Example

This
example
code
creates
a
three
color
rule
and
uses
the
SetConditionalFormatting
('SetConditionalFormatting
Method'
in
the
on-line
documentation)
method
to
apply
the
rule.

C#
protected void Page_Load(object sender, System.EventArgs e)
{
FpSpread1.Sheets[0].Cells[0, 0].Value = 3;
FpSpread1.Sheets[0].Cells[1, 0].Value = 2;
FpSpread1.Sheets[0].Cells[1, 1].Value = 10;
FpSpread1.Sheets[0].Cells[0, 2].Value = 1;
}

protected void Button1_Click(object sender, EventArgs e)
{
FarPoint.Web.Spread.Model.CellRange celRange1 = new
FarPoint.Web.Spread.Model.CellRange(0, 0, 3, 3);
FarPoint.Web.Spread.ThreeColorScaleConditionalFormattingRule rule = new

Spread for ASP.NET Developer’s Guide 162

Copyright © GrapeCity, Inc. All rights reserved.

FarPoint.Web.Spread.ThreeColorScaleConditionalFormattingRule(Color.Aqua, Color.Bisque,
Color.BlueViolet);
FpSpread1.Sheets[0].SetConditionalFormatting(new FarPoint.Web.Spread.Model.CellRange[]
{ celRange1 }, rule);
}

VB
Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
FpSpread1.Sheets(0).Cells(0, 0).Value = 3
FpSpread1.Sheets(0).Cells(1, 0).Value = 2
FpSpread1.Sheets(0).Cells(1, 1).Value = 10
FpSpread1.Sheets(0).Cells(0, 2).Value = 1
End Sub

Protected Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
Dim celRange1 As New FarPoint.Web.Spread.Model.CellRange(0, 0, 3, 3)
Dim rule As New
FarPoint.Web.Spread.ThreeColorScaleConditionalFormattingRule(Drawing.Color.Aqua,
Drawing.Color.Bisque, Drawing.Color.BlueViolet)
FpSpread1.Sheets(0).SetConditionalFormatting(New FarPoint.Web.Spread.Model.CellRange()
{celRange1}, rule)
End Sub

Using
the
Spread
Designer

1.
 In
the
work
area,
select
the
cell
or
cells
for
which
you
want
to
set
the
conditional
format.
2.
 Under
the
Home
menu,
select
the
Conditional
Formatting
icon
in
the
Style
section,
then
select
the
Color
Scales
option,
and
then
choose
the
color
set.

3.
 From
the
File
menu
choose
Apply
and
Exit
to
apply
your
changes
to
the
component
and
exit
Spread
Designer.

Data Bar Rule

The
data
bar
rule
uses
a
bar
that
is
displayed
as
the
background
for
each
cell.
The
length
of
the
bar
corresponds
to
the
size
of
the
data
relative
to
the
other
data
in
the
worksheet.
The
longer
the
bar,
the
greater
the
value
in
the
cell.

You
can
specify
the
value
type
and
the
value
to
compare
in
the
conditional
format.

Value
Type

Description

Percent The
minimum
value
in
the
range
of
cells
that
the
conditional
formatting
rule
applies
to
plus
X
percent
of
the
difference
between
the
maximum
and
minimum
values
in
the
range
of
cells
that
the
conditional
formatting
rule
applies
to.
For
example,
if
the
minimum
and
maximum
values
in
the
range
are
1
and
10
respectively,
and
X
is
10,
then
the
value
is
1.9.

Highest
Value

The
maximum
value
in
the
range
of
cells
that
the
conditional
formatting
rule
applies
to.

Lowest
Value

The
minimum
value
in
the
range
of
cells
that
the
conditional
formatting
rule
applies
to.

Formula The
result
of
the
formula
determines
the
minimum
or
maximum
value
of
the
cell
range
that
the
rule
applies
to.
If
the
result
is
not
numeric,
it
is
treated
as
zero.

Percentile The
result
of
the
function
percentile
applied
to
the
range
with
X.

Spread for ASP.NET Developer’s Guide 163

Copyright © GrapeCity, Inc. All rights reserved.

Automatic The
smaller
or
larger
or
the
minimum
or
maximum
value
in
the
range
of
cells
that
the
conditional
format
applies
to.

Number Number,
date,
or
time
value
in
the
range
of
cells
that
the
conditional
formatting
rule
applies
to.

Valid
percentiles
are
from
0
(zero)
to
100.
A
percentile
cannot
be
used
if
the
range
of
cells
contains
more
than
8,191
data
points.
Use
a
percentile
when
you
want
to
visualize
a
group
of
high
values
(such
as
the
top
20th
percentile)
in
one
data
bar
and
low
values
(such
as
the
bottom
20th
percentile)
in
another
data
bar.
This
is
useful
if
you
have
extreme
values
that
might
skew
the
visualization
of
your
data.

Valid
percent
values
are
from
0
(zero)
to
100.
Percent
values
should
not
use
a
percent
sign.
Use
a
percentage
when
you
want
to
visualize
all
values
proportionally
because
the
distribution
of
values
is
proportional.

Start
formulas
with
an
equal
sign
(=).
Invalid
formulas
result
in
no
formatting
applied.

The
minimum
and
maximum
types
can
be
different.
The
Maximum
('Maximum
Property'
in
the
on-line
documentation)
property
should
not
be
set
to
a
ConditionalFormattingValue
value
such
as
ConditionalFormattingValueType.Min
or
ConditionalFormattingValueType.AutoMin.
An
exception
will
occur
in
this
case.
The
Minimum
('Minimum
Property'
in
the
on-line
documentation)
property
should
not
be
set
to
a
ConditionalFormattingValue
value
such
as
ConditionalFormattingValueType.Max
or
ConditionalFormattingValueType.AutoMax.
An
exception
will
occur
in
this
case.

You
can
also
specify
borders,
colors,
and
an
axis.

The
following
image
displays
data
bars
in
a
cell
range:

Using
Code

Set
the
properties
of
the
data
bar
rule
class
and
then
apply
the
formatting.

Example

This
example
code
creates
a
data
bar
rule
and
uses
the
SetConditionalFormatting
('SetConditionalFormatting
Method'
in
the
on-line
documentation)
method
to
apply
the
rule.

C#
protected void Page_Load(object sender, System.EventArgs e)
{
FpSpread1.Sheets[0].RowCount = 5;
FpSpread1.Sheets[0].Cells[0, 0].Value = 3;
FpSpread1.Sheets[0].Cells[1, 0].Value = 2;
FpSpread1.Sheets[0].Cells[2, 0].Value = 10;
FpSpread1.Sheets[0].Cells[3, 0].Value = 1;
}

protected void Button1_Click(object sender, EventArgs e)
{
FarPoint.Web.Spread.DatabarConditionalFormattingRule d = new
FarPoint.Web.Spread.DatabarConditionalFormattingRule();
d.BorderColor = Color.Red;

Spread for ASP.NET Developer’s Guide 164

Copyright © GrapeCity, Inc. All rights reserved.

d.ShowBorder = true;
d.Minimum = new FarPoint.Web.Spread.ConditionalFormattingValue(0,
FarPoint.Web.Spread.ConditionalFormattingValueType.Number);
d.Maximum = new FarPoint.Web.Spread.ConditionalFormattingValue(15,
FarPoint.Web.Spread.ConditionalFormattingValueType.Max);
FpSpread1.ActiveSheetView.SetConditionalFormatting(0, 0, 4, 1, d);
}

VB
Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
FpSpread1.Sheets(0).RowCount = 5
FpSpread1.Sheets(0).Cells(0, 0).Value = 3
FpSpread1.Sheets(0).Cells(1, 0).Value = 2
FpSpread1.Sheets(0).Cells(2, 0).Value = 10
FpSpread1.Sheets(0).Cells(3, 0).Value = 1
End Sub

Protected Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
Dim d As New FarPoint.Web.Spread.DatabarConditionalFormattingRule()
d.BorderColor = Drawing.Color.Red
d.ShowBorder = True
d.Minimum = New FarPoint.Web.Spread.ConditionalFormattingValue(0,
FarPoint.Web.Spread.ConditionalFormattingValueType.Number)
d.Maximum = New FarPoint.Web.Spread.ConditionalFormattingValue(15,
FarPoint.Web.Spread.ConditionalFormattingValueType.Max)
FpSpread1.ActiveSheetView.SetConditionalFormatting(0, 0, 4, 1, d)
End Sub

Using
the
Spread
Designer

1.
 In
the
work
area,
select
the
cell
or
cells
for
which
you
want
to
set
the
conditional
format.
2.
 Under
the
Home
menu,
select
the
Conditional
Formatting
icon
in
the
Style
section,
then
select
the
Data
Bars
option,
and
then
choose
the
color
set.

3.
 From
the
File
menu
choose
Apply
and
Exit
to
apply
your
changes
to
the
component
and
exit
Spread
Designer.

Highlighting Rules

You
can
use
this
rule
to
highlight
data
that
meets
one
of
the
following
conditions:

is
greater
than
a
value
is
less
than
a
value
is
between
a
high
and
low
value
is
equal
to
a
value
contains
a
value
is
a
date
that
occurs
in
a
particular
range
is
either
unique
or
duplicated
elsewhere
in
the
worksheet

After
you
choose
one
of
the
options
above,
enter
a
value
or
formula
against
which
each
cell
is
compared.
If
the
cell
data
satisfies
that
criteria,
then
the
formatting
is
applied.

You
can
select
a
predefined
highlight
style
or
create
a
custom
highlight
style.
The
following
rules
are
highlight
style
rules:

Spread for ASP.NET Developer’s Guide 165

Copyright © GrapeCity, Inc. All rights reserved.

BetweenValuesConditionalFormattingRule
('BetweenValuesConditionalFormattingRule
Class'
in
the
on-line
documentation)
BlankConditionalFormattingRule
('BlankConditionalFormattingRule
Class'
in
the
on-line
documentation)
ErrorConditionalFormattingRule
('ErrorConditionalFormattingRule
Class'
in
the
on-line
documentation)
FormulaConditionalFormattingRule
('FormulaConditionalFormattingRule
Class'
in
the
on-
line
documentation)
TextConditionalFormattingRule
('TextConditionalFormattingRule
Class'
in
the
on-line
documentation)
TimePeriodConditionalFormattingRule
('TimePeriodConditionalFormattingRule
Class'
in
the
on-line
documentation)
UnaryComparisonConditionalFormattingRule
('UnaryComparisonConditionalFormattingRule
Class'
in
the
on-line
documentation)
UniqueOrDuplicatedConditionalFormattingRule
('UniqueOrDuplicatedConditionalFormattingRule
Class'
in
the
on-line
documentation)

Using
Code

Set
the
properties
of
the
rule
class
and
then
apply
the
formatting.

Example

This
example
code
creates
the
between
values
rule
and
uses
the
SetConditionalFormatting
('SetConditionalFormatting
Method'
in
the
on-line
documentation)
method
to
apply
the
rule.

C#
protected void Page_Load(object sender, System.EventArgs e)
 {
 FpSpread1.Sheets[0].Cells[0, 0].Value = 3;
 FpSpread1.Sheets[0].Cells[1, 0].Value = 2;
 FpSpread1.Sheets[0].Cells[1, 1].Value = 5;
 FpSpread1.Sheets[0].Cells[0, 2].Value = 1;
 }

protected void Button1_Click(object sender, EventArgs e)
 {
 FarPoint.Web.Spread.BetweenValuesConditionalFormattingRule between = new
FarPoint.Web.Spread.BetweenValuesConditionalFormattingRule(false);
 between.FirstValue = 10;
 between.SecondValue = 20;
 between.IsNotBetween = true;
 between.BackColor = Color.Bisque;
 FpSpread1.ActiveSheetView.SetConditionalFormatting(1, 1, between);
 }

VB
Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
 FpSpread1.Sheets(0).Cells(0, 0).Value = 3
 FpSpread1.Sheets(0).Cells(1, 0).Value = 2
 FpSpread1.Sheets(0).Cells(1, 1).Value = 5
 FpSpread1.Sheets(0).Cells(0, 2).Value = 1
 End Sub

Spread for ASP.NET Developer’s Guide 166

Copyright © GrapeCity, Inc. All rights reserved.

Protected Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 Dim between As New
FarPoint.Web.Spread.BetweenValuesConditionalFormattingRule(False)
 between.FirstValue = 10
 between.SecondValue = 20
 between.IsNotBetween = True
 between.BackColor = Drawing.Color.Bisque
 FpSpread1.ActiveSheetView.SetConditionalFormatting(1, 1, between)
 End Sub

Using
the
Spread
Designer

1.
 In
the
work
area,
select
the
cell
or
cells
for
which
you
want
to
set
the
conditional
format.
2.
 Under
the
Home
menu,
select
the
Conditional
Formatting
icon
in
the
Style
section,
then
select
the
Highlight
Cells
Rules
option,
and
then
choose
the
condition.

3.
 From
the
File
menu
choose
Apply
and
Exit
to
apply
your
changes
to
the
component
and
exit
Spread
Designer.

Icon Set Rule

You
can
set
rules
that
display
certain
icons
when
a
cell
value
is
greater
than,
equal
to,
or
less
than
a
value.

You
can
use
built-in
icon
sets
for
the
rule.
You
can
also
specify
individual
icons
to
use
in
the
icon
set
with
the
IconRuleSet
('IconRuleSet
Property'
in
the
on-line
documentation)
property.

Using
Code

Set
the
properties
of
the
IconSetConditionalFormattingRule
('IconSetConditionalFormattingRule
Class'
in
the
on-line
documentation)
class
and
then
apply
the
formatting.

Example

This
example
code
creates
an
icon
set
rule
and
uses
the
SetConditionalFormatting
('SetConditionalFormatting
Method'
in
the
on-line
documentation)
method
to
apply
the
rule.

C#
protected void Page_Load(object sender, System.EventArgs e)
 {
FpSpread1.Sheets[0].RowCount = 5;
FpSpread1.Sheets[0].Cells[0, 0].Value = 8;
FpSpread1.Sheets[0].Cells[1, 0].Value = 5;
FpSpread1.Sheets[0].Cells[2, 0].Value = 10;
FpSpread1.Sheets[0].Cells[3, 0].Value = 1;
 }
protected void Button1_Click(object sender, EventArgs e)
{
FarPoint.Web.Spread.Model.CellRange celRange1 = new FarPoint.Web.Spread.Model.CellRange(0, 0, 4, 1);
FarPoint.Web.Spread.IconSetConditionalFormattingRule rule = new
FarPoint.Web.Spread.IconSetConditionalFormattingRule(FarPoint.Web.Spread.ConditionalFormattingIconSetStyle.ThreeRimmedTrafficLights);
FpSpread1.Sheets[0].SetConditionalFormatting(new FarPoint.Web.Spread.Model.CellRange[] { celRange1 }, rule);
}

VB
Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load
FpSpread1.Sheets(0).RowCount = 5
FpSpread1.Sheets(0).Cells(0, 0).Value = 8
FpSpread1.Sheets(0).Cells(1, 0).Value = 5
FpSpread1.Sheets(0).Cells(2, 0).Value = 10
FpSpread1.Sheets(0).Cells(3, 0).Value = 1
End Sub
Protected Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

Spread for ASP.NET Developer’s Guide 167

Copyright © GrapeCity, Inc. All rights reserved.

Dim celRange1 As New FarPoint.Web.Spread.Model.CellRange(0, 0, 4, 1)
Dim rule As New
FarPoint.Web.Spread.IconSetConditionalFormattingRule(FarPoint.Web.Spread.ConditionalFormattingIconSetStyle.ThreeRimmedTrafficLights)
FpSpread1.Sheets(0).SetConditionalFormatting(New FarPoint.Web.Spread.Model.CellRange() {celRange1}, rule)
End Sub

Using
the
Spread
Designer

1.
 In
the
work
area,
select
the
cell
or
cells
for
which
you
want
to
set
the
conditional
format.
2.
 Under
the
Home
menu,
select
the
Conditional
Formatting
icon
in
the
Style
section,
then
select
the
Icon
Sets
option,
and
then
choose
the
icon
set.
3.
 From
the
File
menu
choose
Apply
and
Exit
to
apply
your
changes
to
the
component
and
exit
Spread
Designer.

Top or Average Rules

The
top
or
bottom
rules
apply
formatting
to
cells
whose
values
fall
in
the
top
or
bottom
percent.
The
top
ranked
rule
specifies
the
top
or
bottom
values.
The
average
rule
applies
to
the
greater
or
lesser
average
value
of
the
entire
range.

The
following
options
are
available:

top
10
top
10%
bottom
10
bottom
10%
above
average
below
average

Using
Code

Set
the
properties
of
the
rule
class
and
then
apply
the
formatting.

Example

This
example
code
creates
an
average
rule
and
uses
the
SetConditionalFormatting
('SetConditionalFormatting
Method'
in
the
on-line
documentation)
method
to
apply
the
rule.

C#
protected void Page_Load(object sender, System.EventArgs e)
{
FpSpread1.Sheets[0].Cells[0, 0].Value = 3;
FpSpread1.Sheets[0].Cells[1, 0].Value = 2;
FpSpread1.Sheets[0].Cells[1, 1].Value = 10;
FpSpread1.Sheets[0].Cells[0, 2].Value = 1;
}

protected void Button1_Click(object sender, EventArgs e)
{
//Average CF
FarPoint.Web.Spread.AverageConditionalFormattingRule average = new
FarPoint.Web.Spread.AverageConditionalFormattingRule(true, true);
average.IsAbove = true;
average.IsIncludeEquals = true;
average.StandardDeviation = 5;
average.FontStyle = new
FarPoint.Web.Spread.SpreadFontStyle(FarPoint.Web.Spread.UnderlineFontStyle.None);
average.FontStyle.RegularBoldItalic =
FarPoint.Web.Spread.RegularBoldItalicFontStyle.Bold;
FpSpread1.ActiveSheetView.SetConditionalFormatting(1, 1, average);
}

Spread for ASP.NET Developer’s Guide 168

Copyright © GrapeCity, Inc. All rights reserved.

VB
Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
FpSpread1.Sheets(0).Cells(0, 0).Value = 3
FpSpread1.Sheets(0).Cells(1, 0).Value = 2
FpSpread1.Sheets(0).Cells(1, 1).Value = 10
FpSpread1.Sheets(0).Cells(0, 2).Value = 1
End Sub

Protected Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
'Average CF
Dim average As New FarPoint.Web.Spread.AverageConditionalFormattingRule(True, True)
average.IsAbove = True
average.IsIncludeEquals = True
average.StandardDeviation = 5
average.FontStyle = New
FarPoint.Web.Spread.SpreadFontStyle(FarPoint.Web.Spread.UnderlineFontStyle.None)
average.FontStyle.RegularBoldItalic =
FarPoint.Web.Spread.RegularBoldItalicFontStyle.Bold
FpSpread1.ActiveSheetView.SetConditionalFormatting(1, 1, average)
End Sub

Using
the
Spread
Designer

1.
 In
the
work
area,
select
the
cell
or
cells
for
which
you
want
to
set
the
conditional
format.
2.
 Under
the
Home
menu,
select
the
Conditional
Formatting
icon
in
the
Style
section,
then
select
the
Top
Bottom
Rules
option,
and
then
choose
the
condition.

3.
 From
the
File
menu
choose
Apply
and
Exit
to
apply
your
changes
to
the
component
and
exit
Spread
Designer.

Conditional Formatting of Cells

You
can
set
up
conditional
formats
within
cells
that
determine
the
formatting
of
the
cell
based
on
the
outcome
of
a
conditional
statement.
You
can
use
a
named
style
to
specify
various
formatting
options
such
as
borders
and
colors
to
apply
if
the
condition
statement
is
valid,
that
is,
if
the
operation
is
satisfied.

For
example,
you
may
want
to
change
the
background
color
of
a
cell
based
on
the
value
of
the
cell.
If
the
value
is
below
100
then
the
background
color
would
be
changed
to
red.
The
condition
statement
is
"less
than
100"
and
consists
of
a
comparison
operator
"less
than"
and
a
condition,
in
this
case
a
single
constant
"100".
The
condition
can
be
a
constant
(expressed
as
a
string)
or
an
expression.
Some
condition
statements
have
two
conditions
and
an
operator:
for
instance,
if
the
cell
value
is
between
0
and
100,
then
change
the
background
color.
In
this
case,
the
comparison
operator
is
“between”
and
the
first
condition
is
0
and
the
last
condition
is
100.
For
a
complete
list
of
operations,
refer
to
the
ComparisonOperator
('ComparisonOperator
Enumeration'
in
the
on-line
documentation)
enumeration.
For
a
list
of
the
types
of
expressions,
refer
to
the
CalcEngine.Expression
object.
For
more
information
about
the
possible
style
settings,
refer
to
Creating
and
Applying
a
Custom
Style
for
Cells.

If
two
conditional
formats
are
set
to
the
same
cell,
the
second
conditional
format
takes
effect.

Using
Code

Use
the
SetConditionalFormat
('SetConditionalFormat
Method'
in
the
on-line
documentation)
method
to
create
a
conditional
format.

Example

Spread for ASP.NET Developer’s Guide 169

Copyright © GrapeCity, Inc. All rights reserved.

The
following
example
changes
the
color
of
the
cell
if
the
value
is
greater
than
14.

C#
FarPoint.Web.Spread.NamedStyle ns = new FarPoint.Web.Spread.NamedStyle();
ns.BackColor = Color.Crimson;
ns.Name = "mystyle";
FpSpread1.NamedStyles.Add(ns);
FpSpread1.Sheets[0].SetConditionalFormat(0, 0, ns,
FarPoint.Web.Spread.ComparisonOperator.GreaterThan, "14");

VB
Dim ns As New FarPoint.Web.Spread.NamedStyle
ns.BackColor = Drawing.Color.Azure
ns.Name = "mystyle"
FpSpread1.NamedStyles.Add(ns)
FpSpread1.Sheets(0).SetConditionalFormat(0, 0, ns,
FarPoint.Web.Spread.ComparisonOperator.GreaterThan, "14")

Customizing Selections of Cells

You
can
customize
what
the
user
can
select
and
how
it
appears.
To
customize
aspects
of
selections,
you
can
perform
the
following
tasks:

Specifying
What
the
User
Can
Select
Working
with
Selections
of
Cells
Customizing
the
Appearance
of
Selections

For
more
information
about
the
underlying
selection
model,
refer
to
Understanding
the
Selection
Model.

Specifying What the User Can Select

By
default,
the
component
allows
users
to
select
a
cell,
a
column,
a
row,
a
range
of
cells,
or
the
entire
sheet.
You
can
customize
what
the
user
can
select
by
working
with
the
operation
mode
of
the
sheet
(OperationMode
('OperationMode
Property'
in
the
on-line
documentation)
property).
The
settings
are
based
on
the
OperationMode
('OperationMode
Enumeration'
in
the
on-line
documentation)
enumeration.
You
can
specify
what
the
user
is
allowed
to
select
in
normal
operation
mode
with
the
SelectionBlockOptions
('SelectionBlockOptions
Property'
in
the
on-line
documentation)
property.
You
can
allow
the
user
to
select
multiple
blocks
in
normal
operation
mode
with
the
SelectionPolicy
('SelectionPolicy
Property'
in
the
on-line
documentation)
property.

The
settings
of
the
OperationMode
('OperationMode
Property'
in
the
on-line
documentation)
property
affect
user
interaction
with
the
sheet,
that
is,
what
the
user
can
select,
but
not
necessarily
what
the
application
can
select.

Spread for ASP.NET Developer’s Guide 170

Copyright © GrapeCity, Inc. All rights reserved.

The
following
table
summarizes
the
options
available
for
specifying
what
users
can
select
and
edit
on
the
sheet:

User
can
select User
can
edit OperationMode
Setting
Cell,
row,
column,
any
range
of
cells,
entire
sheet Active
cell Normal

Only
one
row Active
Cell RowMode

Only
one
row Nothing SingleSelect

Nothing Nothing ReadOnly

Multiple
contiguous
rows Nothing MultiSelect

Multiple
discontiguous
rows Nothing ExtendedSelect

Using
the
Properties
Window

1.
 At
design
time,
in
the
Properties
window,
select
the
FpSpread
component.
2.
 Select
the
Sheets
property.
3.
 Click
the
button
to
display
the
SheetView
Collection
Editor.
4.
 In
the
Members
list,
select
the
sheet
for
which
to
set
the
operation
mode.
5.
 Select
the
OperationMode
property,
then
select
one
of
the
values
from
the
drop-down
list
of
values.
6.
 Click
OK
to
close
the
editor.

Using
a
Shortcut

1.
 To
set
the
overall
user
interaction
mode
of
the
sheet,
set
the
Sheet’s
OperationMode
('OperationMode
Property'
in
the
on-line
documentation)
property.

Example

This
example
code
sets
the
sheet
to
allow
users
to
select
only
rows
and
only
edit
the
active
cell.

C#
// Set the operation mode and let users select only rows.
fpSpread1.Sheets[0].OperationMode = FarPoint.Web.Spread.OperationMode.RowMode;

VB
' Set the operation mode and let users select only rows.
FpSpread1.Sheets(0).OperationMode = FarPoint.Web.Spread.OperationMode.RowMode

Spread for ASP.NET Developer’s Guide 171

Copyright © GrapeCity, Inc. All rights reserved.

Using
Code

1.
 To
set
the
overall
user
interaction
mode
of
the
sheet,
set
the
OperationMode
('OperationMode
Property'
in
the
on-line
documentation)
property
for
a
SheetView
('SheetView
Class'
in
the
on-line
documentation)
object.

2.
 Assign
the
SheetView
('SheetView
Class'
in
the
on-line
documentation)
object
you
have
created
to
one
of
the
sheets
in
the
component.

Example

This
example
code
sets
the
sheet
to
allow
users
to
select
only
cells
or
ranges
of
cells,
including
multiple
ranges
of
cells.
They
cannot
select
columns,
rows,
or
the
entire
sheet.

C#
// Set operation mode and let users select only a row.
FarPoint.Web.Spread.SheetView newsheet = new FarPoint.Web.Spread.SheetView();
newsheet.OperationMode = FarPoint.Web.Spread.OperationMode.RowMode;
// Assign the SheetView object to a sheet.
fpSpread1.Sheets[0] = newsheet;

VB
' Set operation mode and let users select only a row.
Dim newsheet As New FarPoint.Web.Spread.SheetView()
newsheet.OperationMode = FarPoint.Web.Spread.OperationMode.RowMode
' Assign the SheetView object to a sheet.
FpSpread1.Sheets(0) = newsheet

Using
the
Spread
Designer

1.
 Select
the
sheet
tab
for
the
sheet
for
which
you
want
to
set
the
selection
operation
mode.
2.
 From
the
Settings
menu,
select
the
General
icon,
then
select
one
of
the
choices
from
the
Operation
Mode

area.
3.
 Click
OK
to
close
the
Sheet
Settings
dialog.
4.
 From
the
File
menu
choose
Apply
and
Exit
to
apply
your
changes
to
the
component
and
exit
Spread
Designer.

Working with Selections of Cells

Besides
selections
that
can
be
allowed
by
the
end
user,
you
can
work
with
selections
to
the
sheet
using
code.
With
code,
you
can
add
a
selection
or
remove
one
or
all
of
the
existing
selections.
Use
the
AddSelection
('AddSelection
Method'
in
the
on-line
documentation)
and
ClearSelection
('ClearSelection
Method'
in
the
on-line
documentation)
methods
to
add
and
remove
selections
using
code
in
the
selection
model.

For
more
information
on
working
with
the
models,
refer
to
Understanding
the
Selection
Model.

For
information
on
changing
the
appearance
of
selected
cells,
refer
to
Customizing
the
Appearance
of
Selections.

Using
Code

You
can
get
a
selection
on
the
server
side
with
the
following
code.

Example

Spread for ASP.NET Developer’s Guide 172

Copyright © GrapeCity, Inc. All rights reserved.

The
following
code
gets
the
first
selection.

C#
FarPoint.Web.Spread.Model.CellRange cr = FarPoint.Web.Spread.Model.CellRange;
cr = FpSpread1.Sheets[0].SelectionModel(0);

VB
Dim cr as FarPoint.Web.Spread.Model.CellRange
cr = FpSpread1.Sheets(0).SelectionModel(0)

Customizing the Appearance of Selections

Selections
have
a
default
appearance
provided
by
the
component
and
the
selection
renderer.
You
can
change
that
appearance,
including
the
background
and
text
colors
as
well
as
the
border.
By
default,
when
you
click
on
a
row
header,
the
entire
row
is
selected
and
when
you
click
on
a
column
header,
the
entire
column
is
selected.
The
active
cell
retains
a
different
appearance
to
show
you
which
cell
is
active.
You
can
change
the
selection
behavior
by
setting
the
OperationMode
('OperationMode
Property'
in
the
on-line
documentation)
for
the
sheet.

Set
the
SheetView
('SheetView
Class'
in
the
on-line
documentation)
object’s
SelectionBackColor
('SelectionBackColor
Property'
in
the
on-line
documentation)
and
SelectionForeColor
('SelectionForeColor
Property'
in
the
on-line
documentation)
to
specify
the
colors
to
use
for
the
background
and
for
the
text
(SelectionForeColor
('SelectionForeColor
Property'
in
the
on-line
documentation)
only
applies
to
downlevel
browsers).
Set
the
SheetView
object’s
SelectionBorder
('SelectionBorder
Property'
in
the
on-line
documentation)
to
specify
the
border
for
selections
(downlevel
browser
only).
Assign
the
SheetView
object
you
have
created
to
one
of
the
sheets
in
the
component.

You
can
also
change
the
appearance
by
setting
the
selection
colors
in
a
custom
skin
and
applying
that
skin
to
the
sheet.
For
more
information
about
skins,
refer
to
Creating
a
Skin
for
Sheets
and
Applying
a
Skin
to
a
Sheet.

Using
the
Properties
Window

1.
 At
design
time,
in
the
Properties
window,
select
the
FpSpread
component.
2.
 Select
the
Sheets
property.
3.
 Click
the
button
to
display
the
SheetView
Collection
Editor.
4.
 Set
the
various
selection
properties.
5.
 Click
OK
to
close
the
editor.

Using
a
Shortcut

1.
 Set
the
SelectionBackColorStyle
('SelectionBackColorStyle
Property'
in
the
on-line
documentation)
property.

2.
 Set
the
SelectionBackColor
('SelectionBackColor
Property'
in
the
on-line
documentation)
property.
3.
 Set
the
SelectionPolicy
('SelectionPolicy
Property'
in
the
on-line
documentation)
property.

Example

This
example
code
sets
the
selection
backcolor
and
policies.

C#
FpSpread1.Sheets[0].SelectionBackColorStyle =
FarPoint.Web.Spread.SelectionBackColorStyles.SelectionBackColor;
FpSpread1.Sheets[0].SelectionBackColor = Color.SaddleBrown;
FpSpread1.Sheets[0].SelectionPolicy =

Spread for ASP.NET Developer’s Guide 173

Copyright © GrapeCity, Inc. All rights reserved.

FarPoint.Web.Spread.Model.SelectionPolicy.MultiRange;

VB
FpSpread1.Sheets(0).SelectionBackColorStyle =
FarPoint.Web.Spread.SelectionBackColorStyles.SelectionBackColor
FpSpread1.Sheets(0).SelectionBackColor = Color.SaddleBrown
FpSpread1.Sheets(0).SelectionPolicy =
FarPoint.Web.Spread.Model.SelectionPolicy.MultiRange

Using
the
Spread
Designer

1.
 Select
the
Settings
menu.
2.
 Select
the
Colors
icon
from
the
Sheet
Settings
section.
3.
 Set
the
various
selection
options.
Click
OK
to
close
the
dialog.
4.
 From
the
File
menu
choose
Apply
and
Exit
to
apply
your
changes
to
the
component
and
exit
Spread
Designer.

Managing Printing

You
can
print
the
data
area
of
the
spreadsheet.
This
includes
the
headers
and
the
cells,
but
not
the
tool
bars
or
scroll
bars
of
the
component.
You
can
also
specify
headers
and
footers
for
the
printed
pages.

Printing
a
Spreadsheet
Adding
Headers
and
Footers
to
Printed
Pages

You
can
also
print
to
a
PDF
file.
For
more
information,
see
Saving
to
a
PDF
File.

Printing a Spreadsheet

You
can
print
the
data
area
of
a
spreadsheet
by
clicking
Print
(or
the
Print
icon)
in
the
command
bar
of
the
component.
The
appearance
of
the
print
button
depends
on
the
setting
in
the
command
bar
and
the
type
of
buttons.
For
more
information
refer
to
Customizing
the
Command
Buttons.

At
run
time,
when
you
click
Print,
the
standard
print
dialog
for
your
machine
appears
and
you
can
choose
various
printer
settings
before
clicking
OK
to
print.
You
can
specify
page
breaks
with
the
column
PageBreak
('PageBreak
Property'
in
the
on-line
documentation)
property
or
the
row
PageBreak
('PageBreak
Property'
in
the
on-
line
documentation)
property
when
printing
to
the
client.

In
addition
to
the
print
button,
there
is
an
IsPrint
('IsPrint
Property'
in
the
on-line
documentation)
property.
Setting
this
to
true
brings
up
a
preview
of
what
is
to
be
printed.

The
ShowColumnHeader
('ShowColumnHeader
Property'
in
the
on-line
documentation)
and
ShowRowHeader
('ShowRowHeader
Property'
in
the
on-line
documentation)
properties
in
the
PrintInfo
('PrintInfo
Class'
in
the
on-line
documentation)
class
apply
when
printing
or
saving
to
PDF.

You
can
also
use
the
client-side
Print
(on-line
documentation)
method.
For
more
information,
refer
to
the
Client-
Side
Scripting
Reference
(on-line
documentation).

Using
Code

You
can
set
the
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
component
IsPrint
('IsPrint
Property'
in
the
on-line
documentation)
property
in
code.

Example

Spread for ASP.NET Developer’s Guide 174

Copyright © GrapeCity, Inc. All rights reserved.

The
following
code
sets
the
IsPrint
('IsPrint
Property'
in
the
on-line
documentation)
property.

C#
FpSpread1.IsPrint = true;

VB
FpSpread1.IsPrint = True

Using
the
Spread
Designer

1.
 Select
the
File
menu.
2.
 Select
Print,
SaveToPDF,
or
Print
Preview
from
the
Print
menu.
3.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Adding Headers and Footers to Printed Pages

You
can
add
headers
and
footers
to
the
printed
pages
by
using
the
Content
property
in
the
PrintSheet
event.
You
can
use
HTML
characters
in
the
header
or
footer
string.
An
example
of
this
would
be
the
line
break
tag,

,
for
breaking
to
a
new
line.

Using
Code

Set
the
Content
property
in
the
PrintSheet
('PrintSheet
Event'
in
the
on-line
documentation)
event.

Example

The
following
code
adds
a
header
and
footer
to
the
printed
page.

C#
private void FpSpread1_PrintSheet(object sender, FarPoint.Web.Spread.PrintEventArgs e)
 {
 if (e.Header == true)
 {
 e.Content = "Header
Test";
 }
 if (e.Header == false)
 {
 e.Content = "Footer";
 }
 }

VB
Private Sub FpSpread1_PrintSheet(ByVal sender As Object, ByVal e As
FarPoint.Web.Spread.PrintEventArgs) Handles FpSpread1.PrintSheet
 If e.Header = True Then
 e.Content = "Header
Test"
 End If
 If e.Header = False Then
 e.Content = "Footer"
 End If
End Sub

Spread for ASP.NET Developer’s Guide 175

Copyright © GrapeCity, Inc. All rights reserved.

Customizing the Appearance

You
can
customize
the
appearance
of
various
parts
of
the
FpSpread
component.

The
tasks
that
relate
to
setting
the
appearance
of
parts
of
the
component
include:

Customizing
the
Appearance
of
the
Overall
Component
Customizing
the
Appearance
of
the
Sheet
Customizing
the
Appearance
of
Rows
and
Columns
Customizing
the
Appearance
of
Headers
Customizing
the
Appearance
of
a
Cell

For
information
on
customizing
the
appearance
of
selections,
refer
to
Customizing
the
Appearance
of
Selections

For
information
on
customizing
the
interaction
with
parts
of
the
component,
refer
to
Customizing
User
Interaction.

For
information
on
the
hierarchical
display
of
data,
refer
to
Displaying
Data
as
a
Hierarchy.

For
information
on
the
underlying
style
model,
refer
to
Understanding
the
Style
Model.

Customizing the Appearance of the Overall Component

You
can
set
several
aspects
that
determine
the
appearance
of
the
component
on
the
HTML
page.
These
include:

Customizing
the
Dimensions
of
the
Component
Customizing
the
Outline
of
the
Component
Customizing
the
Default
Initial
Appearance
Resetting
Parts
of
the
Interface
Using
the
jQuery
Theme
Roller
with
Spread

Other
tasks
that
are
related
to
the
appearance
of
the
overall
component
include:

Setting
the
Background
Color
of
the
Sheet
Displaying
Grid
Lines
on
the
Sheet
Displaying
the
Sheet
Names
Adding
a
Title
and
Subtitle
to
a
Sheet

For
more
information
on
the
FpSpread
component
properties,
refer
to
the
FpSpread
('FpSpread
Class'
in
the
on-
line
documentation)
class.

Customizing the Dimensions of the Component

You
can
set
the
overall
dimensions
of
the
component
and
these
remain
the
same
regardless
of
the
size
of
the
sheet
or
the
amount
of
navigation
bars.
If
there
are
more
rows
in
a
sheet
than
can
be
displayed,
then
the
component
creates
pages
inside
the
component
to
allow
you
access
to
those
rows.
Refer
to
Customizing
Page
Navigation
for
more
information.
If
you
display
hierarchy
information
and
page
navigation
bars,
then
the
amount
of
space
dedicated
to
the
sheet
is
smaller.
All
the
tool
bars,
scroll
bars,
and
sheet
appear
inside
the
overall
dimensions
of
the
component.
Refer
to
Customizing
the
Tool
Bars
for
more
information.

The
following
figure
shows
the
dimensions
that
you
can
set
by
setting
the
number
of
pixels
for
each.

Spread for ASP.NET Developer’s Guide 176

Copyright © GrapeCity, Inc. All rights reserved.

Using
the
Properties
Window

Set
the
dimensions
at
design
time
with
the
Properties
window
of
Visual
Studio
.NET.

1.
 Select
the
component.
2.
 With
the
Properties
window
open,
in
the
Layout
category,
select
the
Height
property
or
the
Width
property

and
type
in
a
new
value.
The
unit
is
pixels.
Press
Enter.
The
new
dimension
is
now
set.
Refer
to
the
Microsoft
.NET
Framework
documentation
for
setting
the
units
of
measurement
for
height
to
something
other
than
the
default,
which
is
pixels.

Using
Code

Add
a
line
of
code
that
sets
the
specific
dimension
using
the
Height
or
Width
properties
of
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
class
or
both.
The
default
for
the
unit
of
measurement
is
pixels.

Example

This
example
shows
how
to
set
the
height
of
the
component
to
200
pixels
and
the
width
to
400
pixels.

C#
FpSpread1.Height = 200;
FpSpread1.Width = 400;

VB
FpSpread1.Height = System.Web.UI.WebControls.Unit.Pixel(200)
FpSpread1.Width = System.Web.UI.WebControls.Unit.Pixel(400)

Customizing the Outline of the Component

You
can
set
several
aspects
of
the
outline
(or
border)
of
the
component.
These
aspects
include:

the
color
of
the
outline
the
line
style
of
the
outline
the
width
(or
thickness)
of
the
outline

Here
is
a
picture
of
an
example
of
the
outline
of
the
component
changed
to
be
a
thick
dashed
green
outline.
The
example

Spread for ASP.NET Developer’s Guide 177

Copyright © GrapeCity, Inc. All rights reserved.

below
shows
the
code
for
these
customizations.

Using
the
Properties
Window

Set
the
border
at
design
time
with
the
Properties
window
of
Visual
Studio
.NET.

1.
 Select
the
component.
2.
 With
the
Properties
window
open,
in
the
Appearance
category,
select
the
BorderColor
property,
the
BorderStyle
property,
or
the
BorderWidth
property.
For
the
BorderColor
and
BorderStyle
properties,
select
a
value
from
the
drop-down
list.
For
the
BorderWidth,
type
in
a
value;
the
unit
is
pixels.
Press
Enter.
The
new
property
is
now
set.
Refer
to
the
Microsoft
.NET
Framework
documentation
for
setting
the
units
to
something
other
than
the
default,
which
is
pixels.

Using
Code

Add
a
line
of
code
that
sets
the
specific
border
property.
The
default
for
the
unit
of
thickness
is
pixels.
For
more
information,
refer
to
the
BorderColor
('BorderColor
Property'
in
the
on-line
documentation),
BorderStyle
('BorderStyle
Property'
in
the
on-line
documentation),
and
BorderWidth
properties
in
the
Border
('Border
Class'
in
the
on-line
documentation)
class.

Example

This
example
shows
how
to
create
a
green
dashed
outline
that
is
four
pixels
thick
around
the
entire
component.
To
see
the
results,
see
the
figure
above.

C#
FpSpread1.BorderColor = Drawing.Color.Green;
FpSpread1.BorderStyle = BorderStyle.Dashed;
FpSpread1.BorderWidth = System.Web.UI.WebControls.Unit.Pixel(4);

VB
FpSpread1.BorderColor = Drawing.Color.Green
FpSpread1.BorderStyle = BorderStyle.Dashed
FpSpread1.BorderWidth = System.Web.UI.WebControls.Unit.Pixel(4)

Customizing the Default Initial Appearance

You
can
set
the
default
initial
appearance.

The
following
API
members
are
involved
in
the
default
appearance.

CommandBarInfo
('CommandBarInfo
Class'
in
the
on-line
documentation)
Background
Property
DefaultSkins
('DefaultSkins
Class'
in
the
on-line
documentation)
Classic
Property

Spread for ASP.NET Developer’s Guide 178

Copyright © GrapeCity, Inc. All rights reserved.

DefaultSkins
('DefaultSkins
Class'
in
the
on-line
documentation)
Default
Property
FpSpread
ScrollBar
Properties
(ScrollBar3DLightColor
('ScrollBar3DLightColor
Property'
in
the
on-line
documentation),
ScrollBarArrowColor
('ScrollBarArrowColor
Property'
in
the
on-line
documentation),
ScrollBarBaseColor
('ScrollBarBaseColor
Property'
in
the
on-line
documentation),
and
so
on)
GroupInfo
('GroupInfo
Class'
in
the
on-line
documentation)
Background
Property
and
Reset
method

You
can
change
the
font
size
for
the
entire
component
using
the
underlying
Web
controls
properties.
For
example,
you
can
set
the
font
size
to
14
point
using
this
command
in
code:

VB
FpSpread1.ActiveSheetView.DefaultStyle.Font.Size =
System.Web.UI.WebControls.FontUnit.Point(14)

You
can
set
the
default
appearance
to
the
version
3
appearance
with
the
following
code:

Using
Code

Set
the
BackgroundImageUrl
('BackgroundImageUrl
Property'
in
the
on-line
documentation),
SelectionBackColor
('SelectionBackColor
Property'
in
the
on-line
documentation),
and
default
header
and
corner
styles.

Example

This
example
shows
how
to
set
the
control
to
the
version
3
appearance.

C#
FpSpread1.CommandBar.Background.BackgroundImageUrl = NULL;
FpSpread1.Sheets[0].SelectionBackColor = Color.Empty;
FpSpread1.Sheets[0].ColumnHeader.DefaultStyleName = "HeaderDefault";
FpSpread1.Sheets[0].RowHeader.DefaultStyleName = "HeaderDefault";
FpSpread1.Sheets[0].SheetCorner.DefaultStyleName = "HeaderDefault";

VB
FpSpread1.CommandBar.Background.BackgroundImageUrl = Nothing
FpSpread1.Sheets(0).SelectionBackColor = Color.Empty
FpSpread1.Sheets(0).ColumnHeader.DefaultStyleName = "HeaderDefault"
FpSpread1.Sheets(0).RowHeader.DefaultStyleName = "HeaderDefault"
FpSpread1.Sheets(0).SheetCorner.DefaultStyleName = "HeaderDefault"

Resetting Parts of the Interface

You
can
reset
various
settings
on
various
parts
of
the
Spread
component
interface
back
to
default
or
original
values.
You
can
also
clear
parts
of
the
data
area
of
various
items,
both
data
and
formatting.

The
ways
in
which
parts
of
the
component
can
be
reset
include:

Reset
the
component
to
its
original
state
using
the
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
class
Reset
('Reset
Method'
in
the
on-line
documentation)
method.
Reset
the
sheet
to
its
original
state
using
the
SheetView
('SheetView
Class'
in
the
on-line
documentation)
class
Reset
('Reset
Method'
in
the
on-line
documentation)
method.
Reset
the
skin
properties
for
a
sheet
or
sheets
using
the
DefaultSkins
('DefaultSkins
Class'
in
the
on-
line
documentation)
class
Reset
('Reset
Method'
in
the
on-line
documentation)
method.
Reset
the
value
of
a
cell
or
the
text
in
a
cell
to
empty
using
the
Cell
('Cell
Class'
in
the
on-line

Spread for ASP.NET Developer’s Guide 179

Copyright © GrapeCity, Inc. All rights reserved.

documentation)
class,
ResetText
('ResetText
Method'
in
the
on-line
documentation)
or
ResetValue
('ResetValue
Method'
in
the
on-line
documentation)
method.
Reset
all
the
named
style
properties
to
their
default
values
using
the
NamedStyle
('NamedStyle
Class'
in
the
on-line
documentation)
class
Reset
('Reset
Method'
in
the
on-line
documentation)
method.
There
are
also
individual
reset
methods
for
each
of
the
settings
in
a
style:
Reset
all
the
style
settings
in
the
StyleInfo
object
to
the
default
settings
using
the
StyleInfo
('StyleInfo
Class'
in
the
on-line
documentation)
class
Reset
('Reset
Method'
in
the
on-line
documentation)
method.

Reset
the
settings
for
cells,
rows,
or
columns
using
the
individual
reset
methods
for
each
setting
in
the
Cell
('Cell
Class'
in
the
on-line
documentation)
or
Row
('Row
Class'
in
the
on-line
documentation)
or
Column
('Column
Class'
in
the
on-line
documentation)
or
StyleInfo
('StyleInfo
Class'
in
the
on-line
documentation)
class.

ResetBackColor
Method
ResetBackground
Method
ResetBorder
Method
ResetCellType
Method
ResetFont
Method
ResetForeColor
Method
ResetHorizontalAlignment
Method
ResetLocked
Method
ResetTabStop
Method
ResetText
Method
ResetValue
Method
ResetVerticalAlignment
Method

Reset
all
the
named
style
properties
to
their
default
values
using
the
NamedStyle
('NamedStyle
Class'
in
the
on-
line
documentation)
class
Reset
('Reset
Method'
in
the
on-line
documentation)
method.
There
are
also
individual
reset
methods
for
each
of
the
settings
in
a
style.

StyleInfo
ResetEditor
('ResetEditor
Method'
in
the
on-line
documentation)
Method
StyleInfo
ResetFormatter
('ResetFormatter
Method'
in
the
on-line
documentation)
Method
StyleInfo
ResetRenderer
('ResetRenderer
Method'
in
the
on-line
documentation)
Method

Resetting
the
component
or
a
sheet
to
its
default
settings
returns
the
component
or
the
sheet
to
its
initial
state
prior
to
any
design-time
or
run-time
changes.
It
clears
data,
resets
colors,
and
returns
cells
to
the
default
cell
type.
Resetting
the
component
resets
everything
in
the
component
to
the
state
when
the
component
is
first
drawn
on
the
form.

Resetting
the
component
or
a
sheet
clears
the
data
in
the
sheet(s)
as
well
as
the
formatting.
If
you
provide
a
way
for
users
to
reset
their
sheet(s),
be
sure
to
have
them
confirm
the
action
before
resetting
the
sheet(s).

Using the jQuery Theme Roller with Spread

You
can
apply
a
Theme
Roller
theme
to
the
Spread
control.

The
theme
is
applied
to
the
following
areas.

Column
Header
Row
Header
Corner
Footer
and
Footer
Corner
Command
Bar
Title
Bar
Group
Bar

Spread for ASP.NET Developer’s Guide 180

Copyright © GrapeCity, Inc. All rights reserved.

Gray
Header
Hierarchy
Bar
Pager
Sheet
Tab

The
following
styles
are
applied
from
the
jQuery
theme.

Background-Color
Background-Image
ForeColor
Font
family
Font
weight
Font
size

If
the
jQuery
theme
is
enabled,
the
jQuery
theme
style
has
a
higher
priority
than
the
default
style
but
a
lower
priority
than
the
custom
style.
If
the
sheet
skin
is
DefaultSkins.Default
or
it
is
not
specified,
the
jQuery
theme
takes
effect.
If
the
sheet
view
active
skin
is
a
built-in
skin
(not
DefaultSkins.Default)
or
a
custom
skin
then
the
jQuery
theme
has
no
effect.

The
viewport,
context
menu,
filter
menu,
touch
strip,
dialogs,
group
headers,
and
group
footers
are
not
supported.
If
the
SheetView.SelectionBackColor
('SelectionBackColor
Property'
in
the
on-line
documentation)
property
is
set,
then
the
theme
highlight
is
not
applied.

For
more
information
about
themes,
refer
to
the
Theme
Roller
web
site,
http://jqueryui.com/themeroller/.

Using
Code

Add
a
reference
to
the
theme.
Set
the
EnablejQueryTheme
('EnablejQueryTheme
Property'
in
the
on-line
documentation)
property.

Example

This
example
displays
a
theme.

Script
<head runat="server">
 <title>Demo page</title>
 <link href="jquery-ui-themes-1.10.4/themes/ui-darkness/jquery-ui.min.css"
rel="stylesheet" />
 <link href="jquery-ui-themes-1.10.4/themes/ui-darkness/jquery.ui.theme.css"
rel="stylesheet" />
</head>

C#
FpSpread1.EnablejQueryTheme = true;

VB
FpSpread1.EnablejQueryTheme = True

Customizing the Appearance of the Sheet

You
can
set
many
different
properties
for
the
appearance
of
the
data
area
of
the
spreadsheet.

You
can
have
multiple
sheets
within
a
workbook.
Each
sheet
is
a
separate
spreadsheet
and
can
have
its
own
appearance

Spread for ASP.NET Developer’s Guide 181

Copyright © GrapeCity, Inc. All rights reserved.

http://jqueryui.com/themeroller/

and
settings
for
user
interaction.
Each
sheet
has
a
unique
name
and
sheet
name
tab
for
easy
navigation
between
sheets.

These
tasks
relate
to
setting
the
appearance
of
the
entire
sheet
inside
the
component:

Working
with
the
Active
Sheet
Working
with
Multiple
Sheets
Adding
a
Sheet
Removing
a
Sheet
Showing
or
Hiding
a
Sheet
Setting
the
Background
Color
of
the
Sheet
Adding
a
Title
and
Subtitle
to
a
Sheet
Customizing
the
Page
Size
(Rows
to
Display)
Displaying
Grid
Lines
on
the
Sheet
Customizing
the
Sheet
Corner
Displaying
a
Footer
for
Columns
or
Groups
Adding
an
Image
to
the
Sheet
(on-line
documentation)

You
can
quickly
customize
the
appearance
of
a
sheet
by
applying
a
"skin"
to
it.
Skins
are
provided
with
Spread
to
create
common
formats.
You
can
also
create
your
own
skin
and
save
it,
to
use
again,
similar
to
a
template.

Note:
Be
aware
that
some
settings
for
skins
are
affected
by
the
setting
of
the
EnableClientScript
('EnableClientScript
Property'
in
the
on-line
documentation)
property
of
the
component.

The
tasks
you
can
perform
when
working
with
skins
include:

Creating
a
Skin
for
Sheets
Applying
a
Skin
to
a
Sheet

When
you
work
with
sheets,
you
can
manipulate
the
objects
using
the
short
cuts
in
code,
(SheetView
('SheetView
Class'
in
the
on-line
documentation)
and
SheetViewCollection
('SheetViewCollection
Class'
in
the
on-
line
documentation)
classes)
or
you
can
directly
manipulate
the
model.
Most
developers
who
are
not
changing
anything
drastically
find
it
easy
to
manipulate
the
short
cut
objects.

For
more
information
on
the
sheet
properties,
refer
to
the
SheetView
('SheetView
Class'
in
the
on-line
documentation)
class.

For
more
information
on
the
SheetView
Collection
editor,
refer
to
SheetView
Collection
Editor.

For
information
on
displaying
the
sheet
names,
refer
to
Displaying
the
Sheet
Names.

Working with the Active Sheet

The
active
sheet
is
the
sheet
that
currently
receives
any
user
interaction.
You
can
specify
the
active
sheet
programmatically.
Use
the
ActiveSheetView
('ActiveSheetView
Property'
in
the
on-line
documentation)
property
of
the
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
object.

Usually,
the
active
sheet
is
displayed
on
top
of
the
other
sheets
in
the
component.

For
information
about
adding
a
sheet,
refer
to
Adding
a
Sheet.

For
information
on
working
with
multiple
sheets,
refer
to
Working
with
Multiple
Sheets.

Working with Multiple Sheets

The
component
allows
multiple
sheets.
Set
the
Count
('Count
Property'
in
the
on-line
documentation)
property
to
specify
the
number
of
sheets.
For
information
on
adding
sheets
with
the
designer,
see
the
SheetView
Collection
Editor.

Spread for ASP.NET Developer’s Guide 182

Copyright © GrapeCity, Inc. All rights reserved.

For
information
about
the
display
of
the
sheet
names
in
the
sheet
name
buttons,
refer
to
Displaying
the
Sheet
Names.

Formulas
in
a
cell
on
one
sheet
can
refer
to
a
value
or
a
cell
on
another
sheet.
For
more
information
about
formulas,
refer
to
Managing
Formulas.

You
can
name
the
sheets.
Use
the
SheetName
('SheetName
Property'
in
the
on-line
documentation)
property
in
the
SheetView
('SheetView
Class'
in
the
on-line
documentation)
class
to
name
the
sheet
programmatically.

For
information
about
adding
a
sheet,
refer
to
Adding
a
Sheet.

Using
Code

This
example
sets
the
number
of
sheets.

C#
FpSpread1.Sheets.Count = 2;

VB
FpSpread1.Sheets.Count = 2

Adding a Sheet

You
can
add
a
sheet
or
add
several
sheets
to
the
component.
By
default,
the
component
has
one
sheet,
named
Sheet
1
and
referenced
as
sheet
index
0.
The
sheet
index
is
zero-based.
If
you
are
using
custom
sheet
names
be
sure
to
specify
the
name
of
the
sheet.

In
code,
you
can
simply
change
the
number
of
sheets
by
changing
the
Count
('Count
Property'
in
the
on-line
documentation)
property
or
you
can
explicitly
add
the
sheet(s)
by
defining
new
sheets
or
by
using
the
Add
('Add
Method'
in
the
on-line
documentation)
method.
The
following
instructions
describe
how
to
add
a
sheet.

For
information
on
removing
a
sheet,
refer
to
Removing
a
Sheet.

Using
the
Properties
Window

1.
 At
design
time,
in
the
Properties
window,
select
the
Sheets
property
for
the
FpSpread
component.
2.
 Click
the
button
to
display
the
SheetView
Collection
Editor.
3.
 Click
the
Add
button
to
add
a
sheet
to
the
collection.

A
new
sheet
named
Sheetn
(where
n
is
an
integer)
is
added
to
the
component.

4.
 If
you
want
to
change
the
name
of
the
new
sheet,
click
the
SheetName
property
in
the
property
list,
and
then
type
the
new
name
for
the
sheet.

Spread for ASP.NET Developer’s Guide 183

Copyright © GrapeCity, Inc. All rights reserved.

5.
 Click
OK
to
close
the
editor.

Using
Code

1.
 Create
a
new
SheetView
('SheetView
Class'
in
the
on-line
documentation)
object.
2.
 If
you
want
to
do
so,
set
properties
for
the
sheet,
such
as
its
name.
3.
 Use
the
Add
('Add
Method'
in
the
on-line
documentation)
method
with
the
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
component
Sheets
('Sheets
Property'
in
the
on-line
documentation)
shortcut
to
add
the
new
SheetView
('SheetView
Class'
in
the
on-line
documentation)
object
to
the
collection
of
sheets
(SheetViewCollection
('SheetViewCollection
Class'
in
the
on-line
documentation))
for
the
component.

Example

This
example
code
adds
a
new
sheet
to
the
component,
then
names
the
sheet
"North"
and
sets
it
to
have
10
columns
and
100
rows.

C#
// Create a new sheet.
FarPoint.Web.Spread.SheetView newsheet = new FarPoint.Web.Spread.SheetView();
newsheet.SheetName = "North";
newsheet.ColumnCount = 10;
newsheet.RowCount = 100;

// Add the new sheet to the component.
FpSpread1.Sheets.Add(newsheet);

VB
' Create a new sheet.
Dim newsheet As New FarPoint.Web.Spread.SheetView()
newsheet.SheetName = "North"
newsheet.ColumnCount = 10
newsheet.RowCount = 100

' Add the new sheet to the component.
FpSpread1.Sheets.Add(newsheet)

Using
the
Spread
Designer

1.
 Select
the
Data
menu.
Click
on
the
Insert
icon.
2.
 Click
the
Insert
Sheet
option.

A
new
sheet
named
Sheetn
(where
n
is
an
integer)
is
added
to
the
component.

3.
 If
you
want
to
change
the
name
of
the
new
sheet,
click
the
new
sheet
in
the
Properties
for
Sheetn
list,
and
change
the
SheetName
property
in
the
property
list.

4.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Removing a Sheet

You
can
remove
a
sheet
or
several
sheets
from
the
component.
The
sheet
index
is
zero-based.
In
code,
you
can
simply
change
the
number
of
sheets
using
the
Count
('Count
Property'
in
the
on-line
documentation)
property
or
you
can
explicitly
remove
the
sheet(s)
using
the
Remove
('Remove
Method'
in
the
on-line
documentation)
method.

Removing
an
existing
sheet
does
not
change
the
default
sheet
names
provided
to
the
other
sheets.
For
example,
a

Spread for ASP.NET Developer’s Guide 184

Copyright © GrapeCity, Inc. All rights reserved.

component
with
three
sheets
would
by
default
name
them
Sheet1,
Sheet2,
and
Sheet3.
If
you
remove
the
second
sheet,
the
names
for
the
remaining
sheets
are
Sheet1
and
Sheet3.
The
indexes
for
the
sheets
are
0
and
1,
because
the
sheet
index
is
zero-based.
You
can
also
hide
a
sheet.
For
more
information,
refer
to
Showing
or
Hiding
a
Sheet.
To
remove
an
existing
sheet,
complete
the
following
instructions.

For
information
on
adding
a
sheet,
refer
to
Adding
a
Sheet.

Using
the
Properties
Window

1.
 At
design
time,
in
the
Properties
window,
select
the
Sheets
property
for
the
FpSpread
component.
2.
 Click
the
button
to
display
the
SheetView
Collection
Editor.
3.
 In
the
Members
list,
select
the
sheet
to
remove.
4.
 Click
the
Remove
button
to
remove
the
sheet
from
the
collection.
5.
 Click
OK
to
close
the
editor.

Using
a
Shortcut

Use
the
Remove
('Remove
Method'
in
the
on-line
documentation)
method
with
the
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
component
Sheets
('Sheets
Property'
in
the
on-line
documentation)
shortcut
to
remove
the
SheetView
('SheetView
Class'
in
the
on-line
documentation)
object
from
the
collection
of
sheets
(SheetViewCollection
('SheetViewCollection
Class'
in
the
on-line
documentation)).

Example

This
example
code
removes
the
second
sheet
from
a
component
that
has
two
or
more
sheets.

C#
// Remove the second sheet.
FpSpread1.Sheets.Remove(FpSpread1.Sheets[1]);

VB
' Remove the second sheet.
FpSpread1.Sheets.Remove(FpSpread1.Sheets(1))

Using
the
Spread
Designer

1.
 Select
the
Data
menu.
Select
the
sheet
you
wish
to
delete
(click
on
the
sheet
name
at
the
bottom
of
the
designer
window).

2.
 Select
the
Delete
icon.
3.
 Click
Delete
Sheet.
4.
 The
Spread
Designer
asks
you
if
you
are
sure
you
want
to
remove
the
sheet.
Click
Yes
to
remove
the
sheet.
5.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Showing or Hiding a Sheet

You
can
hide
a
sheet
so
that
it
is
not
displayed
to
the
user
while
still
keeping
it
in
the
component.

Hiding
a
sheet
does
not
change
the
default
sheet
names
provided
to
the
other
sheets.
For
example,
a
component
with
three
sheets
would
by
default
name
them
Sheet1,
Sheet2,
and
Sheet3.
If
you
hide
the
second
sheet,
the
names
for
the
remaining
sheets
are
Sheet1
and
Sheet3.

Hiding
a
sheet
does
not
remove
it
and
does
not
affect
formulas
on
that
sheet
or
references
to
that
sheet.
For
more
information
on
removing
the
sheet
completely,
refer
to
Removing
a
Sheet.
Use
the
Visible
('Visible
Property'
in

Spread for ASP.NET Developer’s Guide 185

Copyright © GrapeCity, Inc. All rights reserved.

the
on-line
documentation)
property
of
the
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
component
to
show
or
hide
the
sheet.

Using
the
Properties
Window

1.
 At
design
time,
in
the
Properties
window,
select
the
Sheets
property
for
the
FpSpread
component.
2.
 Click
the
button
to
display
the
SheetView
Collection
Editor.
3.
 In
the
Members
list,
select
the
sheet
to
hide.
4.
 Select
the
Visible
property
in
the
property
list
and
set
to
false.
5.
 Click
OK
to
close
the
editor.

Using
a
Shortcut

Set
the
Visible
('Visible
Property'
in
the
on-line
documentation)
property
of
the
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
component
Sheets
('Sheets
Property'
in
the
on-line
documentation)
shortcut.

Example

This
example
code
hides
the
second
sheet
from
a
component
that
has
two
or
more
sheets.

C#
// Hide the second sheet.
FpSpread1.Sheets[1].Visible = false;

VB
' Hide the second sheet.
FpSpread1.Sheets[1].Visible = False

Setting the Background Color of the Sheet

You
can
customize
the
background
color
of
the
data
area
of
the
sheet.
The
sheet
background
color
is
displayed
as
the
cell
background
color,
unless
you
set
specific
cell
colors
(as
explained
in
Customizing
the
Colors
of
a
Cell).
It
is
also
the
color
in
the
rest
of
the
sheet
where
cells
are
not
displayed
(empty
area),
as
shown
in
the
following
figure,
where
the
background
color
is
set
to
light
yellow.

The
background
color
for
the
sheet
can
be
set
either
with
the
BackColor
('BackColor
Property'
in
the
on-line
documentation)
property
of
the
sheet
(SheetView
('SheetView
Class'
in
the
on-line
documentation)
class)
or
the
BackColor
('BackColor
Property'
in
the
on-line
documentation)
property
of
the
SheetSkin
('SheetSkin
Class'
in
the
on-line
documentation)
class
and
the
skin
applied
to
the
sheet.

Using
the
Properties
Window

Spread for ASP.NET Developer’s Guide 186

Copyright © GrapeCity, Inc. All rights reserved.

1.
 At
design
time,
in
the
Properties
window,
select
the
Sheets
property
for
the
FpSpread
component.
2.
 Click
the
button
to
display
the
SheetView
Collection
Editor.
3.
 In
the
Members
list,
select
the
sheet
for
which
to
set
the
background
color.
4.
 Select
the
BackColor
property
in
the
property
list,
and
then
click
the
drop-down
button
to
display
the
color

picker.
5.
 Select
a
color
in
the
color
picker.
6.
 Click
OK
to
close
the
editor.

Using
a
Shortcut

Set
the
BackColor
('BackColor
Property'
in
the
on-line
documentation)
property
of
the
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
component
Sheets
('Sheets
Property'
in
the
on-line
documentation)
shortcut.

Example

This
example
code
sets
the
background
color
of
the
first
sheet
to
light
yellow.

C#
// Set the first sheet's background color to light yellow.
FpSpread1.Sheets[0].BackColor = Color.LightYellow;

VB
' Set the first sheet's background color to light yellow.
FpSpread1.Sheets(0).BackColor = Color.LightYellow

Using
the
Spread
Designer

1.
 From
the
sheets
displayed
at
the
bottom,
select
the
sheet
for
which
you
want
to
set
the
background
color.
2.
 Select
the
BackColor
property
in
the
property
list.
3.
 Click
the
drop-down
arrow
to
display
the
color
picker.
4.
 Select
a
color
from
the
color
picker.
5.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Adding a Title and Subtitle to a Sheet

You
can
add
a
specially
formatted
area
at
the
top
of
the
spreadsheet
that
includes
either
a
title
or
a
subtitle
or
both.
An
example
is
shown
here
of
a
spreadsheet
that
has
a
title
and
a
subtitle.

Spread for ASP.NET Developer’s Guide 187

Copyright © GrapeCity, Inc. All rights reserved.

The
title
is
set
using
the
TitleInfo
property
at
the
FpSpread
level.
The
subtitle
is
set
using
the
TitleInfo
('TitleInfo
Property'
in
the
on-line
documentation)
property
at
the
sheet
level.
So
titles
apply
to
the
overall
Spread
component,
while
subtitles
can
be
different
for
each
sheet.

The
API
members
that
are
involved
include:

TitleInfo
('TitleInfo
Class'
in
the
on-line
documentation)
Class
and
all
members
SheetView
TitleInfo
('TitleInfo
Property'
in
the
on-line
documentation)
Property
FpSpread
TitleInfo
('TitleInfo
Property'
in
the
on-line
documentation)
Property

Using
the
Properties
Window

1.
 At
design
time,
in
the
Properties
window,
select
the
FpSpread
component
or
the
sheet.
2.
 Select
TitleInfo.
3.
 Set
the
Visible
property
to
true
and
other
properties
as
needed.
4.
 Click
OK
to
close
the
editor.

Using
a
Shortcut

Set
the
properties
of
the
TitleInfo
('TitleInfo
Class'
in
the
on-line
documentation)
class
at
the
FpSpread
and
Sheet
level.

Example

This
example
code
sets
and
displays
a
title
for
the
component
and
subtitle
for
the
sheet.

C#
// Show the title for the entire spreadsheet component.
FpSpread1.TitleInfo.Visible = true;
FpSpread1.TitleInfo.Text = "FarPoint Spread Title";
// Show the subtitle for the individual sheet.
FpSpread1.Sheets[0].TitleInfo.Visible = true;
FpSpread1.Sheets[0].TitleInfo.Text = "Sheet Only Subtitle";
FpSpread1.Sheets[0].TitleInfo.HorizontalAlign = HorizontalAlign.Center;
FpSpread1.Sheets[0].TitleInfo.BackColor = System.Drawing.Color.Aqua;

VB
' Show the title for the entire spreadsheet component.
FpSpread1.TitleInfo.Visible = True
FpSpread1.TitleInfo.Text = "FarPoint Spread Title"
' Show the subtitle for the individual sheet.
FpSpread1.Sheets(0).TitleInfo.Visible = True
FpSpread1.Sheets(0).TitleInfo.Text = "Sheet Only Subtitle"
FpSpread1.Sheets(0).TitleInfo.HorizontalAlign = HorizontalAlign.Center
FpSpread1.Sheets(0).TitleInfo.BackColor = System.Drawing.Color.Aqua

Using
the
Spread
Designer

1.
 Select
the
Settings
menu.
2.
 Select
the
Title
icon
under
the
Spread
Settings
section.
3.
 Set
the
title
and/or
subtitle.
4.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Spread for ASP.NET Developer’s Guide 188

Copyright © GrapeCity, Inc. All rights reserved.

Customizing the Page Size (Rows to Display)

In
this
Web
Form
version
of
Spread,
a
page
is
the
amount
of
data
of
a
sheet
that
can
be
displayed
at
one
time.
When
the
sheet
contains
more
rows
than
can
be
displayed
in
the
component,
Spread
automatically
creates
pages
that
contain
the
other
rows.
(These
are
not
to
be
confused
with
HTML
pages.)
For
sheets
that
have
more
rows
than
fit
in
the
display
area,
the
sheet
has
multiple
pages.

The
page
size
is
the
number
or
rows
that
are
displayed
at
one
time.
By
default,
the
page
size
is
ten,
so
ten
rows
are
displayed.
If
you
would
like
to
display
more
than
ten
rows
(or
ten
records
for
a
bound
spreadsheet),
set
the
PageSize
property
to
the
number
of
records
you
want
to
display
on
every
page.

For
more
information
on
setting
the
page
navigation,
refer
to
Customizing
Page
Navigation.

Using
Shortcut
Object

Set
the
PageSize
('PageSize
Property'
in
the
on-line
documentation)
property
for
the
sheet
using
the
ActiveSheetView
('ActiveSheetView
Property'
in
the
on-line
documentation)
shortcut
of
the
FpSpread
component.

Example

The
following
code
shows
how
to
set
the
page
size
to
display
15
rows.

C#
FpSpread1.ActiveSheetView.PageSize = 15;

VB
FpSpread1.ActiveSheetView.PageSize = 15

Using
Code

Set
the
PageSize
('PageSize
Property'
in
the
on-line
documentation)
property
for
the
SheetView
('SheetView
Class'
in
the
on-line
documentation)
class.

Example

The
following
code
shows
how
to
set
the
page
size
to
display
15
rows.

C#
FarPoint.Web.Spread.SheetView sv = FpSpread1.ActiveSheetView;
sv.PageSize = 15;

VB
Dim sv As FarPoint.Web.Spread.SheetView
sv = FpSpread1.ActiveSheetView
sv.PageSize = 15

Using
the
Spread
Designer

1.
 Select
the
Settings
tab.
2.
 Select
the
General
icon
under
the
Sheet
Settings
section.
3.
 Check
the
AllowPage
check
box
and
specify
the
number
of
rows
in
the
Page
Size
edit
box.

Spread for ASP.NET Developer’s Guide 189

Copyright © GrapeCity, Inc. All rights reserved.

4.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Displaying Grid Lines on the Sheet

You
can
display
grid
lines
on
the
sheet
that
distinguish
rows
or
columns
(or
both).
You
can
set
the
grid
lines
to
display
using
the
GridLines
('GridLines
Property'
in
the
on-line
documentation)
property
for
the
sheet
(which
uses
the
settings
of
the
GridLines
enumeration
in
the
underlying
Microsoft
.NET
framework).

To
show
only
the
grid
lines
for
the
rows
(horizontal
lines),
set
the
property
to
GridLines.Horizontal.
To
show
only
the
grid
lines
for
the
columns
(vertical
lines),
set
the
property
to
GridLines.Vertical.
To
show
the
grid
lines
for
both
the
rows
and
the
columns
(both
the
vertical
and
horizontal
lines),
set
the
property
to
GridLines.Both.
To
turn
off
(or
hide)
the
grid
lines,
set
the
property
to
GridLines.None.

You
can
set
the
color
of
the
grid
lines.
In
the
following
figure,
where
both
the
horizontal
and
vertical
lines
are
displayed,
the
grid
lines
are
red.

You
can
also
set
the
grid
lines
and
the
grid
lines
color
by
defining
these
properties
in
the
SheetSkin
('SheetSkin
Class'
in
the
on-line
documentation)
class
and
then
applying
the
skin
to
the
sheet.
For
more
information
creating
and
applying
skins,
refer
to
Applying
a
Skin
to
a
Sheet
and
Creating
a
Skin
for
Sheets.

To
set
borders
around
individual
cells,
refer
to
Customizing
Cell
Borders.

Using
the
Properties
Window

1.
 At
design
time,
in
the
Properties
window,
select
the
Sheets
property
for
the
FpSpread
component.
2.
 Click
the
button
to
display
the
SheetView
Collection
Editor.
3.
 In
the
Members
list,
select
the
sheet
for
which
you
want
to
set
the
grid
line
color.
4.
 Select
the
GridLineColor
property
in
the
property
list,
and
then
click
the
drop-down
button
to
display
the
color

picker.
5.
 Select
a
color
in
the
color
picker.
6.
 Click
OK
to
close
the
editor.

Using
a
Shortcut

Set
the
GridLines
('GridLines
Property'
in
the
on-line
documentation)
and
GridLineColor
('GridLineColor
Property'
in
the
on-line
documentation)
properties
of
the
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
component
Sheets
('Sheets
Property'
in
the
on-line
documentation)
shortcut.

Example

This
example
code
sets
the
grid
line
color
to
red
and
displays
the
row
grid
lines.

Spread for ASP.NET Developer’s Guide 190

Copyright © GrapeCity, Inc. All rights reserved.

C#
// Set the grid line color to red.
FpSpread1.Sheets[0].GridLineColor = System.Drawing.Color.Red;
FpSpread1.Sheets[0].GridLines = GridLines.Horizontal;

VB
' Set the grid line color to red.
FpSpread1.Sheets(0).GridLineColor = System.Drawing.Color.Red
FpSpread1.Sheets(0).GridLines = GridLines.Horizontal

Using
the
Spread
Designer

1.
 Select
the
Settings
menu.
2.
 From
the
sheets
displayed
at
the
bottom,
select
the
sheet
for
which
you
want
to
set
the
grid
line
color.
3.
 Select
the
GridLines
icon
in
the
Sheet
Setting
section.
4.
 Set
the
color
or
any
other
grid
properties.
5.
 Click
OK
to
close
the
dialog.
6.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Customizing the Sheet Corner

You
can
customize
the
appearance
of
the
sheet
corner,
the
header
cell
in
the
upper
left
corner
of
the
sheet,
for
each
sheet.
Sheet
corners
can
display
grid
lines,
have
a
different
background
color
from
the
rest
of
the
headers,
and
more.
You
can
set
the
style
of
the
sheet
corner.
You
can
set
the
style
of
the
sheet
corner
as
you
would
any
cell
in
the
spreadsheet
and
you
can
set
the
text
that
appears
in
the
corner.
Any
of
the
properties
of
the
StyleInfo
('StyleInfo
Class'
in
the
on-
line
documentation)
object
can
be
set
for
the
cells
in
the
corner
of
the
sheet.
In
the
following
figure,
the
sheet
corner
uses
default
values
(the
sheet
corner
row
and
column
count
have
been
set
to
three).

Sheet
corners
can
display
grid
lines,
have
a
different
background
color
from
the
rest
of
the
headers,
and
more.
There
are
several
different
ways
to
set
properties
in
the
sheet
corner.
One
way
is
with
the
SheetCorner
('SheetCorner
Class'
in
the
on-line
documentation)
class.
Another
option
is
to
set
the
sheet
corner
properties
for
the
SheetView
('SheetView
Class'
in
the
on-line
documentation)
class.

The
parts
of
the
API
that
affect
the
sheet
corner
include:

FpSpread
SheetCorner
('SheetCorner
Property'
in
the
on-line
documentation)
Property
SheetView
AllowTableCorner
('AllowTableCorner
Property'
in
the
on-line
documentation)
Property
SheetView
SheetCorner
('SheetCorner
Property'
in
the
on-line
documentation)
Property
SheetView
SheetCornerStyle
('SheetCornerStyle
Property'
in
the
on-line
documentation)
Property

Spread for ASP.NET Developer’s Guide 191

Copyright © GrapeCity, Inc. All rights reserved.

SheetView
SheetCornerStyleName
('SheetCornerStyleName
Property'
in
the
on-line
documentation)
Property
SheetCorner
('SheetCorner
Class'
in
the
on-line
documentation)
Class
-
all
members

Several
of
the
StyleInfo
object
properties
can
be
set
for
the
sheet
corner
cell.
These
properties
include:

background
color
-
the
background
color
of
the
cell
border
-
the
border
around
the
cell
cell
type
-
the
type
of
cell
(see
font
-
the
font
settings
of
the
cell
text
color
-
the
color
of
text
color
in
the
cell
alignment
-
the
alignment
of
text
in
the
cell
(horizontal
and
vertical)

The
figure
below
shows
an
example
(see
the
example
code
below)
that
specifies
a
sheet
corner
with
alternating
row
colors
and
a
column
border.

Using
Shortcut
Object

1.
 Set
the
given
property
of
the
sheet
corner
style
(SheetCornerStyle
('SheetCornerStyle
Property'
in
the
on-line
documentation)
property)
of
the
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
component
Sheets
('Sheets
Property'
in
the
on-line
documentation)
shortcut.

Example

This
example
code
sets
the
text,
border
colors,
text
colors,
and
row
colors.

C#
FarPoint.Web.Spread.StyleInfo altrowstyle = new FarPoint.Web.Spread.StyleInfo();
altrowstyle.BackColor = System.Drawing.Color.LemonChiffon;
altrowstyle.ForeColor = System.Drawing.Color.Navy;
altrowstyle.Font.Bold = true;
FpSpread1.Sheets[0].AllowTableCorner = true;
FpSpread1.Sheets[0].SheetCorner.RowCount = 3;
FpSpread1.Sheets[0].SheetCorner.ColumnCount = 3;
FpSpread1.Sheets[0].SheetCorner.AlternatingRows[0].BackColor =
System.Drawing.Color.Crimson;
FpSpread1.Sheets[0].SheetCorner.Cells[0, 0].Text = "Test";
FpSpread1.Sheets[0].SheetCorner.Columns[0].Border = new
FarPoint.Web.Spread.Border(System.Web.UI.WebControls.BorderStyle.Double,
System.Drawing.Color.DarkBlue, 2);
FpSpread1.Sheets[0].SheetCorner.Rows[0].Border = new
FarPoint.Web.Spread.Border(System.Drawing.Color.Green);
FpSpread1.Sheets[0].SheetCornerStyle = new FarPoint.Web.Spread.StyleInfo(altrowstyle);

Spread for ASP.NET Developer’s Guide 192

Copyright © GrapeCity, Inc. All rights reserved.

VB
Dim altrowstyle As New FarPoint.Web.Spread.StyleInfo()
altrowstyle.BackColor = Drawing.Color.LemonChiffon
altrowstyle.ForeColor = Drawing.Color.Navy
altrowstyle.Font.Bold = True
FpSpread1.Sheets(0).AllowTableCorner = True
FpSpread1.Sheets(0).SheetCorner.RowCount = 3
FpSpread1.Sheets(0).SheetCorner.ColumnCount = 3
FpSpread1.Sheets(0).SheetCorner.AlternatingRows(0).BackColor = Drawing.Color.Crimson
FpSpread1.Sheets(0).SheetCorner.Cells(0, 0).Text = "Test"
FpSpread1.Sheets(0).SheetCorner.Columns(0).Border = New
FarPoint.Web.Spread.Border(System.Web.UI.WebControls.BorderStyle.Double,
Drawing.Color.DarkBlue, 2)
FpSpread1.Sheets(0).SheetCorner.Rows(0).Border = New
FarPoint.Web.Spread.Border(Drawing.Color.Green)
FpSpread1.Sheets(0).SheetCornerStyle = New FarPoint.Web.Spread.StyleInfo(altrowstyle)

Using
the
Spread
Designer

1.
 Select
the
sheet
tab
for
the
sheet
for
which
you
want
to
display
the
sheet
corner.
2.
 Select
the
Settings
menu.
3.
 Select
the
Header
Editor
icon
in
the
Other
Settings
section.
4.
 Select
Sheet
Corner
in
the
Selected
Header
drop-down
box.
5.
 Set
the
various
formatting
properties
in
the
property
grid.
6.
 From
the
File
menu
choose
Apply
and
Exit
to
apply
your
changes
to
the
component
and
exit
Spread
Designer.

Displaying a Footer for Columns or Groups

You
can
show
a
column
footer
or
a
group
footer
or
both
for
the
sheet
and
put
information
in
the
footer
such
as
formulas
or
text.
The
column
footer
is
an
area
at
the
bottom
of
the
sheet.
The
group
footer
is
an
extra
row
of
footer
cells
under
each
group
when
grouping,
if
you
are
using
the
grouping
feature.

For
details
on
the
API,
refer
to
the
ColumnFooter
('ColumnFooter
Property'
in
the
on-line
documentation)
property
of
the
SheetView
('SheetView
Class'
in
the
on-line
documentation)
class
and
the
various
members
of
the
ColumnFooter
('ColumnFooter
Class'
in
the
on-line
documentation)
class.

In
order
to
calculate
the
column
footer
or
group
footer
result
with
a
formula,
set
the
AggregationType
('AggregationType
Property'
in
the
on-line
documentation)
property
of
the
Column
('Column
Class'
in
the
on-line
documentation)
object
to
the
correct
formula
type
for
that
column.
The
Aggregate
('Aggregate
Event'
in
the
on-line
documentation)
event
is
raised
after
setting
this
property
and
can
be
used
to
add
information
to
column
and
group
footers.
The
following
figure
displays
a
column
footer
with
a
formula
in
the
first
column:

Spread for ASP.NET Developer’s Guide 193

Copyright © GrapeCity, Inc. All rights reserved.

The
group
footer
is
an
extra
row
that
is
displayed
below
the
group
after
grouping
by
a
column
header.
The
following
figure
shows
the
result
of
a
sum
formula
in
column
A
for
each
row
below
a
group.
The
rows
are
grouped
by
the
data
in
column
A.

The
Grouped
('Grouped
Event'
in
the
on-line
documentation)
or
Grouping
('Grouping
Event'
in
the
on-
line
documentation)
events
can
be
used
to
set
style
information
in
the
group
footer
after
a
user
has
created
the
group.

For
more
information
on
column
appearance,
refer
to
Customizing
the
Appearance
of
Rows
and
Columns.

For
more
information
on
grouping,
refer
to
Customizing
Grouping
of
Rows
of
User
Data.

Using
the
Properties
Window

1.
 At
design
time,
in
the
Properties
window,
select
the
Sheets
property
for
the
FpSpread
component.
2.
 Click
the
button
to
display
the
SheetView
Collection
Editor.
3.
 Select
the
ColumnFooter
property
or
the
GroupFooter
property
or
both
in
the
Property
list
and
set
visible

Spread for ASP.NET Developer’s Guide 194

Copyright © GrapeCity, Inc. All rights reserved.

to
true.
4.
 Select
DefaultStyle
under
ColumnFooter
in
order
to
set
additional
column
footer
properties
such
as
color.
5.
 Select
GroupInfoFooter
in
order
to
set
additional
group
footer
properties
such
as
color.
6.
 Click
OK
to
close
the
editor.

Using
a
Shortcut

Set
the
Visible
('Visible
Property'
in
the
on-line
documentation)
property
of
the
ColumnFooter
for
the
sheet.

Example

This
example
code
displays
a
column
footer
with
a
span,
puts
text
in
a
cell,
and
sets
the
text
color.

C#
FpSpread1.Sheets[0].RowCount = 10;
FpSpread1.Sheets[0].ColumnCount = 15;
// Show the column footer.
FpSpread1.ActiveSheetView.ColumnFooter.Visible = true;
FpSpread1.ActiveSheetView.ColumnFooter.RowCount = 2;
FpSpread1.ActiveSheetView.ColumnFooter.DefaultStyle.ForeColor = Color.Purple;
FpSpread1.ActiveSheetView.ColumnFooter.DefaultStyle.Border.BorderStyle =
BorderStyle.Double;
FpSpread1.ActiveSheetView.ColumnFooter.Columns[12].HorizontalAlign =
HorizontalAlign.Left;
FpSpread1.ActiveSheetView.ColumnFooter.Cells[0, 12].RowSpan = 2;
FpSpread1.ActiveSheetView.ColumnFooter.Cells[0, 0].Value = "test";

VB
FpSpread1.Sheets(0).RowCount = 10
FpSpread1.Sheets(0).ColumnCount = 15
' Show the footer.
FpSpread1.ActiveSheetView.ColumnFooter.Visible = true
FpSpread1.ActiveSheetView.ColumnFooter.RowCount = 2
FpSpread1.ActiveSheetView.ColumnFooter.DefaultStyle.ForeColor = Color.Purple
FpSpread1.ActiveSheetView.ColumnFooter.DefaultStyle.Border.BorderStyle =
BorderStyle.Double
FpSpread1.ActiveSheetView.ColumnFooter.Columns(12).HorizontalAlign =
HorizontalAlign.Left
FpSpread1.ActiveSheetView.ColumnFooter.Cells(0, 12).RowSpan = 2
FpSpread1.ActiveSheetView.ColumnFooter.Cells(0, 0).Value = "test

Using
a
Shortcut

Set
the
AggregationType
('AggregationType
Property'
in
the
on-line
documentation)
property
for
the
column.

Example

This
example
sums
the
values
in
the
first
column
and
displays
them
in
the
column
and
group
footers.

C#
FpSpread1.Sheets[0].RowCount=8;
FpSpread1.Sheets[0].ColumnCount = 15;
this.FpSpread1.ActiveSheetView.GroupBarVisible = true;

Spread for ASP.NET Developer’s Guide 195

Copyright © GrapeCity, Inc. All rights reserved.

this.FpSpread1.ActiveSheetView.AllowGroup = true;
this.FpSpread1.ActiveSheetView.GroupFooterVisible = true;
this.FpSpread1.ActiveSheetView.ColumnFooter.Visible = true;
this.FpSpread1.ActiveSheetView.ColumnFooter.RowCount = 2;
this.FpSpread1.ActiveSheetView.ColumnFooter.DefaultStyle.Border.BorderStyle =
BorderStyle.Double;
this.FpSpread1.ActiveSheetView.ColumnFooter.Columns[12].HorizontalAlign =
HorizontalAlign.Left;
this.FpSpread1.ActiveSheetView.ColumnFooter.Cells[0, 12].RowSpan = 2;
//Value
for (int r = 0; r < this.FpSpread1.ActiveSheetView.RowCount; r++)
{
for (int j = 0; j < this.FpSpread1.ActiveSheetView.ColumnCount; j++) {
FpSpread1.ActiveSheetView.DataModel.SetValue(r, j, j + r *
FpSpread1.ActiveSheetView.ColumnCount);
}
}
int i = 0;
this.FpSpread1.ActiveSheetView.Columns[i].AggregationType =
FarPoint.Web.Spread.Model.AggregationType.Sum;
this.FpSpread1.ActiveSheetView.ColumnFooter.Cells[0, i].Value = "Sum";
this.FpSpread1.ActiveSheetView.ColumnFooter.Cells[1, i].Value = "Sum:[{0}]";
//Use the Grouped event to set style information
protected void FpSpread1_Grouped(object sender, EventArgs e)
{
FarPoint.Web.Spread.Model.GroupFooter gf =
default(FarPoint.Web.Spread.Model.GroupFooter);
FarPoint.Web.Spread.GroupInfo gi = default(FarPoint.Web.Spread.GroupInfo);
gf = ((FarPoint.Web.Spread.Model.GroupDataModel
)FpSpread1.ActiveSheetView.DataModel).GetGroupFooter(2);
gi = FpSpread1.ActiveSheetView.GetGroupFooterInfo(gf);
gi.Font.Name = "Verdana";
gi.Font.Size = 8;
gi.ForeColor = System.Drawing.Color.Red;
}

VB
FpSpread1.Sheets(0).RowCount = 8
FpSpread1.Sheets(0).ColumnCount = 15
FpSpread1.ActiveSheetView.GroupBarVisible = True
FpSpread1.ActiveSheetView.AllowGroup = True
FpSpread1.ActiveSheetView.GroupFooterVisible = True
FpSpread1.ActiveSheetView.ColumnFooter.Visible = True
FpSpread1.ActiveSheetView.ColumnFooter.RowCount = 2
FpSpread1.ActiveSheetView.ColumnFooter.DefaultStyle.Border.BorderStyle =
BorderStyle.Double
'Value
Dim r As Integer
Dim j As Integer
For r = 0 To FpSpread1.Sheets(0).RowCount
For j = 0 To FpSpread1.Sheets(0).ColumnCount
FpSpread1.ActiveSheetView.DataModel.SetValue(r, j, j + r *
FpSpread1.ActiveSheetView.ColumnCount)
Next j
Next r
Dim i As Integer

Spread for ASP.NET Developer’s Guide 196

Copyright © GrapeCity, Inc. All rights reserved.

i = 0
FpSpread1.ActiveSheetView.Columns(0).AggregationType =
FarPoint.Web.Spread.Model.AggregationType.Sum
FpSpread1.ActiveSheetView.ColumnFooter.Cells(0, i).Value = "Sum"
FpSpread1.ActiveSheetView.ColumnFooter.Cells(1, i).Value = "Sum:[{0}]"
'Use the Grouped event to set style information
Protected Sub FpSpread1_Grouped(ByVal sender As Object, ByVal e As System.EventArgs)
Handles FpSpread1.Grouped
Dim gf As FarPoint.Web.Spread.Model.GroupFooter
Dim gi As FarPoint.Web.Spread.GroupInfo
gf = CType(FpSpread1.ActiveSheetView.DataModel,
FarPoint.Web.Spread.Model.GroupDataModel).GetGroupFooter(2)
gi = FpSpread1.ActiveSheetView.GetGroupFooterInfo(gf)
gi.Font.Name = "Verdana"
gi.Font.Size = 8
gi.ForeColor = System.Drawing.Color.Red
End Sub

Using
the
Spread
Designer

1.
 Select
the
sheet
tab
for
the
sheet
for
which
you
want
to
display
the
column
footer.
2.
 Select
the
Settings
menu.
3.
 Select
the
Header
Editor
icon
in
the
Other
Settings
section
(Group
Footer
Editor
icon
for
group
footers).
4.
 Select
Column
Footer
in
the
Selected
Header
drop-down
box.
5.
 Set
the
various
formatting
properties
in
the
property
grid.
6.
 Set
the
Visible
property
for
the
column
or
group
footer
under
Sheet
Settings,
Headers,
and
the
Column
or
Group
Footer
tab.

7.
 From
the
File
menu
choose
Apply
and
Exit
to
apply
your
changes
to
the
component
and
exit
Spread
Designer.

Creating a Skin for Sheets

You
can
quickly
customize
the
appearance
of
a
sheet
by
applying
a
"skin"
to
it.
Some
built-in
(default)
skins
are
provided
with
Spread
to
create
common
formats.
You
can
create
your
own
custom
skin
and
save
it
to
use
again
or
share
it,
similar
to
a
template.
A
skin,
whether
built-in
or
custom,
can
be
applied
to
any
number
of
sheets
in
a
Spread
component.
Just
as
a
style
can
be
applied
to
cells,
so
a
skin
can
be
applied
to
an
entire
sheet.
Because
a
skin
can
be
saved
to
a
file,
you
can
use
it
across
projects
and
share
it
with
other
developers.

A
skin
includes
the
following
appearance
settings:

cell
colors
header
colors
headers
displayed
or
not
header
text
bold
row
colors
selection
colors
Spread
background
color
grid
lines
cell
spacing

You
can
save
several
appearance
properties
of
a
sheet
as
a
custom
skin,
which
can
be
used
in
other
projects
or
shared
with
other
developers.
Any
custom
skins
that
you
create
can
be
saved
to
a
file
in
the
Spread
Designer
using
the
Sheet
Skin
editor.

Use
the
Custom
tab
to
create
your
own
skin.
From
here
you
can
create
a
custom
skin
by
altering
the
properties
in
the

Spread for ASP.NET Developer’s Guide 197

Copyright © GrapeCity, Inc. All rights reserved.

Property
window.
When
you
are
ready,
click
Save.
The
Skin
Repository
dialog
is
displayed
and
you
can
enter
a
name
for
your
skin.

After
you
select
OK,
the
file
name
is
displayed
in
the
list
of
saved
custom
skins
in
the
Saved
tab.
You
can
use
the
custom
skin
again
later
by
selecting
the
Saved
tab
and
then
applying
the
appropriate
custom
skin.

For
more
information
on
SheetSkin
object,
refer
to
SheetSkin
('SheetSkin
Class'
in
the
on-line
documentation)
in
the
API
reference
documentation.

For
information
on
the
SheetSkin
editor
in
the
Spread
Designer,
refer
to
SheetSkin
Editor.

For
instructions
for
applying
the
built-in
sheet
skins,
see
Applying
a
Skin
to
a
Sheet.

For
instructions
on
creating
and
applying
your
own
cell-level
styles,
see
Creating
and
Applying
a
Custom
Style
for
Cells.

Using
Code

Use
the
SheetSkin
('SheetSkin
Class'
in
the
on-line
documentation)
object
constructor,
and
set
its
parameters
to
specify
the
settings
for
the
skin.

Example

This
example
code
sets
the
sheet
to
use
a
custom
skin.

C#
FarPoint.Web.Spread.SheetSkin myskin = new FarPoint.Web.Spread.SheetSkin("MySkin",

Spread for ASP.NET Developer’s Guide 198

Copyright © GrapeCity, Inc. All rights reserved.

Color.BlanchedAlmond, Color.Bisque, Color.Navy, 2, Color.Blue, GridLines.Both,
Color.Beige, Color.BurlyWood, Color.AntiqueWhite, Color.Brown, Color.Bisque,
Color.Bisque, true, true, true, true, false);
myskin.Apply(FpSpread1.Sheets[0]);

VB
Dim myskin As New FarPoint.Web.Spread.SheetSkin("MySkin", Color.BlanchedAlmond,
Color.Bisque, Color.Navy, 2, Color.Blue, GridLines.Both, Color.Beige, Color.BurlyWood,
Color.AntiqueWhite, Color.Brown, Color.Bisque, Color.Bisque, True, True, True, True,
False)
myskin.Apply(FpSpread1.Sheets(0))

Using
the
Spread
Designer

1.
 Select
the
Settings
menu.
2.
 Select
the
SheetSkin
icon.
3.
 Select
the
Custom
tab
to
create
a
custom
skin.
4.
 Set
the
properties.
5.
 Click
Save
and
type
in
a
name
for
the
custom
skin.
6.
 Click
OK.
7.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Applying a Skin to a Sheet

You
can
quickly
customize
the
appearance
of
a
sheet
by
applying
a
"skin"
to
it.
Built-in
(default)
skins
are
provided
with
Spread
to
create
common
formats.
You
can
also
create
your
own
custom
skin
and
save
it
to
use
again,
similar
to
a
template.

For
an
overview
and
illustrations
of
sheet
skins,
see
Creating
a
Skin
for
Sheets.

Using
Code

1.
 If
you
want
to
create
your
own
sheet
skin,
follow
the
instructions
provided
in
Creating
a
Skin
for
Sheets
to
create
a
sheet
skin
and
apply
it.
To
apply
a
default
sheet
skin,
follow
the
rest
of
these
directions.

2.
 Use
the
GetAt
('GetAt
Method'
in
the
on-line
documentation)
method
of
the
DefaultSkins
('DefaultSkins
Class'
in
the
on-line
documentation)
object
to
specify
the
index
of
the
default
skin
to
return,
then
the
default
skin
Apply
('Apply
Method'
in
the
on-line
documentation)
method
to
assign
it
to
a
specific
FpSpread
component,
collection
of
sheets,
or
sheet.

Example

This
example
code
sets
the
first
sheet
to
use
the
Colorful2
predefined
skin.

C#
FarPoint.Web.Spread.DefaultSkins.Colorful2.Apply(FpSpread1.Sheets[0]);

VB
FarPoint.Web.Spread.DefaultSkins.Colorful2.Apply(FpSpread1.Sheets(0))

Using
the
Spread
Designer

Spread for ASP.NET Developer’s Guide 199

Copyright © GrapeCity, Inc. All rights reserved.

1.
 Select
the
Settings
menu.
2.
 Select
the
SheetSkin
icon.
3.
 In
the
Pre-Defined
tab
or
the
Custom
tab,
choose
the
skin
to
use
for
the
sheet.
4.
 Click
OK.
5.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Customizing the Appearance of Rows and Columns

These
tasks
relate
to
setting
the
appearance
of
rows
or
columns
in
the
sheet:

Customizing
the
Number
of
Rows
or
Columns
Adding
a
Row
or
Column
Removing
a
Row
or
Column
Showing
or
Hiding
Rows
or
Columns
Setting
the
Row
Height
or
Column
Width
Setting
the
Top
Row
to
Display
Creating
Alternating
Rows
Creating
Row
Templates
(Multiple-Line
Columns)

When
you
work
with
rows
and
columns,
you
can
manipulate
the
objects
using
the
shortcuts
in
code
(Row
('Row
Class'
in
the
on-line
documentation),
Rows
('Rows
Class'
in
the
on-line
documentation),
Column
('Column
Class'
in
the
on-line
documentation),
Columns
('Columns
Class'
in
the
on-line
documentation),
AlternatingRow
('AlternatingRow
Class'
in
the
on-line
documentation),
etc.)
or
you
can
directly
manipulate
the
model.
Most
developers
who
are
not
changing
anything
drastically
find
it
easy
to
manipulate
the
shortcut
objects.

Remember
that
settings
applied
to
a
particular
row
or
column
override
the
settings
that
are
set
at
the
sheet
level
and
settings
applied
at
a
cell
level
override
the
row
or
column
settings.
Refer
to
Object
Parentage.

For
information
on
headers,
refer
to
Customizing
the
Appearance
of
Headers.

For
more
information,
refer
to
the
Row
('Row
Class'
in
the
on-line
documentation)
class
or
Column
('Column
Class'
in
the
on-line
documentation)
class.

For
more
information
about
the
underlying
axis
model,
refer
to
Understanding
the
Axis
Model.

Customizing the Number of Rows or Columns

When
you
create
a
sheet,
it
is
automatically
created
with
three
rows
and
four
columns.
You
can
change
the
number
to
up
to
two
billion
rows
and
columns.

Using
the
Properties
Window

1.
 At
design
time,
in
the
Properties
window,
select
the
FpSpread
component.
2.
 Select
the
Sheets
property.
3.
 Click
the
button
to
display
the
SheetView
Collection
Editor.
4.
 Set
RowCount
and
ColumnCount
under
the
Layout
section.
5.
 Click
OK
to
close
the
editor.

Using
a
Shortcut

Set
the
RowCount
('RowCount
Property'
in
the
on-line
documentation)
or
ColumnCount
('ColumnCount
Property'
in
the
on-line
documentation)
property
for
the
Sheets
('Sheets
Property'
in
the
on-line
documentation)
shortcut.

Spread for ASP.NET Developer’s Guide 200

Copyright © GrapeCity, Inc. All rights reserved.

Example

This
example
code
sets
the
first
sheet
to
have
10
columns
and
100
rows.

C#
FpSpread1.Sheets[0].RowCount = 100;
FpSpread1.Sheets[0].ColumnCount = 10;

VB
FpSpread1.Sheets(0).RowCount = 100
FpSpread1.Sheets(0).ColumnCount = 10

Using
Code

Set
the
RowCount
('RowCount
Property'
in
the
on-line
documentation)
or
ColumnCount
('ColumnCount
Property'
in
the
on-line
documentation)
property
for
a
SheetView
('SheetView
Class'
in
the
on-line
documentation)
class.

Example

This
example
code
sets
the
first
sheet
to
have
100
rows
and
10
columns.

C#
FarPoint.Web.Spread.SheetView Sheet0;
Sheet0 = FpSpread1.Sheets[0];
Sheet0.RowCount = 100;
Sheet0.ColumnCount = 10;

VB
Dim Sheet0 As FarPoint.Web.Spread.SheetView
Sheet0 = FpSpread1.Sheets(0)
Sheet0.RowCount = 100
Sheet0.ColumnCount = 10

Using
the
Spread
Designer

1.
 Select
the
Settings
menu.
2.
 At
the
bottom,
select
the
sheet
for
which
you
want
to
set
the
number
of
rows
or
columns.
3.
 Select
the
General
icon
under
the
Sheet
Settings
section
and
change
the
RowCount
or
ColumnCount

setting.
4.
 Click
OK.
5.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Adding a Row or Column

You
can
add
one
or
more
rows
or
columns
to
a
sheet,
and
specify
where
the
row
or
column
is
added.
You
can
use
the
methods
in
the
SheetView
('SheetView
Class'
in
the
on-line
documentation)
class
or
the
methods
in
the
DefaultSheetDataModel
('DefaultSheetDataModel
Class'
in
the
on-line
documentation)
class.

For
adding
an
unbound
row
to
a
sheet
in
a
component
that
is
bound
to
a
data
source,
refer
to
Adding
an
Unbound
Row.

Spread for ASP.NET Developer’s Guide 201

Copyright © GrapeCity, Inc. All rights reserved.

Using
a
Shortcut

1.
 Use
the
AddRows
('AddRows
Method'
in
the
on-line
documentation)
method
or
AddColumns
('AddColumns
Method'
in
the
on-line
documentation)
method
for
the
Sheets
('Sheets
Property'
in
the
on-line
documentation)
shortcut.

2.
 Set
the
row
or
column
parameter
to
specify
the
row
or
column
before
which
to
add
the
rows
or
columns.
3.
 Set
the
count
parameter
to
specify
the
number
of
rows
or
columns
to
add.

Example

This
example
code
adds
two
columns
before
column
6.

C#
FpSpread1.Sheets[0].AddColumns(6,2);

VB
FpSpread1.Sheets(0).AddColumns(6,2)

Using
Code

1.
 Use
the
AddRows
('AddRows
Method'
in
the
on-line
documentation)
method
or
AddColumns
('AddColumns
Method'
in
the
on-line
documentation)
method
for
a
SheetView
('SheetView
Class'
in
the
on-line
documentation)
object.

2.
 Set
the
row
or
column
parameter
to
specify
the
row
or
column
before
which
to
add
the
rows
or
columns.
3.
 Set
the
count
parameter
to
specify
the
number
of
rows
or
columns
to
add.

Example

This
example
code
adds
two
columns
before
column
6.

C#
FarPoint.Web.Spread.SheetView Sheet0;
Sheet0 = FpSpread1.Sheets[0];
Sheet0.AddColumns(6,2);

VB
Dim Sheet0 As FarPoint.Web.Spread.SheetView
Sheet0 = FpSpread1.Sheets(0)
Sheet0.AddColumns(6, 2)

Using
the
Spread
Designer

1.
 Select
the
Data
menu.
2.
 At
the
bottom,
select
the
sheet
for
which
you
want
to
add
rows
or
columns.
3.
 Select
an
existing
row
or
column
(the
new
row
or
column
is
inserted
before
this
row
or
column).
4.
 Click
the
Insert
icon
and
then
select
Insert
Row
or
Insert
Column.
5.
 Click
OK.
6.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Removing a Row or Column

Spread for ASP.NET Developer’s Guide 202

Copyright © GrapeCity, Inc. All rights reserved.

You
can
remove
one
or
more
rows
or
columns
from
a
sheet
and
you
can
allow
the
end
user
to
remove
rows
or
prohibit
them
from
removing
rows.

If
you
simply
want
to
hide
the
row
or
column
from
the
end
user,
but
not
remove
it
from
the
sheet,
refer
to
Showing
or
Hiding
Rows
or
Columns.

Using
a
Shortcut

1.
 Use
the
RemoveRows
('RemoveRows
Method'
in
the
on-line
documentation)
or
RemoveColumns
('RemoveColumns
Method'
in
the
on-line
documentation)
method
for
the
Sheets
('Sheets
Property'
in
the
on-line
documentation)
shortcut.

2.
 Set
the
row
or
column
parameter
to
specify
the
first
row
or
column
to
remove.
3.
 Set
the
count
parameter
to
specify
the
number
of
rows
or
columns
to
remove.

Example

This
example
code
removes
two
rows.

C#
FpSpread1.Sheets[0].RemoveRows(6,2);

VB
FpSpread1.Sheets(0).RemoveRows(6,2)

Using
Code

1.
 Use
the
RemoveRows
('RemoveRows
Method'
in
the
on-line
documentation)
or
RemoveColumns
('RemoveColumns
Method'
in
the
on-line
documentation)
method
for
a
SheetView
('SheetView
Class'
in
the
on-line
documentation)
object.

2.
 Set
the
row
or
column
parameter
to
specify
the
first
row
or
column
to
remove.
3.
 Set
the
count
parameter
to
specify
the
number
of
rows
or
columns
to
remove.

Example

This
example
code
removes
two
rows.

C#
FarPoint.Web.Spread.SheetView Sheet0;
Sheet0 = FpSpread1.Sheets[0];
Sheet0.RemoveRows(6,2);

VB
Dim Sheet0 As FarPoint.Web.Spread.SheetView
Sheet0 = FpSpread1.Sheets(0)
Sheet0.RemoveRows(6, 2)

Using
the
Spread
Designer

1.
 Select
the
Data
menu.
2.
 At
the
bottom,
select
the
sheet
for
which
you
want
to
remove
rows
or
columns.
3.
 In
the
Rows
or
Columns
area,
select
an
existing
row
or
column
in
the
list.

Spread for ASP.NET Developer’s Guide 203

Copyright © GrapeCity, Inc. All rights reserved.

4.
 Click
the
Delete
icon.
Select
Delete
Row
or
Delete
Column
to
remove
a
row
or
column.
5.
 Click
OK.
6.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Showing or Hiding Rows or Columns

You
can
hide
a
row
or
column
so
that
it
is
not
visible
to
the
user.
You
can
also
hide
only
the
row
headers
or
column
headers;
follow
the
procedures
in
Showing
or
Hiding
Headers.

When
you
hide
a
row
or
column,
the
value
of
the
row
height
or
column
width
is
kept
by
the
fpSpread
component.
If
you
display
the
row
or
column
again,
it
is
displayed
at
the
value
it
was
before
it
was
hidden.
The
data
is
still
available
to
other
parts
of
the
sheet;
the
only
change
is
that
the
row
or
column
is
not
displayed.

If
you
want
to
remove
the
row
or
column,
refer
to
Removing
a
Row
or
Column.

Using
a
Shortcut

Set
the
Visible
('Visible
Property'
in
the
on-line
documentation)
property
for
the
Row
('Row
Class'
in
the
on-line
documentation)
shortcut
object
or
the
Visible
('Visible
Property'
in
the
on-line
documentation)
property
for
the
Column
('Column
Class'
in
the
on-line
documentation)
shortcut
object,
or
use
the
SetRowVisible
('SetRowVisible
Method'
in
the
on-line
documentation)
or
SetColumnVisible
('SetColumnVisible
Method'
in
the
on-line
documentation)
method
in
the
SheetView
('SheetView
Class'
in
the
on-line
documentation)
object.

Example

This
example
code
hides
the
second
row
and
hides
the
third
column.

C#
FpSpread1.Sheets[0].SetRowVisible(1, false);
FpSpread1.Sheets[0].SetColumnVisible(2, false);

VB
FpSpread1.Sheets[0].SetRowVisible(1, false)
FpSpread1.Sheets[0].SetColumnVisible(2, false)

Using
Code

Set
the
SetRowVisible
('SetRowVisible
Method'
in
the
on-line
documentation)
or
SetColumnVisible
('SetColumnVisible
Method'
in
the
on-line
documentation)
method
in
the
SheetView
('SheetView
Class'
in
the
on-line
documentation)
object.

Example

This
example
code
sets
the
first
sheet
to
have
100
rows
and
10
columns.

C#
FarPoint.Web.Spread.SheetView sv;
sv = FpSpread1.ActiveSheetView;
sv.SetRowVisible(1, false);
sv.SetColumnVisible(2, false);

VB

Spread for ASP.NET Developer’s Guide 204

Copyright © GrapeCity, Inc. All rights reserved.

Dim sv As FarPoint.Web.Spread.SheetView
sv = FpSpread1.ActiveSheetView
sv.SetRowVisible(1, False)
sv.SetColumnVisible(2, false)

Using
the
Spread
Designer

1.
 In
Spread
Designer,
select
the
row
or
column.
2.
 In
the
properties
window,
set
the
Visible
property
to
false.
3.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Setting the Row Height or Column Width

You
can
set
the
row
height
or
column
width
as
a
specified
number
of
pixels.
Each
sheet
uses
and
lets
you
set
a
default
size,
making
all
rows
or
columns
in
the
sheet
the
same
size.
You
can
override
that
setting
by
setting
the
value
for
individual
rows
or
columns.

You
can
set
the
column
width
with
the
Width
('Width
Property'
in
the
on-line
documentation)
property
of
the
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
component
Columns
('Columns
Property'
in
the
on-line
documentation)
object.
You
can
set
the
row
height
with
the
Height
('Height
Property'
in
the
on-
line
documentation)
property
of
the
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
component
Rows
('Rows
Property'
in
the
on-line
documentation)
object.

You
can
also
use
the
DefaultColumnWidth
('DefaultColumnWidth
Property'
in
the
on-line
documentation)
property
for
the
sheet
to
set
the
width
for
all
columns
in
the
sheet;
use
the
SetColumnWidth
('SetColumnWidth
Method'
in
the
on-line
documentation)
method
or
use
the
Column
Width
('Width
Property'
in
the
on-line
documentation)
property
to
set
the
width
for
a
specific
column.
For
row
heights,
set
the
DefaultRowHeight
('DefaultRowHeight
Property'
in
the
on-line
documentation)
property
for
the
sheet
to
set
the
height
for
all
the
rows
in
the
sheet;
use
the
SetRowHeight
('SetRowHeight
Method'
in
the
on-line
documentation)
method
or
use
the
Row
Height
('Height
Property'
in
the
on-line
documentation)
property
to
set
the
height
for
a
specific
row.

Users
can
change
the
row
height
or
column
width
by
dragging
the
header
lines
between
rows
or
columns.

Using
the
Properties
Window

1.
 To
change
the
default
column
width
setting
or
row
height,
at
design
time,
in
the
Properties
window,
select
the
Sheets
property
for
the
FpSpread
component.

2.
 Click
the
button
to
display
the
SheetView
Collection
Editor.
3.
 In
the
Members
list,
select
the
sheet
for
which
to
set
the
default
column
width
or
row
height.
4.
 Select
the
DefaultColumnWidth
property
in
the
property
list
or
the
DefaultRowHeight,
and
specify
the

width
or
height
in
pixels.
5.
 Click
OK
to
close
the
editor.
6.
 To
change
the
width
or
height
for
a
specific
column
or
row,
select
the
Columns
or
Rows
collection
after

selecting
the
sheet.
Then
select
a
column
or
row
and
set
the
width
or
height
properties.
7.
 Click
OK
to
close
the
editor.

Using
Code

Typically,
set
the
default
column
width
for
the
sheet
and
set
the
width
of
individual
columns
on
that
sheet
as
needed.
Similarly,
set
the
default
row
height
for
the
sheet
and
set
the
height
of
individual
rows
on
that
sheet
as
needed.

Example

Spread for ASP.NET Developer’s Guide 205

Copyright © GrapeCity, Inc. All rights reserved.

This
example
code
changes
the
default
width
of
all
columns
for
the
first
sheet
to
50
pixels,
but
makes
the
width
of
the
second
column
100
pixels.

C#
// Set default width to 50, but second column 100.
FpSpread1.Sheets[0].DefaultColumnWidth = 50;
FpSpread1.Sheets[0].Columns[1].Width = 100;

VB
' Set default width to 50, but second column 100.
FpSpread1.Sheets(0).DefaultColumnWidth = 50
FpSpread1.Sheets(0).Columns(1).Width = 100

Using
Code

Set
the
Width
('Width
Property'
in
the
on-line
documentation)
property
for
a
Column
('Column
Class'
in
the
on-line
documentation)
object.

Example

This
example
code
sets
the
width
of
the
second
column
to
100
pixels.

C#
FarPoint.Web.Spread.Column Col1;
Col1 = fpSpread1.Sheets[0].Columns[1];
Col1.Width = 100;

VB
Dim Col1 As FarPoint.Web.Spread.Column
Col1 = FpSpread1.Sheets(0).Columns(1)
Col1.Width = 100

Using
the
Spread
Designer

1.
 To
set
the
default
column
width
or
row
height,
a.
 Select
the
sheet
for
which
you
want
to
set
the
default
column
width
or
row
height.
b.
 Select
DefaultColumnWidth
or
DefaultRowHeight
and
set
the
width
or
height
properties.
c.
 From
the
File
menu
choose
Apply
and
Exit
to
apply
your
changes
to
the
component
and
exit
Spread
Designer.

2.
 To
set
a
specific
column
width
or
row
height,
a.
 Select
the
column
or
row
for
which
you
want
to
change
the
width
or
height.
b.
 In
the
properties
list
for
that
column
or
row,
change
the
Width
property
or
the
Height
property.
c.
 From
the
File
menu
choose
Apply
and
Exit
to
apply
your
changes
to
the
component
and
exit
Spread
Designer.

Setting the Top Row to Display

You
can
set
the
display
of
a
sheet
to
display
a
particular
row
as
the
top
row
with
the
SheetView.TopRow
('TopRow
Property'
in
the
on-line
documentation)
property.
Rows
above
that
top
row
are
not
rendered
in
the
client.
Use
the
ScrollTo
(on-line
documentation)
method
to
move
the
specified
cell.

Spread for ASP.NET Developer’s Guide 206

Copyright © GrapeCity, Inc. All rights reserved.

designcommand:name=edit,id='078567c1-0181-4f49-87f2-80247163de46'

If
the
AllowPage
('AllowPage
Property'
in
the
on-line
documentation)
property
is
False,
the
TopRow
property
takes
effect.
If
AllowPage
('AllowPage
Property'
in
the
on-line
documentation)
is
True;
then
TopRow
only
takes
effect
the
first
time
the
page
is
loaded.

Using
Code

1.
 Set
the
AllowPage
('AllowPage
Property'
in
the
on-line
documentation)
property.
2.
 Set
the
TopRow
('TopRow
Property'
in
the
on-line
documentation)
property.

Example

This
example
code
sets
the
top
row.

C#
FpSpread1.ActiveSheetView.RowCount = 20;
FpSpread1.ActiveSheetView.ColumnCount = 7;
FpSpread1.ActiveSheetView.AllowPage = false;
FpSpread1.ActiveSheetView.TopRow = 4;
FpSpread1.ActiveSheetView.IgnoreHiddenRowsWhenPaging = false;

VB
FpSpread1.ActiveSheetView.AllowPage = False
FpSpread1.ActiveSheetView.ColumnCount = 7
FpSpread1.ActiveSheetView.RowCount = 20
FpSpread1.ActiveSheetView.IgnoreHiddenRowsWhenPaging = False
FpSpread1.ActiveSheetView.TopRow = 4

Creating Alternating Rows

You
might
want
to
set
up
your
sheet
so
that
alternating
rows
have
different
appearance.
For
example,
in
a
ledger,
alternating
rows
often
have
a
green
background.
In
Spread,
you
can
set
up
multiple
alternating
row
appearances,
which
are
applied
in
sequence,
starting
with
the
first
row.
The
following
image
displays
alternating
row
colors:

Set
up
the
alternating
rows
using
an
index
into
the
alternating
row
appearances.
It
might
help
to
think
of
the
default
row
appearance
as
the
first
alternating
row
style
(or
style
zero,
because
the
index
is
zero-based).
Set
the
other
alternating
row
appearances
to
subsequent
indexes.
Refer
to
the
AlternatingRow
('AlternatingRow
Class'
in
the
on-line
documentation)
class.

Using
a
Shortcut

1.
 Set
the
Count
('Count
Property'
in
the
on-line
documentation)
property
for
the
AlternatingRows
('AlternatingRows
Class'
in
the
on-line
documentation)
shortcut
object.

2.
 Set
the
various
appearance
and
other
properties
of
the
AlternatingRows
('AlternatingRows
Class'
in
the
on-line
documentation)
shortcut
object,
such
as
the
BackColor
('BackColor
Property'
in
the
on-line
documentation)
and
ForeColor
('ForeColor
Property'
in
the
on-line
documentation)
properties.

3.
 Create
additional
alternating
row
appearances
by
setting
properties
for
additional
AlternatingRows
('AlternatingRows
Class'
in
the
on-line
documentation)
shortcut
objects,
increasing
the
index
for
each

Spread for ASP.NET Developer’s Guide 207

Copyright © GrapeCity, Inc. All rights reserved.

appearance
you
create.

Example

This
example
code
creates
a
sheet
that
has
three
different
appearance
settings
for
rows.
The
first
row
uses
the
default
appearance.
The
second
row
has
a
light
blue
background
with
dark
blue
text,
and
the
third
row
has
an
orange
background
with
dark
red
text.
This
pattern
repeats
for
all
subsequent
rows.

C#
FpSpread1.Sheets[0].AlternatingRows.Count = 3;
FpSpread1.Sheets[0].AlternatingRows[1].BackColor = Color.LightBlue;
FpSpread1.Sheets[0].AlternatingRows[1].ForeColor = Color.DarkBlue;
FpSpread1.Sheets[0].AlternatingRows[2].BackColor = Color.Orange;
FpSpread1.Sheets[0].AlternatingRows[2].ForeColor = Color.DarkRed;

VB
FpSpread1.Sheets(0).AlternatingRows.Count = 3
FpSpread1.Sheets(0).AlternatingRows(1).BackColor = Color.LightBlue
FpSpread1.Sheets(0).AlternatingRows(1).ForeColor = Color.DarkBlue
FpSpread1.Sheets(0).AlternatingRows(2).BackColor = Color.Orange
FpSpread1.Sheets(0).AlternatingRows(2).ForeColor = Color.DarkRed

Using
the
Spread
Designer

1.
 From
the
Settings
menu,
select
the
AlternatingRow
editor
icon
located
under
the
Other
Settings
section.
2.
 In
the
AlternatingRow
editor,
add
the
number
of
alternating
row
objects
you
want
to
provide,
using
the
AltRow
section.

3.
 Select
the
alternating
row
object
for
which
you
want
to
set
properties
from
the
list
of
row
objects.
4.
 Set
the
properties
for
the
alternating
row
object
in
the
list
of
properties.
5.
 Repeat
steps
3
and
4
for
each
alternating
row
object
you
want
to
customize.
6.
 Click
OK
to
close
the
editor.
7.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Creating Row Templates (Multiple-Line Columns)

You
can
create
row
templates,
also
called
aggregation
subtotals
or
multiple-line
columns.
You
can
display
multiple
lines
within
a
column,
such
as
to
display
address
information
together
in
one
column
that
involves
multiple
fields
of
information.

Spread for ASP.NET Developer’s Guide 208

Copyright © GrapeCity, Inc. All rights reserved.

In
this
figure,
the
ID
and
name
information
appear
staggered
in
a
single
column
and
the
street
address
and
city
information
appear
in
the
same
column.

The
parts
of
the
API
that
are
involved
with
this
feature
include:

SheetView.LayoutMode
('LayoutMode
Property'
in
the
on-line
documentation)
property
SheetView.WorksheetTemplate
('WorksheetTemplate
Property'
in
the
on-line
documentation)
Worksheet.RowTemplate
('RowTemplate
Property'
in
the
on-line
documentation)
property
LayoutTemplate
('LayoutTemplate
Class'
in
the
on-line
documentation)
class
LayoutCell
('LayoutCell
Class'
in
the
on-line
documentation)
class
LayoutCells
('LayoutCells
Class'
in
the
on-line
documentation)
class
LayoutColumn
('LayoutColumn
Class'
in
the
on-line
documentation)
class
LayoutColumns
('LayoutColumns
Class'
in
the
on-line
documentation)
class
LayoutRow
('LayoutRow
Class'
in
the
on-line
documentation)
class
LayoutRows
('LayoutRows
Class'
in
the
on-line
documentation)
class
SheetView.LayoutModeType
('SheetView.LayoutModeType
Enumeration'
in
the
on-line
documentation)
enumeration

The
worksheet
template
contains
a
column
header
template
and
a
row
template.
Layout
information
such
as
cell
spans,
column
count,
and
row
count
is
stored
in
the
worksheet
template.

This
feature
has
the
following
effects
on
other
features:

The
row
count
of
the
column
header
and
the
column
count
of
the
row
header
are
limited.
This
does
not
support
changing
the
row
height
by
the
drag
and
drop
operation,
but
it
does
support
changing
the
column
width
by
the
drag
and
drop
operation.
The
frozen
columns
feature
is
not
supported,
but
the
frozen
rows
feature
is
supported.The
selection
operation
only
supports
the
single
selection
policy
of
a
sheet
(SheetView
object).
The
Axis
model
of
Spread
is
limited:
you
cannot
set
row
height
or
column
width
for
the
viewport,
the
row
header,
or
the
column
header.
The
Span
model
of
Spread
is
limited:
you
cannot
set
spans
in
the
viewport,
row
header,
column
header,
or

Spread for ASP.NET Developer’s Guide 209

Copyright © GrapeCity, Inc. All rights reserved.

column
footer.
You
can
get
similar
effects
by
spanning
cells
in
the
row
template.
This
does
not
support
the
operation
of
moving
a
column
by
dragging
and
dropping.
Automatic
merging
is
no
longer
supported.

The
following
code
example
creates
this
image.

Using
Code

1.
 Set
the
LayoutMode
('LayoutMode
Property'
in
the
on-line
documentation)
property
for
the
sheet.
2.
 Set
the
template
to
the
WorksheetTemplate
('WorksheetTemplate
Property'
in
the
on-line
documentation)
property
for
the
sheet.

3.
 Set
the
ColumnCount
('ColumnCount
Property'
in
the
on-line
documentation)
property
for
the
template.

4.
 Set
the
row
count
for
the
column
header
template
and
the
row
template.
5.
 Set
the
cell
spans
for
the
column
header
and
row
templates.
6.
 Create
data
for
the
cells.
7.
 Use
the
DataIndex
('DataIndex
Property'
in
the
on-line
documentation)
property
to
put
data
in
the
cell.

Example

This
example
assigns
a
layout
mode
for
the
column
headers.

C#
protected void Page_Load(object sender, System.EventArgs e)
{
if (this.IsPostBack) return;
FpSpread1.ActiveSheetView.LayoutMode =
FarPoint.Web.Spread.SheetView.LayoutModeType.RowTemplateLayoutMode;
FarPoint.Web.Spread.WorksheetTemplate template1 =
FpSpread1.Sheets[0].WorksheetTemplate;
template1.ColumnCount = 3;
template1.ColumnHeaderTemplate.RowCount = 2;
template1.RowTemplate.RowCount = 2;
template1.LayoutColumns[1].Width = 250;
//Set row template's layout
template1.RowTemplate.LayoutCells[1, 1].ColumnSpan = 2;
//set column header template's layout
template1.ColumnHeaderTemplate.LayoutCells[0, 0].RowSpan = 2;
template1.ColumnHeaderTemplate.LayoutCells[1, 1].ColumnSpan = 2;
DataTable dt = new DataTable();
dt.Columns.Add("ProductID");
dt.Columns.Add("ProductName");

Spread for ASP.NET Developer’s Guide 210

Copyright © GrapeCity, Inc. All rights reserved.

dt.Columns.Add("Region");
dt.Columns.Add("Date");
dt.Columns.Add("Description");
dt.Rows.Add(new object[] { 21, "Computer", "China", "2010/1/1", "Using newest display
adapter" });
dt.Rows.Add(new object[] { 36, "Notebook", "Vietnam", "2010/6/1", "Dell" });
dt.Rows.Add(new object[] { 13, "Hard disk", "Taiwan", "2011/1/1", "Speed is 7200" });
FpSpread1.Sheets[0].DataSource = dt;
template1.LayoutCells[0, 0].DataIndex = 0;
template1.LayoutCells[1, 0].DataIndex = 1;
template1.LayoutCells[0, 1].DataIndex = 2;
template1.LayoutCells[0, 2].DataIndex = 3;
template1.LayoutCells[1, 1].DataIndex = 4;
}

VB
Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
If (IsPostBack) Then
 Return
End If
FpSpread1.ActiveSheetView.LayoutMode =
FarPoint.Web.Spread.SheetView.LayoutModeType.RowTemplateLayoutMode
Dim template1 As FarPoint.Web.Spread.WorksheetTemplate =
FpSpread1.Sheet(0).WorksheetTemplate
template1.ColumnCount = 3
template1.ColumnHeaderTemplate.RowCount = 2
template1.RowTemplate.RowCount = 2
template1.LayoutColumns(1).Width = 250
'Set row template's layout
template1.RowTemplate.LayoutCells(1, 1).ColumnSpan = 2
'set column header template's layout
template1.ColumnHeaderTemplate.LayoutCells(0, 0).RowSpan = 2
template1.ColumnHeaderTemplate.LayoutCells(1, 1).ColumnSpan = 2
Dim dt As New DataTable()
dt.Columns.Add("ProductID")
dt.Columns.Add("ProductName")
dt.Columns.Add("Region")
dt.Columns.Add("Date")
dt.Columns.Add("Description")
dt.Rows.Add(New Object() {21, "Computer", "China", "2010/1/1", "Using newest display
adapter"})
dt.Rows.Add(New Object() {36, "Notebook", "Vietnam", "2010/6/1", "Dell"})
dt.Rows.Add(New Object() {13, "Hard disk", "Taiwan", "2011/1/1", "Speed is 7200"})
FpSpread1.Sheets(0).DataSource = dt
template1.LayoutCells(0, 0).DataIndex = 0
template1.LayoutCells(1, 0).DataIndex = 1
template1.LayoutCells(0, 1).DataIndex = 2
template1.LayoutCells(0, 2).DataIndex = 3
template1.LayoutCells(1, 1).DataIndex = 4
End Sub

Using
the
Spread
Designer

1.
 Select
the
Settings
menu.

Spread for ASP.NET Developer’s Guide 211

Copyright © GrapeCity, Inc. All rights reserved.

2.
 Select
the
Row
Template
icon
under
the
Other
Settings
section.
3.
 Set
the
various
template
properties.
4.
 Click
OK.
5.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Customizing the Appearance of Headers

You
can
customize
the
appearance
of
header
cells.
These
tasks
relate
to
customizing
the
appearance
of
header
cells
for
rows
or
columns
in
the
sheet:

Customizing
the
Style
of
Header
Cells
Showing
or
Hiding
Headers
Customizing
the
Default
Header
Labels
Customizing
Header
Label
Text
Setting
the
Size
of
Header
Cells
Customizing
the
Header
Empty
Areas
Creating
a
Header
with
Multiple
Rows
or
Columns
Creating
a
Span
in
a
Header

Headers
provide
labels
to
identify
the
columns
and
rows.
They
appear
at
the
top
(for
columns)
and
to
the
left
(for
rows)
of
the
data
cells
and
are
formatted
differently
to
be
clearly
seen.
You
may
customize
the
appearance
of
header
cells
as
you
would
any
of
the
cells
in
the
spreadsheet
component.
When
you
work
with
row
headers
and
column
headers,
you
can
manipulate
the
objects
using
the
short
cuts
in
code
(RowHeader
('RowHeader
Class'
in
the
on-line
documentation)
and
ColumnHeader
('ColumnHeader
Class'
in
the
on-line
documentation)
classes),
or
you
can
directly
manipulate
the
model.
Most
developers
who
are
not
changing
anything
drastically
find
it
easy
to
manipulate
the
short
cut
objects.

The
figure
below
shows
the
parts
of
the
headers
and
the
coordinates
of
cells
in
headers
that
have
multiple
rows
and
columns.

Spread for ASP.NET Developer’s Guide 212

Copyright © GrapeCity, Inc. All rights reserved.

For
more
information
on
the
Cell
and
Cells
objects,
refer
to
the
Assembly
Reference
(on-line
documentation).

For
more
information
on
models,
refer
to
Using
Sheet
Models.

For
information
on
footers,
refer
to
Displaying
a
Footer
for
Columns
or
Groups.

Customizing the Style of Header Cells

You
can
customize
the
style
of
header
cells
if
you
want
to
change
the
default
appearance.
Set
the
default
style
of
the
header
cells
by
setting
the
DefaultStyle
property
in
the
RowHeader
('RowHeader
Class'
in
the
on-line
documentation)
or
ColumnHeader
('ColumnHeader
Class'
in
the
on-line
documentation)
class.
For
more
information
on
what
can
be
set,
refer
to
the
StyleInfo
object
and
the
RowHeader
and
ColumnHeader
objects
in
the
Assembly
Reference
(on-line
documentation).

You
can
also
change
some
of
the
properties
of
the
SheetSkin
('SheetSkin
Class'
in
the
on-line
documentation)
class
that
customize
the
appearance
of
header
cells
and
apply
the
skin
the
sheet.
These
properties
include
FlatRowHeader
('FlatRowHeader
Property'
in
the
on-line
documentation)
and
FlatColumnHeader
('FlatColumnHeader
Property'
in
the
on-line
documentation).
For
more
information
creating
and
applying
skins,
refer
to
Applying
a
Skin
to
a
Sheet
and
Creating
a
Skin
for
Sheets.

When
defining
and
applying
a
custom
style
to
header
cells,
be
sure
to
set
the
text
alignment.
The
default
renderer
(without
any
style
applied)
centers
the
text;
if
you
apply
a
style,
and
do
not
set
the
alignment,
the
text
is
left-aligned
not
centered.

You
can
also
set
the
grid
lines
around
the
header
cells
with
the
Border
('Border
Class'
in
the
on-line
documentation)
property.

Using
the
Properties
Window

1.
 At
design
time,
in
the
Properties
window,
select
the
FpSpread
component.
2.
 Select
the
NamedStyles
Collection
drop-down
button.
3.
 Add
a
style
and
set
the
properties.
4.
 Click
OK.
Select
the
cells
you
want
to
apply
the
style
to
and
set
the
StyleName
property.
5.
 Use
the
SheetView
Collection
Editor
to
set
the
DefaultStyleName
for
a
column
header,
row
header,
column
footer,
or
sheet
corner.

6.
 Click
OK
to
close
the
editor.

Using
a
Shortcut

1.
 To
change
the
style
for
the
column
header,
define
a
style
and
then
set
the
ColumnHeader
('ColumnHeader
Class'
in
the
on-line
documentation)
DefaultStyle
('DefaultStyle
Property'
in
the
on-line
documentation)
property.

2.
 To
change
the
settings
for
the
row
header,
define
a
style
and
then
set
the
RowHeader
('RowHeader
Class'
in
the
on-line
documentation)
DefaultStyle
('DefaultStyle
Property'
in
the
on-line
documentation)
property.

Example

This
example
code
defines
a
style
with
new
colors
and
applies
it
to
the
column
header.

C#
// Define a new style.
FarPoint.Web.Spread.StyleInfo darkstyle = new FarPoint.Web.Spread.StyleInfo();
darkstyle.BackColor = Color.Teal;
darkstyle.ForeColor = Color.Yellow;
darkstyle.Border = new FarPoint.Web.Spread.Border(Color.Crimson);

Spread for ASP.NET Developer’s Guide 213

Copyright © GrapeCity, Inc. All rights reserved.

// Apply the new style.
FpSpread1.ActiveSheetView.ColumnHeader.DefaultStyle = darkstyle;

VB
' Define a new style.
Dim darkstyle As New FarPoint.Web.Spread.StyleInfo()
darkstyle.BackColor = Color.Teal
darkstyle.ForeColor = Color.Yellow
darkstyle.Border = New FarPoint.Web.Spread.Border(Color.Crimson)
' Apply the new style.
FpSpread1.ActiveSheetView.ColumnHeader.DefaultStyle = darkstyle

Using
the
Spread
Designer

1.
 Select
the
Settings
menu.
2.
 Select
the
Named
Style
icon
under
the
Appearance
Settings
section.
3.
 Use
the
new
style
icon
to
create
a
style
name.
Use
the
edit
style
icon
to
set
properties
for
the
style.
4.
 Click
OK.
Close
the
NamedStyle
dialog.
5.
 In
order
to
apply
the
style
to
a
header,
select
the
Header
Editor
icon
under
Other
Settings.
Use
the
Selected
Header
option
to
specify
column
header,
row
header,
column
footer,
or
sheet
corner.

6.
 Set
the
DefaultStyleName.
Click
Apply
and
OK.
7.
 For
cells,
select
the
Cells,
Columns,
and
Rows
Editor.
8.
 Select
the
cells
you
want
to
apply
the
style
to.
9.
 Set
the
StyleName.
10.
 Choose
Apply
and
OK
to
apply
your
changes
to
the
component.
11.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Showing or Hiding Headers

By
default,
the
row
headers
and
column
headers
are
displayed
in
the
component.
You
can
hide
the
row
headers,
the
column
headers,
or
both.
The
following
figure
shows
a
sheet
that
displays
only
column
headers
and
hides
the
row
headers.

If
the
sheet
has
multiple
headers,
using
the
property
window
instructions
to
hide
the
headers,
hides
all
header
rows
or
header
columns
or
both.
If
you
want
to
hide
specific
rows
or
columns
within
a
header,
you
must
specify
the
row
or
column.
For
more
details
on
hiding
specific
rows
or
columns,
refer
to
Showing
or
Hiding
Rows
or
Columns.

The
display
of
headers
is
done
by
simply
setting
the
row
header
Visible
('Visible
Property'
in
the
on-line
documentation)
property
or
column
header
Visible
('Visible
Property'
in
the
on-line
documentation)
property.

Spread for ASP.NET Developer’s Guide 214

Copyright © GrapeCity, Inc. All rights reserved.

Alternatively,
if
you
prefer
you
can
customize
the
headers
by
providing
custom
text
or
headers
with
multiple
columns
or
rows,
as
explained
in
Customizing
Header
Label
Text
and
Creating
a
Header
with
Multiple
Rows
or
Columns.

Using
the
Properties
Window

1.
 At
design
time,
in
the
Properties
window,
select
the
FpSpread
component.
2.
 Select
the
Sheets
property.
3.
 Click
the
button
to
display
the
SheetView
Collection
Editor.
4.
 Click
the
sheet
for
which
you
want
to
change
the
header
display.
5.
 Set
the
Visible
property
for
the
ColumnHeader
object
or
the
Visible
property
for
the
RowHeader
object
to
false
to
turn
off
the
display
of
the
header.

6.
 Click
OK
to
close
the
editor.

Using
a
Shortcut

Set
the
ColumnHeader
('ColumnHeader
Class'
in
the
on-line
documentation)
Visible
('Visible
Property'
in
the
on-line
documentation)
(or
SheetView
('SheetView
Class'
in
the
on-line
documentation)
ColumnHeaderVisible
('ColumnHeaderVisible
Property'
in
the
on-line
documentation))
property
or
RowHeader
('RowHeader
Class'
in
the
on-line
documentation)
Visible
('Visible
Property'
in
the
on-line
documentation)
(or
SheetView
('SheetView
Class'
in
the
on-line
documentation)
RowHeaderVisible
('RowHeaderVisible
Property'
in
the
on-line
documentation))
property
for
a
sheet.

Example

This
example
turns
off
the
display
of
the
row
header.

C#
// Turn off the display of row headers.
FpSpread1.Sheets[0].RowHeader.Visible = false;
FpSpread1.Sheets[0].ColumnCount = 4;

VB
' Turn off the display of row headers.
FpSpread1.Sheets(0).RowHeader.Visible = False
FpSpread1.Sheets[0].ColumnCount = 4

Using
Code

1.
 Create
a
new
SheetView
object.
2.
 Set
the
SheetView
object
ColumnHeaderVisible
('ColumnHeaderVisible
Property'
in
the
on-line
documentation)
or
RowHeaderVisible
('RowHeaderVisible
Property'
in
the
on-line
documentation)
property
to
false.

3.
 Set
an
FpSpread
component’s
sheet
equal
to
the
SheetView
object
you
just
created.

Example

This
example
code
sets
the
first
sheet
to
not
display
column
headers.

C#
// Create a new sheet.
FarPoint.Web.Spread.SheetView newsheet = new FarPoint.Web.Spread.SheetView();

Spread for ASP.NET Developer’s Guide 215

Copyright © GrapeCity, Inc. All rights reserved.

newsheet.ColumnHeaderVisible = false;
// Set first sheet equal to SheetView object.
FpSpread1.Sheets[0] = newsheet;

VB
' Create a new sheet.
Dim newsheet As New FarPoint.Web.Spread.SheetView()
newsheet.ColumnHeaderVisible = False
' Set first sheet equal to SheetView object.
FpSpread1.Sheets(0) = newsheet

Using
the
Spread
Designer

1.
 Select
the
sheet
tab
for
the
sheet
for
which
you
want
to
turn
off
header
display.
2.
 In
the
View
menu
select
or
deselect
the
Row
Header
or
Column
Header
check
box.
3.
 From
the
File
menu
choose
Apply
and
Exit
to
apply
your
changes
to
the
component
and
exit
Spread
Designer.

Customizing the Default Header Labels

By
default
the
component
displays
sequential
letters
in
the
bottom
row
of
the
column
header
and
sequentially
increasing
numbers
in
the
right-most
column
of
the
row
header.
If
your
sheet
displays
multiple
column
header
rows
or
row
header
columns,
you
can
specify
which
column
or
row
displays
these
default
labels.
In
the
following
figure,
the
column
headers
show
numbers
instead
of
letters
and
the
labels
are
shown
in
the
second
row
instead
of
the
bottom
row.
You
can
also
display
no
default
labels.

You
can
also
set
the
number
(or
letter)
at
which
to
start
the
sequential
numbering
(or
lettering)
of
the
labels
using
a
property
of
the
sheet.
Use
the
StartingColumnNumber
('StartingColumnNumber
Property'
in
the
on-line
documentation)
property
or
StartingRowNumber
('StartingRowNumber
Property'
in
the
on-line
documentation)
property
of
the
SheetView
('SheetView
Class'
in
the
on-line
documentation)
object
to
set
the
number
or
letter
displayed
in
the
first
column
header
or
first
row
header
respectively
on
the
sheet.
The
starting
number
or
letter
is
used
only
for
display
purposes
and
has
no
effect
on
the
actual
row
and
column
coordinates.

Note:
The
value
of
a
starting
number
or
letter
is
an
integer,
so
if
the
header
displays
letters
and
set
the
starting
letter
to
10,
the
first
header
cell
contains
the
letter
J.

You
can
also
choose
to
display
custom
text
in
the
headers
instead
of
or
in
addition
to
the
automatic
label
text.
For
instructions,
see
Customizing
Header
Label
Text.

Using
the
Properties
Window

Spread for ASP.NET Developer’s Guide 216

Copyright © GrapeCity, Inc. All rights reserved.

1.
 At
design
time,
in
the
Properties
window,
select
the
FpSpread
component.
2.
 Select
the
Sheets
property.
3.
 Click
the
button
to
display
the
SheetView
Collection
Editor.
4.
 Click
the
sheet
for
which
you
want
to
change
the
header
labels.
5.
 To
change
the
header
labels
displayed,
change
the
setting
of
the
ColumnHeader
AutoText
or
RowHeader
AutoText
property.

6.
 To
change
the
row
or
column
in
the
header
in
which
the
label
is
displayed,
change
the
setting
of
the
ColumnHeader
AutoTextIndex
or
RowHeader
AutoTextIndex
property
(the
index
is
zero-based).

7.
 Click
OK
to
close
the
editor.

Using
a
Shortcut

1.
 To
change
the
settings
for
the
column
header,
set
the
ColumnHeaderAutoText
('ColumnHeaderAutoText
Property'
in
the
on-line
documentation)
property
for
the
sheet
(or
the
AutoText
('AutoText
Property'
in
the
on-line
documentation)
property
of
the
ColumnHeader
('ColumnHeader
Class'
in
the
on-line
documentation)
object)
and
the
ColumnHeaderAutoTextIndex
('ColumnHeaderAutoTextIndex
Property'
in
the
on-line
documentation)
property
of
the
sheet
(or
the
AutoTextIndex
('AutoTextIndex
Property'
in
the
on-line
documentation)
property
of
the
ColumnHeader
('ColumnHeader
Class'
in
the
on-line
documentation)
object).
Use
the
HeaderAutoText
('HeaderAutoText
Enumeration'
in
the
on-line
documentation)
enumeration
with
the
auto
text
properties.

2.
 To
change
the
settings
for
the
row
header,
set
the
RowHeaderAutoText
('RowHeaderAutoText
Property'
in
the
on-line
documentation)
property
for
the
sheet
(or
the
AutoText
('AutoText
Property'
in
the
on-
line
documentation)
property
of
the
RowHeader
('RowHeader
Class'
in
the
on-line
documentation)
object)
and
the
RowHeaderAutoTextIndex
('RowHeaderAutoTextIndex
Property'
in
the
on-line
documentation)
property
for
the
sheet
(or
the
AutoTextIndex
('AutoTextIndex
Property'
in
the
on-line
documentation)
property
of
the
RowHeader
('RowHeader
Class'
in
the
on-line
documentation)
object).

Example

This
example
code
sets
the
column
header
to
display
numbers
instead
of
letters
and
changes
the
row
header
to
letters.

C#
// Set the column header to display numbers instead of letters.
FpSpread1.Sheets[0].ColumnHeaderAutoTextIndex = 1;
FpSpread1.Sheets[0].ColumnHeaderAutoText = FarPoint.Web.Spread.HeaderAutoText.Numbers;
// Change row headers to letters
FpSpread1.Sheets[0].RowHeaderAutoText = FarPoint.Web.Spread.HeaderAutoText.Letters;

VB
' Set the column header to display numbers instead of letters.
FpSpread1.Sheets(0).ColumnHeaderAutoTextIndex = 1
FpSpread1.Sheets(0).ColumnHeaderAutoText = FarPoint.Web.Spread.HeaderAutoText.Numbers
' Change row headers to letters
FpSpread1.Sheets(0).RowHeaderAutoText = FarPoint.Web.Spread.HeaderAutoText.Letters

Using
the
Spread
Designer

1.
 Select
the
sheet
for
which
you
want
to
modify
the
header
label
(automatic
text)
settings.
2.
 Select
the
Settings
menu.
Select
the
Headers
icon
in
the
Sheet
Settings
section.
Select
the
Column
or
Row
Header
tab.

3.
 Change
the
settings
of
the
AutoText
and
AutoTextIndex
properties
to
specify
the
header
label
to
display
and
which
column
or
row
in
the
header
should
display
the
automatic
text.
You
can
also
specify
other
header

Spread for ASP.NET Developer’s Guide 217

Copyright © GrapeCity, Inc. All rights reserved.

properties
such
as
the
starting
column
or
row
number.
4.
 Click
OK
to
close
the
dialog.
5.
 From
the
File
menu
choose
Apply
and
Exit
to
apply
your
changes
to
the
component
and
exit
Spread
Designer.

Customizing Header Label Text

By
default
the
component
displays
letters
in
the
column
headers
and
numbers
in
the
row
headers.
Besides
this
automatic
text,
you
can
add
labels
to
any
or
all
of
the
header
cells.
You
can
customize
the
header
label
text,
as
shown
in
the
following
figure
where
the
first
four
columns
have
custom
labels.

To
specify
the
custom
text
for
a
header
label,
you
can
use
the
Column
('Column
Class'
in
the
on-line
documentation)
Label
('Label
Property'
in
the
on-line
documentation)
property
or
the
Row
('Row
Class'
in
the
on-line
documentation)
Label
('Label
Property'
in
the
on-line
documentation)
property
or
you
can
use
the
Cell
('Cell
Class'
in
the
on-line
documentation)
Text
('Text
Property'
in
the
on-line
documentation)
property.
For
headers
with
multiple
columns
and
multiple
rows,
you
use
the
Text
('Text
Property'
in
the
on-line
documentation)
property
of
the
Cells
shortcut
objects.
Refer
to
the
example
in
Creating
a
Header
with
Multiple
Rows
or
Columns.

To
customize
the
sequential
letters
in
column
headers
and
sequential
numbers
in
row
headers
that
are
displayed
by
default,
refer
to
Customizing
the
Default
Header
Labels.

Cells
in
the
headers
are
separate
from
the
cells
in
the
data
area,
so
the
coordinates
for
cells
in
the
headers
start
at
0,0
and
count
up
from
upper
left
to
lower
right
within
the
header.
The
sheet
corner
cell
is
separate
and
is
not
counted
when
figuring
header
cell
coordinates.

Using
the
Properties
Window

1.
 At
design
time,
in
the
Properties
window,
select
the
FpSpread
component.
2.
 Select
the
Sheets
property.
3.
 Click
the
button
to
display
the
SheetView
Collection
Editor.
4.
 Click
the
sheet
for
which
you
want
to
change
the
header
labels.

You
cannot
add
or
change
custom
text
in
cells
other
than
the
labels
displayed
when
using
the
Properties
window.

5.
 In
the
property
list,
select
the
Cells
property
and
click
the
button
to
display
the
Cell,
Column,
and
Row
Editor.

6.
 Select
the
column
for
which
you
want
to
change
the
labels
displayed
to
custom
text.
7.
 Set
the
Label
property
to
set
the
custom
text.
8.
 Click
OK
to
close
the
Cell,
Column,
and
Row
Editor.
9.
 Click
OK
to
close
the
SheetView
Collection
Editor.

Using
a
Shortcut

Spread for ASP.NET Developer’s Guide 218

Copyright © GrapeCity, Inc. All rights reserved.

If
you
want
to
change
the
text
in
a
header
cell
or
display
text
in
a
cell,
set
the
Text
property
for
the
Cells
('Cells
Class'
in
the
on-line
documentation)
object
of
the
ColumnHeader
('ColumnHeader
Class'
in
the
on-line
documentation)
to
the
custom
text
you
want
to
display.
If
you
want
to
set
the
text
for
multiple
header
cells,
call
the
SetClip
('SetClip
Method'
in
the
on-line
documentation)
or
SetClipValue
('SetClipValue
Method'
in
the
on-line
documentation)
methods
for
the
ColumnHeader
('ColumnHeader
Class'
in
the
on-line
documentation).
The
same
applies
to
a
RowHeader
('RowHeader
Class'
in
the
on-line
documentation)
object.
If
you
want
to
change
the
labels
displayed,
set
the
Label
('Label
Property'
in
the
on-line
documentation)
property
for
the
Columns
('Columns
Class'
in
the
on-line
documentation)
object
to
the
custom
text
you
want
to
display.

Example

This
example
code
sets
custom
text
for
the
labels
in
the
first
four
column
headers.

C#
// Set custom text for columns A through D.
FpSpread1.Sheets[0].ColumnCount = 4;
FpSpread1.Sheets[0].ColumnHeader.Columns[0].Label = "North";
FpSpread1.Sheets[0].ColumnHeader.Columns[1].Label = "South";
FpSpread1.Sheets[0].ColumnHeader.Columns[2].Label = "East";
FpSpread1.Sheets[0].ColumnHeader.Columns[3].Label = "West";

VB
' Set custom text for columns A through D.
FpSpread1.Sheets(0).ColumnCount = 4
FpSpread1.Sheets(0).ColumnHeader.Columns(0).Label = "North"
FpSpread1.Sheets(0).ColumnHeader.Columns(1).Label = "South"
FpSpread1.Sheets(0).ColumnHeader.Columns(2).Label = "East"
FpSpread1.Sheets(0).ColumnHeader.Columns(3).Label = "West"

Using
the
Spread
Designer

1.
 Select
the
sheet
at
the
bottom
of
the
designer.
2.
 Select
the
Settings
menu.
3.
 Select
the
Header
editor
in
the
Other
Settings
section.
4.
 Select
the
header
you
wish
to
edit.
5.
 Set
the
Label
property
in
the
property
grid.
6.
 Choose
Apply
and
OK
to
apply
your
changes
to
the
component.
7.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Setting the Size of Header Cells

You
can
customize
the
appearance
of
header
cells
by
changing
the
row
height
or
column
width,
or
both,
for
any
of
the
rows
or
columns
of
headers.
You
can
change
the
size
by
setting
properties
in
the
RowHeader
('RowHeader
Class'
in
the
on-line
documentation)
class
for
the
row
header
or
the
ColumnHeader
('ColumnHeader
Class'
in
the
on-
line
documentation)
class
for
the
column
header
or
both,
or
use
the
respective
SheetView
('SheetView
Class'
in
the
on-line
documentation)
class
properties.
Use
these
properties:

ColumnHeader.Height
('Height
Property'
in
the
on-line
documentation)
RowHeader.Width
('Width
Property'
in
the
on-line
documentation)
SheetView.ColumnHeaderHeight
('ColumnHeaderHeight
Property'
in
the
on-line

Spread for ASP.NET Developer’s Guide 219

Copyright © GrapeCity, Inc. All rights reserved.

documentation)
SheetView.RowHeaderWidth
('RowHeaderWidth
Property'
in
the
on-line
documentation)

You
can
also
use
the
Spread
Designer
to
set
the
width
and
height
of
header
cells.

For
information
on
setting
the
size
of
cells
in
the
data
area,
refer
to
Setting
the
Row
Height
or
Column
Width.

Using
Code

Set
the
height
or
width
for
the
headers.

Example

This
example
code
sets
the
height
and
width
of
the
headers.

C#
// Set the height and width for the headers.
FpSpread1.Sheets[0].ColumnHeader.Height = 60;
FpSpread1.Sheets[0].RowHeader.Width = 60;

VB
' Set the height and width for the headers.
FpSpread1.Sheets(0).ColumnHeader.Height = 60
FpSpread1.Sheets(0).RowHeader.Width = 60

Using
the
Spread
Designer

1.
 Select
the
Settings
menu.
2.
 Select
the
Header
Editor
icon
in
the
Other
Settings
section.
3.
 Select
the
header
you
wish
to
edit.
4.
 Set
the
height
or
width
properties.
5.
 Choose
Apply
and
OK
to
apply
your
changes
to
the
component.
6.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Customizing the Header Empty Areas

By
default
the
component
displays
a
color
in
the
empty
areas
not
filled
in
with
column
or
row
headers.
These
are
the
header
empty
areas
as
illustrated
in
the
figure.

To
customize
the
color
of
the
header
empty
area,
you
can
use
the
SheetView
('SheetView
Class'
in
the
on-line

Spread for ASP.NET Developer’s Guide 220

Copyright © GrapeCity, Inc. All rights reserved.

documentation)
HeaderGrayAreaColor
('HeaderGrayAreaColor
Property'
in
the
on-line
documentation)
property.
You
can
add
images
to
the
empty
area
with
the
HeaderGrayAreaBackgroundImageUrl
('HeaderGrayAreaBackgroundImageUrl
Property'
in
the
on-line
documentation)
property.

Using
the
Properties
Window

1.
 At
design
time,
in
the
Properties
window,
select
the
Sheets
property
for
the
FpSpread
component.
2.
 Click
the
button
to
display
the
SheetView
Collection
Editor.
3.
 In
the
Members
list,
select
the
sheet
for
which
you
want
to
set
the
color
of
the
header
empty
area.
4.
 Select
the
HeaderGrayAreaColor
property
(or
HeaderGrayAreaBackgroundImageUrl
and
select
an

image)
in
the
property
list,
and
then
click
the
drop-down
button
to
display
the
color
picker.
5.
 Select
a
color
in
the
color
picker.
6.
 Click
OK
to
close
the
editor.

Using
Code

Set
the
HeaderGrayAreaBackgroundImageUrl
('HeaderGrayAreaBackgroundImageUrl
Property'
in
the
on-line
documentation)
property.

Example

This
example
code
sets
the
color
or
image
properties
for
the
gray
area.

C#
// Set a color or an image for the gray area.
FpSpread1.Sheets[0].HeaderGrayAreaBackgroundImageUrl = "happy.bmp";
//FpSpread1.Sheets[0].HeaderGrayAreaColor = Color.BurlyWood;

VB
' Set a color or an image for the gray area.
FpSpread1.Sheets(0).HeaderGrayAreaBackgroundImageUrl = "happy.bmp
'FpSpread1.Sheets(0).HeaderGrayAreaColor = Color.BurlyWood

Creating a Header with Multiple Rows or Columns

You
can
provide
multiple
rows
in
the
column
header
and
multiple
columns
in
the
row
header.
As
shown
in
the
following
figure,
the
headers
may
have
different
numbers
of
columns
and
rows.

Spread for ASP.NET Developer’s Guide 221

Copyright © GrapeCity, Inc. All rights reserved.

The
rows
or
columns
in
the
header
can
also
contain
spans,
for
example,
if
you
want
to
have
a
header
cell
that
explains
two
header
cells
beneath
it
(or
subheaders).
For
instructions
for
creating
a
span
in
a
header,
see
Creating
a
Span
in
a
Header.

You
can
customize
the
labels
in
these
headers.
For
instructions
for
customizing
the
labels,
see
Customizing
Header
Label
Text.

Using
the
Properties
Window

1.
 At
design
time,
in
the
Properties
window,
select
the
FpSpread
component.
2.
 Select
the
Sheets
property.
3.
 Click
the
button
to
display
the
SheetView
Collection
Editor.
4.
 Click
the
sheet
for
which
you
want
to
change
the
header
display.
5.
 Set
the
ColumnHeader
RowCount
property
to
the
number
or
rows
you
want
in
the
column
header
or
the
RowHeader
ColumnCount
property
to
the
number
of
columns
you
want
in
the
row
header.

6.
 Click
OK
to
close
the
editor.

Using
a
Shortcut

Set
the
RowCount
('RowCount
Property'
in
the
on-line
documentation)
property
for
the
ColumnHeader
('ColumnHeader
Class'
in
the
on-line
documentation)
object
and
the
ColumnCount
('ColumnCount
Property'
in
the
on-line
documentation)
property
for
the
RowHeader
('RowHeader
Class'
in
the
on-line
documentation)
object.

Example

This
example
code
creates
a
spreadsheet
shown
in
the
figure
above,
with
two
columns
in
the
row
header
and
three
rows
in
the
column
header.

C#
FpSpread1.Sheets[0].ColumnCount = 8;
FpSpread1.Sheets[0].RowCount = 8;
// Set the number or rows and columns in the headers.
FpSpread1.Sheets[0].ColumnHeader.RowCount = 3;
FpSpread1.Sheets[0].RowHeader.ColumnCount = 2;

// Span the header cells as needed.
FpSpread1.Sheets[0].ColumnHeaderSpanModel.Add(0, 0, 1, 8);
FpSpread1.Sheets[0].RowHeaderSpanModel.Add(0,0,12,1);

Spread for ASP.NET Developer’s Guide 222

Copyright © GrapeCity, Inc. All rights reserved.

FpSpread1.Sheets[0].ColumnHeaderSpanModel.Add(1, 0, 1, 2);
FpSpread1.Sheets[0].ColumnHeaderSpanModel.Add(1, 2, 1, 2);
FpSpread1.Sheets[0].ColumnHeaderSpanModel.Add(1, 4, 1, 2);
FpSpread1.Sheets[0].ColumnHeaderSpanModel.Add(1, 6, 1, 2);
FpSpread1.Sheets[0].ColumnHeaderSpanModel.Add(1, 8, 1, 2);

// Set the labels as needed --
// using the Label property or the cell Text property.
FpSpread1.Sheets[0].ColumnHeader.Cells[0, 0].Text = "Fiscal Year 2005";
FpSpread1.Sheets[0].RowHeader.Cells[0, 0].Text = "Branch #";
FpSpread1.Sheets[0].ColumnHeader.Cells[1, 0].Text = "1st Quarter";
FpSpread1.Sheets[0].ColumnHeader.Cells[1, 2].Text = "2nd Quarter";
FpSpread1.Sheets[0].ColumnHeader.Cells[1, 4].Text = "3rd Quarter";
FpSpread1.Sheets[0].ColumnHeader.Cells[1, 6].Text = "4th Quarter";

FpSpread1.Sheets[0].ColumnHeader.Cells[2, 0].Text = "East";
FpSpread1.Sheets[0].ColumnHeader.Cells[2, 1].Text = "West";
FpSpread1.Sheets[0].ColumnHeader.Cells[2, 2].Text = "East";
FpSpread1.Sheets[0].ColumnHeader.Cells[2, 3].Text = "West";
FpSpread1.Sheets[0].ColumnHeader.Cells[2, 4].Text = "East";
FpSpread1.Sheets[0].ColumnHeader.Cells[2, 5].Text = "West";
FpSpread1.Sheets[0].ColumnHeader.Cells[2, 6].Text = "East";
FpSpread1.Sheets[0].ColumnHeader.Cells[2, 7].Text = "West";

VB
FpSpread1.Sheets(0).RowCount = 8
FpSpread1.Sheets(0).ColumnCount = 8
’ Set the number or rows and columns in the headers.
FpSpread1.Sheets(0).ColumnHeader.RowCount = 3
FpSpread1.Sheets(0).RowHeader.ColumnCount = 2

'Span the header cells as needed.
FpSpread1.Sheets(0).ColumnHeaderSpanModel.Add(0, 0, 1, 8)
FpSpread1.Sheets(0).RowHeaderSpanModel.Add(0,0,12,1)

FpSpread1.Sheets(0).ColumnHeaderSpanModel.Add(1, 0, 1, 2)
FpSpread1.Sheets(0).ColumnHeaderSpanModel.Add(1, 2, 1, 2)
FpSpread1.Sheets(0).ColumnHeaderSpanModel.Add(1, 4, 1, 2)
FpSpread1.Sheets(0).ColumnHeaderSpanModel.Add(1, 6, 1, 2)
FpSpread1.Sheets(0).ColumnHeaderSpanModel.Add(1, 8, 1, 2)

'Set the labels as needed --
'using the Label property or the cell Text property.
FpSpread1.Sheets(0).ColumnHeader.Cells(0, 0).Text = "Fiscal Year 2005"
FpSpread1.Sheets(0).RowHeader.Cells(0, 0).Text = "Branch #"

FpSpread1.Sheets(0).ColumnHeader.Cells(1, 0).Text = "1st Quarter"
FpSpread1.Sheets(0).ColumnHeader.Cells(1, 2).Text = "2nd Quarter"
FpSpread1.Sheets(0).ColumnHeader.Cells(1, 4).Text = "3rd Quarter"
FpSpread1.Sheets(0).ColumnHeader.Cells(1, 6).Text = "4th Quarter"

FpSpread1.Sheets(0).ColumnHeader.Cells(2, 0).Text = "East"
FpSpread1.Sheets(0).ColumnHeader.Cells(2, 1).Text = "West"
FpSpread1.Sheets(0).ColumnHeader.Cells(2, 2).Text = "East"
FpSpread1.Sheets(0).ColumnHeader.Cells(2, 3).Text = "West"
FpSpread1.Sheets(0).ColumnHeader.Cells(2, 4).Text = "East"

Spread for ASP.NET Developer’s Guide 223

Copyright © GrapeCity, Inc. All rights reserved.

FpSpread1.Sheets(0).ColumnHeader.Cells(2, 5).Text = "West"
FpSpread1.Sheets(0).ColumnHeader.Cells(2, 6).Text = "East"
FpSpread1.Sheets(0).ColumnHeader.Cells(2, 7).Text = "West"

Using
the
Spread
Designer

1.
 Select
the
sheet
tab
for
the
sheet
for
which
you
want
to
display
multiple
header
rows
or
columns.
2.
 Select
the
Settings
menu.
3.
 Select
the
Header
Editor
icon
in
the
Other
Settings
section.
4.
 Select
Column
Header
or
Row
Header
in
the
Selected
Header
drop-down
box.
5.
 Set
the
RowCount
property
to
the
number
or
rows
you
want
in
the
column
header
or
the
ColumnCount
property
to
the
number
of
columns
you
want
in
the
row
header
in
the
property
grid.

6.
 From
the
File
menu
choose
Apply
and
Exit
to
apply
your
changes
to
the
component
and
exit
Spread
Designer.

Creating a Span in a Header

You
can
create
cell
spans
in
a
header,
for
example,
to
make
a
header
for
multiple
columns
of
data,
as
shown
in
the
following
figure.

For
information
on
creating
multiple
rows
in
the
column
headers
or
multiple
columns
in
the
row
headers,
refer
to
Creating
a
Header
with
Multiple
Rows
or
Columns.

You
can
create
cell
spans
in
either
the
column
or
row
headers
or
both.
For
more
background
about
creating
cell
spans,
refer
to
Spanning
Cells.

You
can
customize
the
labels
in
these
headers.
For
instructions
for
customizing
the
labels,
see
Customizing
Header
Label
Text.

Using
a
Shortcut

Define
the
number
of
rows
in
the
column
header
(and
columns
in
the
rows
header)
and
then
set
the
header
cells
to
span
using
the
Add
('Add
Method'
in
the
on-line
documentation)
property
in
the
span
model.

Example

This
example
creates
multiple
headers
and
adds
cell
spans.

C#
// Set the number or rows and columns in the headers.

Spread for ASP.NET Developer’s Guide 224

Copyright © GrapeCity, Inc. All rights reserved.

FpSpread1.Sheets[0].ColumnHeader.RowCount = 3;
FpSpread1.Sheets[0].RowHeader.ColumnCount = 2;
// Span the header cells as needed.
FpSpread1.Sheets[0].ColumnHeaderSpanModel.Add(0, 0, 1, 8);
FpSpread1.Sheets[0].RowHeaderSpanModel.Add(0,0,12,1);
FpSpread1.Sheets[0].ColumnHeaderSpanModel.Add(1, 0, 1, 2);
FpSpread1.Sheets[0].ColumnHeaderSpanModel.Add(1, 2, 1, 2);
FpSpread1.Sheets[0].ColumnHeaderSpanModel.Add(1, 4, 1, 2);
FpSpread1.Sheets[0].ColumnHeaderSpanModel.Add(1, 6, 1, 2);
FpSpread1.Sheets[0].ColumnHeaderSpanModel.Add(1, 8, 1, 2);

VB
'Set the number or rows and columns in the headers.
FpSpread1.Sheets(0).ColumnHeader.RowCount = 3
FpSpread1.Sheets(0).RowHeader.ColumnCount = 2
'Span the header cells as needed.
FpSpread1.Sheets(0).ColumnHeaderSpanModel.Add(0, 0, 1, 8)
FpSpread1.Sheets(0).RowHeaderSpanModel.Add(0,0,12,1)
FpSpread1.Sheets(0).ColumnHeaderSpanModel.Add(1, 0, 1, 2)
FpSpread1.Sheets(0).ColumnHeaderSpanModel.Add(1, 2, 1, 2)
FpSpread1.Sheets(0).ColumnHeaderSpanModel.Add(1, 4, 1, 2)
FpSpread1.Sheets(0).ColumnHeaderSpanModel.Add(1, 6, 1, 2)
FpSpread1.Sheets(0).ColumnHeaderSpanModel.Add(1, 8, 1, 2)

Using
the
Spread
Designer

1.
 Select
the
Settings
menu,
and
then
the
Header
Editor
icon.
2.
 Select
a
cell
(the
cells
represent
the
header
cells
in
this
editor).
Set
the
number
of
columns
or
rows
to
span
with

the
ColumnSpan
or
RowSpan
property.
3.
 When
done,
choose
Apply
and
OK
to
apply
your
changes.
4.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Customizing the Appearance of a Cell

You
can
set
the
appearance
of
individual
cells
in
the
data
area
of
the
spreadsheet.
These
tasks
relate
to
setting
the
appearance
of
individual
cells:

Working
with
the
Active
Cell
Customizing
the
Colors
of
a
Cell
Aligning
Cell
Contents
Customizing
Cell
Borders
Customizing
the
Margins
and
Spacing
of
the
Cell
Creating
and
Applying
a
Custom
Style
for
Cells
Assigning
a
Cascading
Style
Sheet
to
a
Cell
Creating
a
Range
of
Cells
Spanning
Cells
Allowing
Cells
to
Merge
Automatically
Using
Sparklines

When
you
work
with
cells,
you
can
manipulate
the
objects
using
the
short
cuts
in
code
(Cell
('Cell
Class'
in
the
on-
line
documentation)
and
Cells
('Cells
Class'
in
the
on-line
documentation)
classes)
or
you
can
directly
manipulate
the
model.
Most
developers
who
are
not
changing
anything
drastically
find
it
easy
to
manipulate
the
shortcut
objects.

Spread for ASP.NET Developer’s Guide 225

Copyright © GrapeCity, Inc. All rights reserved.

Note:
We
use
the
word
"appearance"
in
the
general
sense
of
the
look
and
feel
of
the
cell,
not
simply
the
settings
in
the
Appearance
('Appearance
Class'
in
the
on-line
documentation)
class,
which
contains
only
a
few
settings
and
is
used
for
the
appearance
of
several
parts
of
the
interface.
Most
of
the
appearance
settings
for
a
cell
are
in
the
StyleInfo
('StyleInfo
Class'
in
the
on-line
documentation)
class.

Remember
that
settings
applied
to
a
particular
cell
override
the
settings
that
are
set
at
the
column
or
row
level.
Refer
to
Object
Parentage.

Other
cell-level
appearance
settings
are
set
by
the
cell
type.
For
more
information
on
settings
related
to
cell
types,
refer
to
Customizing
with
Cell
Types.

For
information
on
header
cells,
refer
to
Customizing
the
Appearance
of
Headers.

For
tasks
that
relate
to
setting
the
user
interaction
at
the
cell
level,
refer
to
Customizing
Interaction
with
Cells.

For
more
information,
refer
to
the
Cell
('Cell
Class'
in
the
on-line
documentation)
class.

Working with the Active Cell

The
active
cell
is
the
cell
that
currently
receives
any
user
interaction.
Typically,
the
active
cell
appears
with
some
form
of
highlighting
to
distinguish
it
from
the
other
cells
in
the
data
area
and
to
indicate
that
it
is
the
active
cell.

You
can
change
what
can
be
selected
by
the
user.
For
more
information,
refer
to
Specifying
What
the
User
Can
Select.
You
can
also
customize
how
the
selection
appears.
For
more
information,
refer
to
Customizing
the
Appearance
of
Selections.

Customizing the Colors of a Cell

You
can
set
the
background
and
foreground
(text)
colors
for
a
cell
or
for
a
group
of
cells.
The
following
figure
shows
the
background
and
text
colors
of
the
data
area
changed
from
the
default
values
with
light
blue
text
on
a
dark
background.

To
change
the
text
and
background
colors,
use
the
BackColor
('BackColor
Property'
in
the
on-line
documentation)
and
ForeColor
('ForeColor
Property'
in
the
on-line
documentation)
properties
of
the
Cell
('Cell
Class'
in
the
on-line
documentation)
class
or
the
BackColor
('BackColor
Property'
in
the
on-line
documentation)
and
ForeColor
('ForeColor
Property'
in
the
on-line
documentation)
properties
of
the
StyleInfo
('StyleInfo
Class'
in
the
on-line
documentation)
class
and
apply
the
style
to
the
cells.
Alternatively,
you
can
set
the
CellBackColor
('CellBackColor
Property'
in
the
on-line
documentation)
and
CellForeColor
('CellForeColor
Property'
in
the
on-line
documentation)
properties
of
the
SheetSkin
('SheetSkin
Class'
in
the
on-line
documentation)
class
and
apply
the
skin
to
the
sheet.
For
more
information
on
styles
for
cells,
refer
to
Creating
and
Applying
a
Custom
Style
for
Cells.
For
more
information
on
skins
to
apply
to
sheets,
refer
to
Creating
a
Skin
for
Sheets
and
Applying
a
Skin
to
a
Sheet.

You
can
also
set
the
color
for
cells
to
change
when
they
are
selected.
You
can
set
the
SelectionBackColor
('SelectionBackColor
Property'
in
the
on-line
documentation)
and
SelectionForeColor
('SelectionForeColor
Property'
in
the
on-line
documentation)
to
change
the
background
color
and
text
color
of
selected
cells.
This
is
done
either
to
the
sheet
directly
with
the
SheetView
('SheetView
Class'
in
the
on-line
documentation)
class
or
with
the
skin
that
is
applied
to
a
sheet
with
the
SheetSkin
('SheetSkin
Class'
in
the
on-
line
documentation)
class.
For
more
information
refer
to
Customizing
the
Appearance
of
Selections.

For
information
about
cascading
style
sheets,
refer
to
Assigning
a
Cascading
Style
Sheet
to
a
Cell.

Using
the
Properties
Window

Spread for ASP.NET Developer’s Guide 226

Copyright © GrapeCity, Inc. All rights reserved.

1.
 At
design
time,
in
the
Properties
window,
select
the
FpSpread
component.
2.
 Select
the
Sheets
property.
3.
 Click
the
button
to
display
the
SheetView
Collection
Editor.
4.
 Select
the
Cells
collection
and
then
select
BackColor
under
the
Misc.
section.
5.
 Click
the
BackColor
drop-down
button
to
display
the
color
picker
and
choose
the
color
from
the
available
colors.

6.
 Click
OK.
7.
 Click
Apply
and
OK
to
apply
the
changes.

Using
a
Shortcut

Set
the
BackColor
('BackColor
Property'
in
the
on-line
documentation)
property
or
ForeColor
('ForeColor
Property'
in
the
on-line
documentation)
property
for
the
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
Cells
('Cells
Class'
in
the
on-line
documentation)
object.

Example

This
example
code
sets
the
background
color
for
cell
A1
to
Azure,
then
sets
the
background
color
for
cells
C3
through
D4
to
Bisque.

C#
FpSpread1.Sheets[0].RowCount = 4;
FpSpread1.Sheets[0].ColumnCount = 4;
FpSpread1.Sheets[0].Cells[0,0].BackColor = Color.Azure;
FpSpread1.Sheets[0].Cells[2,2,3,3].BackColor = Color.Bisque;

VB
FpSpread1.Sheets(0).RowCount = 4
FpSpread1.Sheets(0).ColumnCount = 4
FpSpread1.Sheets(0).Cells(0, 0).BackColor = Color.Azure
FpSpread1.Sheets(0).Cells(2, 2, 3, 3).BackColor = Color.Bisque

Using
Code

Set
the
BackColor
('BackColor
Property'
in
the
on-line
documentation)
property
or
ForeColor
('ForeColor
Property'
in
the
on-line
documentation)
property
for
a
Cell
('Cell
Class'
in
the
on-line
documentation)
object.

Example

This
example
code
sets
the
background
color
for
cell
A1
to
Azure
and
the
foreground
color
to
Navy,
then
sets
the
background
color
for
cells
C3
through
D4
to
Bisque.

C#
FarPoint.Web.Spread.SheetView count;
count = FpSpread1.Sheets[0];
count.RowCount = 4;
count.ColumnCount = 4;
FarPoint.Web.Spread.Cell cellA1;
cellA1 = FpSpread1.Cells[0, 0];
cellA1.BackColor = Color.Azure;
cellA1.ForeColor = Color.Navy;
FarPoint.Web.Spread.Cell cellrange;

Spread for ASP.NET Developer’s Guide 227

Copyright © GrapeCity, Inc. All rights reserved.

cellrange = FpSpread1.Cells[2,2,3,3];
cellrange.BackColor = Color.Bisque;

VB
Dim count as FarPoint.Web.Spread.SheetView
count = FpSpread1.Sheets(0)
count.RowCount = 4
count.ColumnCount = 4
Dim cellA1 As FarPoint.Web.Spread.Cell
cellA1 = FpSpread1.Cells(0, 0)
cellA1.BackColor = Color.Azure
cellA1.ForeColor = Color.Navy
Dim cellrange As FarPoint.Web.Spread.Cell
cellrange = FpSpread1.Cells(2, 2, 3, 3)
cellrange.BackColor = Color.Bisque

Using
the
Spread
Designer

1.
 Select
the
cells
to
apply
the
changes
to.
2.
 Select
the
Home
menu
and
then
select
the
Fill
Color
icon
under
the
Font
section.

You
can
also
select
the
Settings
menu
and
then
select
the
Cells,
Columns,
and
Rows
icon
under
the
Other
Settings
section.

3.
 Click
the
BackColor
drop-down
button
to
display
the
color
picker
and
choose
the
color
from
the
available
colors.

4.
 Click
OK
to
apply
the
changes.
5.
 From
the
File
menu
choose
Apply
and
Exit
to
apply
your
changes
to
the
component
and
exit
Spread
Designer.

Aligning Cell Contents

You
can
set
the
horizontal
or
vertical
alignment
for
the
contents
of
a
cell
or
a
group
of
cells.

Using
the
Properties
Window

1.
 At
design
time,
in
the
Properties
window,
select
the
FpSpread
component.
2.
 Select
the
Sheets
property.
3.
 Click
the
button
to
display
the
SheetView
Collection
Editor.
4.
 Select
the
Cells
collection
and
then
select
HorizontalAlign
or
VerticalAlign
under
the
Misc.
section
(select

the
cells
or
cells).
5.
 You
can
also
select
a
cell
or
cells
and
select
HorizontalAlign
or
VerticalAlign
(Selected
Item
drop-down
option).

6.
 Click
Apply
and
OK.

Using
a
Shortcut

Set
the
HorizontalAlign
('HorizontalAlign
Property'
in
the
on-line
documentation)
and
VerticalAlign
('VerticalAlign
Property'
in
the
on-line
documentation)
properties
for
the
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
object’s
Cells
('Cells
Class'
in
the
on-line
documentation)
property.

Spread for ASP.NET Developer’s Guide 228

Copyright © GrapeCity, Inc. All rights reserved.

Example

This
example
code
sets
the
horizontal
alignment
of
the
first
cell
(A1)
to
be
right-aligned,
the
vertical
alignment
of
that
cell
to
be
top-aligned,
and
the
horizontal
alignment
of
cells
from
B2
to
C3
to
be
centered.

C#
FpSpread1.Sheets[0].Cells[0,0].HorizontalAlign = HorizontalAlign.Right;
FpSpread1.Sheets[0].Cells[0,0].VerticalAlign = VerticalAlign.Top;
FpSpread1.Sheets[0].Cells[1,1,2,2].HorizontalAlign = HorizontalAlign.Center;

VB
FpSpread1.Sheets(0).Cells(0,0).HorizontalAlign = HorizontalAlign.Right
FpSpread1.Sheets(0).Cells(0,0).VerticalAlign = VerticalAlign.Top
FpSpread1.Sheets(0).Cells(1,1,2,2).HorizontalAlign = HorizontalAlign.Center

Using
the
Spread
Designer

1.
 Select
the
Home
menu.
2.
 Select
the
cells
you
wish
to
change.
3.
 Select
the
appropriate
icon
in
the
Alignment
section.
4.
 Click
Apply
to
apply
the
changes.
5.
 From
the
File
menu
choose
Apply
and
Exit
to
apply
your
changes
to
the
component
and
exit
Spread
Designer.

Customizing Cell Borders

You
can
customize
the
appearance
of
borders
of
the
cell.
You
can
specify
whether
a
cell
or
range
of
cells
has
a
border.
Borders
can
be
displayed
on
the
left,
right,
top,
or
bottom,
or
around
all
four
sides
of
the
cell
or
cell
range.

Cell
borders
follow
the
precedence
used
by
the
sheet.
For
more
information
on
precedence,
refer
to
the
list
in
Object
Parentage.

If
you
import
cell
border
information
from
an
Excel
file,
the
width
of
the
cell
border
may
be
changed.
If
the
EnableClientScript
('EnableClientScript
Property'
in
the
on-line
documentation)
property
of
the
FpSpread
component
is
set
to
True,
then
BorderCollapse
is
set
to
True.
This
helps
the
appearance
of
most
borders
and
grid
lines
together.
However,
if
a
cell
border
is
set
to
a
size
equal
to
1,
the
left
and
top
borders
are
overwritten
by
the
grid
lines
due
to
the
behavior
of
HTML
tables.
So
the
solid,
dash,
dot,
etc.
borders
are
set
to
a
width
of
2
so
that
they
are
displayed
when
loaded
into
Spread
from
Excel.
The
"hair"
border
is
not
set
to
a
size
of
1.

Set
border
color,
style,
and
size
with
strict
compliance
mode
to
get
the
best
results.

Borders
are
different
from
grid
lines
in
that
they
create
a
border
around
a
cell
or
group
of
cells
rather
than
distinguishing
rows
and
columns.
For
more
information
about
grid
lines,
which
are
set
for
an
entire
sheet,
refer
to
Displaying
Grid
Lines
on
the
Sheet.

For
information
about
cascading
style
sheets,
refer
to
Assigning
a
Cascading
Style
Sheet
to
a
Cell.

Using
a
Shortcut

Spread for ASP.NET Developer’s Guide 229

Copyright © GrapeCity, Inc. All rights reserved.

Set
the
Border
('Border
Property'
in
the
on-line
documentation)
property
to
the
new
border
that
you
specify.

Example

This
example
code
creates
a
bevel
border
and
then
sets
a
cell
border
to
be
the
bevel
border.

C#
// Set cell border to the bevel border.
fpSpread1.Sheets[0].Cells[2, 2].Border = new
FarPoint.Web.Spread.Border(System.Web.UI.WebControls.BorderStyle. Double,
Color.DarkBlue, 2);

VB
' Set cell border to the bevel border.
FpSpread1.Sheets(0).Cells(2, 2).Border = New
FarPoint.Web.Spread.Border(System.Web.UI.WebControls.BorderStyle. Double,
Color.DarkBlue, 2)

Using
the
Spread
Designer

There
are
several
ways
to
set
cell
borders
in
the
Spread
Designer.
The
first
method
is
the
following:

1.
 Select
the
cells
to
apply
the
changes
to.
2.
 Select
the
Home
menu
and
then
select
the
Cell
Border
icon
under
the
Font
section.
3.
 Select
a
border
type
or
select
more
borders
to
set
colors
and
other
border
properties.
4.
 Click
OK
to
apply
the
changes.

Using
the
Spread
Designer

This
is
the
second
method:

1.
 Select
the
cells
to
apply
the
changes
to.
2.
 Select
the
Settings
menu
and
then
select
the
Cells,
Columns,
and
Rows
icon
under
the
Other
Settings

section.
3.
 Click
the
Border
property
in
the
property
grid
to
set
the
border
options.
4.
 Click
OK
to
apply
the
changes.
5.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Customizing the Margins and Spacing of the Cell

You
can
customize
the
margins
within
a
cell
and
the
spacing
between
cells
in
a
sheet.
The
cell
margin
is
the
distance
between
the
cell
border
and
the
cell
contents
and
is
specified
for
all
four
sides
of
a
cell
(or
table
cell
in
the
displayed
HTML).
The
cell
spacing
is
the
distance
between
the
cells
and
is
specified
for
the
entire
sheet
(or
table
in
the
displayed
HTML).

Spread for ASP.NET Developer’s Guide 230

Copyright © GrapeCity, Inc. All rights reserved.

To
set
the
cell
margin
(or
padding)
use
the
Margin
('Margin
Property'
in
the
on-line
documentation)
property
in
the
Cell
('Cell
Class'
in
the
on-line
documentation)
(or
Column
('Column
Class'
in
the
on-line
documentation)
or
Row
('Row
Class'
in
the
on-line
documentation))
class,
or
set
the
Margin
('Margin
Property'
in
the
on-line
documentation)
property
in
the
StyleInfo
('StyleInfo
Class'
in
the
on-line
documentation)
class
and
apply
the
style
to
the
cell
or
cells.

To
set
the
cell
spacing
for
the
entire
sheet,
use
the
CellSpacing
('CellSpacing
Property'
in
the
on-line
documentation)
property
in
the
Sheet
or
set
the
CellSpacing
('CellSpacing
Property'
in
the
on-line
documentation)
property
in
the
SheetSkin
('SheetSkin
Class'
in
the
on-line
documentation)
class
and
apply
the
skin
to
the
sheet
or
sheets.

To
set
the
border,
use
the
Border
('Border
Property'
in
the
on-line
documentation)
property
as
described
in
Customizing
Cell
Borders.

Using
a
Shortcut

1.
 Set
the
Cell
shortcut
object
Margin
('Margin
Property'
in
the
on-line
documentation)
property
to
the
new
margins.

2.
 Set
the
Sheet
CellSpacing
('CellSpacing
Property'
in
the
on-line
documentation)
property
to
the
new
cell
spacing
value.

Example

This
example
code
creates
a
cell
margin
and
sets
cell
spacing
for
the
sheet.

C#
FarPoint.Web.Spread.Cell mycell;
FarPoint.Web.Spread.Inset margin = new FarPoint.Web.Spread.Inset(20, 40, 50, 20);
mycell = FpSpread1.Cells[0, 0];
mycell.Value = "Margin";
mycell.Locked = true;
mycell.Margin = margin;

Spread for ASP.NET Developer’s Guide 231

Copyright © GrapeCity, Inc. All rights reserved.

FpSpread1.ActiveSheetView.Rows[0].Height = 80;
FpSpread1.Sheets[0].CellSpacing = 5;

VB
Dim mycell As FarPoint.Web.Spread.Cell
Dim margin As New FarPoint.Web.Spread.Inset(20, 40, 50, 20)
mycell = FpSpread1.Cells(0, 0)
mycell.Value = "Margin"
mycell.Locked = True
mycell.Margin = margin
FpSpread1.ActiveSheetView.Rows(0).Height = 80
FpSpread1.Sheets(0).CellSpacing = 5

Using
the
Spread
Designer

1.
 Select
the
Settings
menu.
2.
 Select
the
cells
to
apply
the
changes
to.
3.
 Use
the
following
to
set
the
margin:

Select
the
Cells,
Columns,
and
Rows
icon
under
the
Other
Settings
section.

Click
on
the
Margin
property
in
the
property
grid
to
create
an
inset
for
the
cell
in
pixel
units.

Click
OK
to
apply
the
changes.

4.
 To
apply
the
cell
spacing,
do
the
following:
Select
the
Settings
menu.

Select
the
SheetSkin
icon
in
the
Appearance
Settings
section.

Select
the
custom
tab
in
the
SheetSkin
editor.

Set
CellSpacing
in
the
Misc.
section.

Click
OK
to
apply
the
changes.

5.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Creating and Applying a Custom Style for Cells

You
can
quickly
customize
the
appearance
of
a
cell
or
range
of
cells
(or
rows
or
columns)
by
applying
a
style,
which
is
a
set
of
appearance
settings
defined
in
a
single
StyleInfo
('StyleInfo
Class'
in
the
on-line
documentation)
object.
You
can
create
your
own
style
and
save
it
to
use
again,
similar
to
a
template.
The
style
includes
appearance
settings
that
apply
to
cells,
such
as
background
color,
text
color,
font,
borders,
and
cell
type.
For
more
information,
refer
to
the
StyleInfo
('StyleInfo
Class'
in
the
on-line
documentation)
object
in
the
Assembly
Reference
(on-line
documentation).

Note:
The
word
"appearance"
is
used
to
refer
to
the
general
look
and
feel
of
the
cell,
not
the
Appearance
class,
which
is
used
for
the
appearance
of
several
parts
of
the
interface.

A
cell
style
includes
the
following
appearance
settings:

text
alignment
of
cell
contents
border
colors,
border
style,
border
width
and
which
sides
have
them
cell
colors
font
for
text
in
cell
margins
cell
type

Spread for ASP.NET Developer’s Guide 232

Copyright © GrapeCity, Inc. All rights reserved.

You
can
specify
the
style
for
a
cell
by
setting
the
StyleName
('StyleName
Property'
in
the
on-line
documentation)
property
for
the
Cell
('Cell
Class'
in
the
on-line
documentation)
object.

A
style
can
be
applied
to
any
number
of
cells.
Just
as
a
skin
can
be
applied
to
a
sheet,
so
a
style
can
be
applied
to
cells.
You
typically
set
the
style
for
the
cell
by
using
the
StyleName
('StyleName
Property'
in
the
on-line
documentation)
property
to
define
which
StyleInfo
('StyleInfo
Class'
in
the
on-line
documentation)
object
is
used
by
that
cell.
When
you
set
the
style
(StyleName
('StyleName
Property'
in
the
on-line
documentation)),
you
set
the
entire
StyleInfo
('StyleInfo
Class'
in
the
on-line
documentation)
object
in
the
style
model
for
each
cell
in
the
range
to
the
one
in
the
NamedStyleCollection
with
the
specified
name.

You
can
also
use
the
ParentStyleName
('ParentStyleName
Property'
in
the
on-line
documentation)
property
to
set
a
style
for
a
range
of
cells
that
may
individually
have
different
StyleName
('StyleName
Property'
in
the
on-
line
documentation)
values
set
but
which
all
inherit
a
common
set
of
appearance
settings
from
a
parent
style.
A
cell
inherits
all
the
style
information
from
the
parent
style
(ParentStyleName
('ParentStyleName
Property'
in
the
on-line
documentation)).
When
you
set
the
parent
style,
you
are
setting
the
Parent
property
of
the
StyleInfo
object
assigned
to
each
cell
in
the
range.
The
parent
for
a
named
style
can
also
be
set
by
the
Parent
('Parent
Property'
in
the
on-line
documentation)
property
of
the
NamedStyle
('NamedStyle
Class'
in
the
on-line
documentation)
object.
So
different
cells
(cells
in
different
rows
or
columns)
may
have
different
named
styles
but
have
the
same
parent
style.
For
example,
the
cells
may
have
different
text
colors
(set
in
the
named
style)
but
inherit
the
same
background
color
(set
in
the
parent
style).
The
default
parent
style
is
set
in
the
DataAreaDefault
('DataAreaDefault
Field'
in
the
on-line
documentation)
field
in
the
DefaultStyleCollection
('DefaultStyleCollection
Class'
in
the
on-line
documentation)
class.
For
more
information
on
the
order
of
inheritance,
refer
to
Object
Parentage.

You
can
also
create
and
apply
appearance
settings
to
an
entire
sheet
by
using
sheet
skins.
For
instructions
on
creating
sheet
skins,
see
Creating
a
Skin
for
Sheets.

Using
the
Property
Window

1.
 In
the
Form
window,
click
the
FpSpread
component
for
which
you
want
to
create
the
style
in
the
NamedStyleCollection.
For
the
FpSpread
component,
in
the
Appearance
category,
select
the
NamedStyles
property.

2.
 Click
on
the
button
to
launch
the
NamedStyleCollection
Editor.
3.
 In
the
NamedStyleCollection
Editor,
click
the
Add
button.
4.
 Set
the
properties
in
the
Named
Style
Properties
list
to
create
the
style
you
want.
5.
 Set
the
Name
property
to
specify
the
name
for
your
custom
style.
6.
 Click
OK
to
close
the
editor.
7.
 Select
the
cells
(or
rows
or
columns)
to
apply
the
style
to.
8.
 In
the
property
window,
set
the
StyleName
to
the
custom
named
style
previously
added.

Using
Code

1.
 Create
the
style
using
the
NamedStyle
('NamedStyle
Class'
in
the
on-line
documentation)
object
constructor
and
set
the
style
properties.

2.
 Add
the
styles.
3.
 Set
the
StyleName
('StyleName
Property'
in
the
on-line
documentation)
property
to
assign
the
style
to

the
cells.

Example

This
example
code
creates
several
styles
and
sets
a
parent
style.
This
causes
the
cells
to
display
the
same
background
color
but,
different
text
colors.

C#
\\ Create a style with a blue background color.
FarPoint.Web.Spread.NamedStyle backstyle = new

Spread for ASP.NET Developer’s Guide 233

Copyright © GrapeCity, Inc. All rights reserved.

FarPoint.Web.Spread.NamedStyle("BlueBack");
backstyle.BackColor = Color.Blue;
\\ Create a style with an orange text color and assign it a parent style.
FarPoint.Web.Spread.NamedStyle text1style = new
FarPoint.Web.Spread.NamedStyle("OrangeText", "BlueBack");
text1style.ForeColor = Color.Orange;
\\ Create a style with a yellow text color and assign it a parent style.
FarPoint.Web.Spread.NamedStyle text2style = new
FarPoint.Web.Spread.NamedStyle("YellowText", "BlueBack");
text2style.ForeColor = Color.Yellow;
FpSpread1.NamedStyles.Add(backstyle);
FpSpread1.NamedStyles.Add(text1style);
FpSpread1.NamedStyles.Add(text2style);
FpSpread1.ActiveSheetView.Cells[0,0,2,0].StyleName = "OrangeText";
FpSpread1.ActiveSheetView.Cells[0,1,2,1].StyleName = "YellowText";

VB
' Create a style with a blue background color.
Dim backstyle As New FarPoint.Web.Spread.NamedStyle("BlueBack")
backstyle.BackColor = Color.Blue
' Create a style with an orange text color and assign it a parent style.
Dim text1style As New FarPoint.Web.Spread.NamedStyle("OrangeText", "BlueBack")
text1style.ForeColor = Color.Orange
' Create a style with a yellow text color and assign it a parent style.
Dim text2style As New FarPoint.Web.Spread.NamedStyle("YellowText", "BlueBack")
text2style.ForeColor = Color.Yellow
FpSpread1.NamedStyles.Add(backstyle)
FpSpread1.NamedStyles.Add(text1style)
FpSpread1.NamedStyles.Add(text2style)
FpSpread1.ActiveSheetView.Cells(0,0,2,0).StyleName = "OrangeText"
fpSpread1.ActiveSheetView.Cells(0,1,2,1).StyleName = "YellowText"

Using
the
Spread
Designer

1.
 Select
the
Settings
menu.
2.
 Select
the
Named
Style
icon
under
the
Appearance
Settings
section.
3.
 Use
the
New
style
icon
to
create
a
new
style
and
use
the
Edit
style
icon
to
set
properties
for
the
style.
4.
 Select
Apply
and
OK.
5.
 Select
the
cell
or
cells
and
set
the
StyleName
property.
6.
 From
the
File
menu
choose
Apply
and
Exit
to
apply
your
changes
to
the
component
and
exit
Spread
Designer.

Assigning a Cascading Style Sheet to a Cell

You
can
assign
a
cascading
style
sheet
(CSS)
to
a
cell
or
group
of
cells
as
a
way
of
conveniently
defining
the
appearance
settings
of
the
cell
or
cells.
The
CSS
class
name
is
a
property
of
the
cell
type.

This
assumes
that
the
RenderCSSClass
('RenderCSSClass
Property'
in
the
on-line
documentation)
property
in
the
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
class
is
set
to
True,
which
is
the
default.
If
it
is
set
to
False,
the
component
uses
the
in-line
style
attributes
instead
of
the
cascading
style
sheet.

The
CSS
Class
should
be
outside
the
head
tag
and
after
the
Spread
HTML
code
for
best
results
with
strict
compliance.

Using
Code

Spread for ASP.NET Developer’s Guide 234

Copyright © GrapeCity, Inc. All rights reserved.

1.
 Define
the
CSSClass
('CssClass
Property'
in
the
on-line
documentation)
property
for
a
given
cell
type.
2.
 Assign
that
cell
type
to
the
cell
or
cells.

Example

The
following
attaches
a
style
sheet
named
myCssClass
to
be
used
for
the
specified
column
header
and
cells:

C#
FarPoint.Web.Spread.GeneralCellType mycelltype = new
FarPoint.Web.Spread.GeneralCellType();
myCellType.CssClass = "myCssClass";
FpSpread1.ColumnHeader.Cells[0, 0].CellType = myCellType;
FpSpread1.Cells[0, 1].CellType = myCellType;

VB
Dim myCellType As New FarPoint.Web.Spread.GeneralCellType
myCellType.CssClass = "myCssClass"
FpSpread1.ColumnHeader.Cells(0, 0).CellType = myCellType
FpSpread1.Cells(0, 1).CellType = myCellType

Example

When
the
pointer
is
over
data
in
the
Spread,
the
mouse
cursor
turns
into
an
I-beam
shape
indicating
that
the
user
is
allowed
to
edit
the
information.
This
happens
even
if
the
columns
are
locked.
To
have
the
pointer
remain
an
arrow
when
hovering
over
data
in
the
row,
or
to
change
the
cursor
to
whatever
you
want,
you
can
use
the
CSSClass
object,
which
assigns
a
cascading
style
sheet
class
to
a
cell.
For
example,
you
can
use
the
following
code
to
use
a
style
for
the
cursor
over
a
locked
column.

C#
FpSpread1.Sheets[0].Columns[0].Locked = true;
CType(FpSpread1.Sheets[0].StyleModel.GetCompositeInfo(-1, 0, -1, Nothing).CellType,
FarPoint.Web.Spread.GeneralCellType).CssClass = "myCell";

VB
FpSpread1.Sheets(0).Columns(0).Locked = True
CType(FpSpread1.Sheets(0).StyleModel.GetCompositeInfo(-1, 0, -1, Nothing).CellType,
FarPoint.Web.Spread.GeneralCellType).CssClass = "myCell"

Then
in
HTML
code
you
can
add
the
myCell
style:

HTML
<style>.myCell { CURSOR: default } </style>

Creating a Range of Cells

You
can
create
a
range
of
cells
to
allow
you
to
define
properties
and
behaviors
for
those
cells.
A
range
may
be
any
set
of
cells.

Using
the
Properties
Window

1.
 At
design
time,
in
the
Properties
window,
select
the
FpSpread
component.

Spread for ASP.NET Developer’s Guide 235

Copyright © GrapeCity, Inc. All rights reserved.

2.
 Select
the
Sheets
property.
3.
 Click
the
button
to
display
the
SheetView
Collection
Editor.
4.
 Select
the
sheet.
5.
 Select
the
button
for
the
Cells
object
(or
Columns
or
Rows
collections).
6.
 Select
a
block
of
cells.
7.
 Set
properties
as
needed.
8.
 Click
OK
to
close
each
editor.

Using
Code

1.
 Specify
the
range
of
cells.
2.
 Set
the
Note
('Note
Property'
in
the
on-line
documentation)
property
for
the
Cell
('Cell
Class'
in
the
on-line
documentation)
object
for
that
range.

Example

This
example
code
sets
the
Note
property
for
a
range
of
Cell
objects.

C#
FarPoint.Web.Spread.Cell range1;
range1 = fpSpread1.ActiveSheetView.Cells[0, 0, 2, 2];
range1.Value = "Value Here";
range1.Note = "This is the note that describes the value.";

VB
Dim range1 As FarPoint.Web.Spread.Cell
range1 = fpSpread1.ActiveSheetView.Cells(0, 0, 2, 2)
range1.Value = "Value Here"
range1.Note = "This is the note that describes the value."

Using
the
Spread
Designer

1.
 Select
a
block
of
cells.
2.
 Set
properties
as
needed.
3.
 From
the
File
menu
choose
Apply
and
Exit
to
apply
your
changes
to
the
component
and
exit
Spread
Designer.

Spanning Cells

You
can
group
cells
together
to
form
one
large
cell.
This
is
called
a
spanning
cells
and
the
large
cell
that
is
created
is
called
a
cell
span.
You
can
add
spans
in
headers
or
in
data
cells.
Creating
a
span
of
cells
creates
one
large
cell
where
there
had
previously
been
several.
For
example,
if
you
create
a
span
of
cells
from
cell
B2
to
cell
D3,
cell
B2
then
appears
to
occupy
the
space
from
cell
B2
through
cell
D3.

The
component
is
divided
into
four
parts:
sheet
corner,
column
headers,
rows
headers,
and
data
area.
You
can
create

Spread for ASP.NET Developer’s Guide 236

Copyright © GrapeCity, Inc. All rights reserved.

spans
within
a
part,
but
you
cannot
create
a
span
that
goes
across
parts.
For
example,
you
cannot
span
cells
in
the
data
area
with
cells
in
the
row
headers
and
you
cannot
span
cells
in
the
column
header
with
the
sheet
corner.
This
topic
discusses
spanning
cells
in
the
data
area.
For
more
information
on
creating
a
span
of
header
cells,
refer
to
Creating
a
Span
in
a
Header.

When
you
create
a
span
of
cells,
the
data
in
the
first
cell
in
the
span
(called
the
anchor
cell)
occupies
all
the
space
in
the
span.
When
you
create
a
span,
the
data
that
was
in
each
of
the
cells
in
the
span
is
still
in
each
cell,
but
not
displayed.
The
data
is
simply
hidden
by
the
span
range.
If
you
remove
the
span
from
a
group
of
cells,
the
content
of
the
spanned
cells,
which
previously
was
hidden,
is
displayed
as
appropriate.

The
cell
types
of
the
cells
combined
in
the
span
are
not
changed.
The
spanned
cell
takes
the
type
of
the
left-most
cell
in
the
span.

You
can
return
whether
a
specified
cell
is
in
a
span
of
cells
by
calling
the
GetSpanCell
('GetSpanCell
Method'
in
the
on-line
documentation)
method.

You
can
remove
a
span
from
a
range
of
cells
by
calling
the
RemoveSpanCell
('RemoveSpanCell
Method'
in
the
on-line
documentation)
method.
You
can
remove
a
span
range
by
calling
this
method,
specifying
the
anchor
cell
of
the
span
range
to
remove
the
range.
When
you
remove
a
span
range,
the
data
that
was
previously
in
each
of
the
cells
in
the
span
is
re-displayed
in
the
cell.
The
data
was
never
removed
from
the
cell,
but
simply
hidden
by
the
span
range.

Note:
You
cannot
sort
a
spreadsheet
that
has
spanned
cells.

For
more
information
on
allowing
automatic
merging
of
cells
with
identical
content,
refer
to
Allowing
Cells
to
Merge
Automatically.

For
more
information
about
the
underlying
span
model,
refer
to
Understanding
the
Span
Model.

Using
the
Properties
Window

1.
 At
design
time,
in
the
Properties
window,
select
the
FpSpread
component.
2.
 Select
the
Sheets
property.
3.
 Click
the
button
to
display
the
SheetView
Collection
Editor.
4.
 Select
the
sheet.
5.
 In
the
Properties
window
on
the
right
side
of
the
SheetView
Collection
Editor,
select
the
Cells
property
for
the
sheet.

6.
 Select
the
cell
from
which
to
start
the
span.
7.
 Click
the
button
to
display
the
Cell,
Column,
and
Row
Editor.
8.
 In
the
editor,
select
either
the
RowSpan
or
ColumnSpan
property
and
set
the
number
to
the
number
of
cells
to

span
starting
from
the
selected
cell.
To
remove
a
span,
set
the
value
back
to
1.
The
preview
on
the
left
side
of
the
editor
shows
the
cells
spanned.

9.
 If
you
want
to
apply
this
change,
click
Apply.
10.
 Click
OK
to
close
each
editor.

Using
a
Shortcut

To
span
cells
(or
remove
spanning)
use
any
of
the
following
methods
of
the
FpSpread
('FpSpread
Class'
in
the
on-
line
documentation)
component
Sheets
('Sheets
Property'
in
the
on-line
documentation)
shortcut:

AddSpanCell
('AddSpanCell
Method'
in
the
on-line
documentation)
GetSpanCell
('GetSpanCell
Method'
in
the
on-line
documentation)
RemoveSpanCell
('RemoveSpanCell
Method'
in
the
on-line
documentation)

Example

This
example
code
defines
some
content
then
spans
six
adjoining
cells.

Spread for ASP.NET Developer’s Guide 237

Copyright © GrapeCity, Inc. All rights reserved.

C#
// Create some content in two cells.
FpSpread1.ActiveSheetView.Cells[1,1].Text = "These six cells are spanned.";
FpSpread1.ActiveSheetView.Cells[2,2].Text = "This is text in 2,2.";
// Span six cells including the ones with different content.
FpSpread1.ActiveSheetView.AddSpanCell(1, 1, 2, 3);

VB
' Create some content in two cells.
FpSpread1.ActiveSheetView.Cells(1,1).Text = "These six cells are spanned."
FpSpread1.ActiveSheetView.Cells(2,2).Text = "This is text in 2,2."
' Span six cells including the ones with different content.
FpSpread1.ActiveSheetView.AddSpanCell(1, 1, 2, 3)

Using
the
Spread
Designer

1.
 Select
the
sheet.
2.
 Select
the
cells
to
span.
3.
 Do
one
of
the
following:

From
the
Home
menu,
select
the
merge
icon.

Another
way
is
to
right-click
and
select
Span
or
in
the
property
list
(in
the
Misc
category),
select
either
the
RowSpan
or
ColumnSpan
property
and
set
the
number
to
a
value
greater
than
one
to
span
cells.
To
remove
a
span,
set
the
value
back
to
1.

The
Designer
shows
the
cells
spanned.

4.
 From
the
File
menu
choose
Apply
and
Exit
to
apply
your
changes
to
the
component
and
exit
Spread
Designer.

Allowing Cells to Merge Automatically

You
can
have
Spread
automatically
merge
cells
between
columns
or
between
rows
if
the
cells
have
the
same
value
based
on
the
policy
that
you
set.
The
component
can
automatically
combine
cells
that
have
the
same
contents.
You
might
want
to
do
this,
for
example,
when
bound
to
a
database.

Unlike
spanning
cells,
merging
is
an
automatic
feature.
You
tell
the
component
which
columns
and
rows
allow
cells
to
be
combined
automatically,
and
any
cells
within
that
set
that
have
the
same
contents
are
combined
for
you.

For
more
information
on
spanning
cells,
refer
to
Spanning
Cells.

If
the
merge
policy
is
set
to
None,
cells
within
a
row
or
column
are
not
merged.

If
the
merge
policy
is
set
to
Always,
cells
within
a
row
or
column
are
merged
when
the
cells
have
the
same
values.

If
the
merge
policy
is
set
to
Restricted,
cells
within
a
row
or
column
are
merged
when
the
cells
have
the
same
values
and
the
corresponding
cells
in
the
previous
row
or
column
also
have
the
same
value.
For
example,
suppose
cells
A1:A8
contain
{a;
a;
b;
b;
b;
b;
c;
c}
and
cells
B1:B8
contain
{1;
1;
1;
1;
2;
2;
2;
2}.
If
the
merge
policy
for
column
B
is
Always,
the
cells
in
column
B
are
merged
into
two
blocks
B1:B4
and
B5:B8.
If
the
merge
policy
for
column
A
is
Always
and
the
merge
policy
for
column
B
is
Restricted
then
the
cells
in
column
B
are
merged
into
four
blocks
B1:B2,
B3:B4,
B5:B6,
and
B7:B8.
For
example:

Spread for ASP.NET Developer’s Guide 238

Copyright © GrapeCity, Inc. All rights reserved.

You
can
have
the
cells
in
the
specified
row
or
column
combine
the
cells
automatically,
or
only
combine
them
if
the
cells
to
their
left
(in
columns)
or
above
them
(in
rows)
are
merged.
Typically,
if
you
set
the
merge
policy
on
several
adjacent
rows
or
columns,
then
you
would
use
Always
on
the
first
row
or
column
and
Restricted
on
the
remaining
rows
or
columns.

Merged
cells
take
on
the
properties
of
the
top-left
merged
cell.
For
example,
if
the
top-left
merged
cell
has
a
blue
background
color,
the
cells
that
merge
with
it
display
the
same
background
color.

Merged
cells
do
not
lose
their
data;
it
is
simply
hidden
by
the
merge.
If
you
remove
the
merge,
the
data
appears
in
each
cell
that
was
in
the
merge.
You
can
edit
the
top-left
merged
cell;
when
you
leave
edit
mode,
if
the
contents
of
that
cell
are
no
longer
identical
to
the
cell
or
cells
with
which
it
was
previously
merged,
the
cells
are
no
longer
displayed
as
merged
when
the
Spread
is
updated.
How
cells
are
merged
is
only
changed
when
the
Spread
is
updated.

Cells
that
are
different
cell
types
but
have
the
same
contents
can
merge.
For
example,
a
date
cell
might
contain
the
contents
"01/31/02"
and
the
adjacent
edit
cell
might
contain
the
same
contents;
if
the
column
containing
the
cells
is
set
to
merge,
the
cells
will
merge.
If
the
contents
change
or
the
merge
is
removed,
the
cells
maintain
their
cell
types
as
well
as
their
data.

To
set
cells
to
be
merged
if
they
have
the
same
value,
use
the
following
members:

GetColumnMerge
('GetColumnMerge
Method'
in
the
on-line
documentation)
and
SetColumnMerge
('SetColumnMerge
Method'
in
the
on-line
documentation)
GetRowMerge
('GetRowMerge
Method'
in
the
on-line
documentation)
and
SetRowMerge
('SetRowMerge
Method'
in
the
on-line
documentation)
GetMergePolicy
('GetMergePolicy
Method'
in
the
on-line
documentation)
and
SetMergePolicy
('SetMergePolicy
Method'
in
the
on-line
documentation)
MergePolicy
('MergePolicy
Enumeration'
in
the
on-line
documentation)
enumeration
settings

For
more
information
on
these
members,
refer
to
the
SheetView
('SheetView
Class'
in
the
on-line
documentation)
class
(or
the
Row
('Row
Class'
in
the
on-line
documentation)
or
Column
('Column
Class'
in
the
on-line
documentation)
class)
or
the
DefaultSheetAxisModel
('DefaultSheetAxisModel
Class'
in
the
on-line
documentation)
of
the
Model
namespace
in
the
Assembly
Reference
(on-line
documentation).

For
more
information
on
creating
spans
of
cells
with
identical
content,
refer
to
Spanning
Cells.

Using
a
Shortcut

Use
the
SetColumnMerge
('SetColumnMerge
Method'
in
the
on-line
documentation)
or
SetRowMerge
('SetRowMerge
Method'
in
the
on-line
documentation)
method
for
the
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
component
Sheets
('Sheets
Property'
in
the
on-line
documentation)
shortcut.

Example

This
example
code
sets
the
row
and
column
merge
policies
for
all
rows
and
all
columns.

Spread for ASP.NET Developer’s Guide 239

Copyright © GrapeCity, Inc. All rights reserved.

C#
FpSpread1.Sheets[0].SetRowMerge(-1, FarPoint.Web.Spread.Model.MergePolicy.Always);
FpSpread1.Sheets[0].SetColumnMerge(-1, FarPoint.Web.Spread.Model.MergePolicy.Always);

VB
FpSpread1.Sheets(0).SetRowMerge(-1, FarPoint.Web.Spread.Model.MergePolicy.Always)
FpSpread1.Sheets(0).SetColumnMerge(-1, FarPoint.Web.Spread.Model.MergePolicy.Always)

Using
Code

Set
the
SetColumnMerge
('SetColumnMerge
Method'
in
the
on-line
documentation)
or
SetRowMerge
('SetRowMerge
Method'
in
the
on-line
documentation)
method
for
a
SheetView
('SheetView
Class'
in
the
on-line
documentation)
object.

Example

This
example
code
sets
the
row
and
column
merge
policies
for
all
rows
and
all
columns.

C#
FarPoint.Web.Spread.SheetView Sheet0;
Sheet0 = fpSpread1.Sheets[0];
Sheet0.SetRowMerge(-1, FarPoint.Web.Spread.Model.MergePolicy.Always);
Sheet0.SetColumnMerge(-1, FarPoint.Web.Spread.Model.MergePolicy.Always);

VB
Dim Sheet0 As FarPoint.Web.Spread.SheetView
Sheet0 = fpSpread1.Sheets(0)
Sheet0.SetRowMerge(-1, FarPoint.Web.Spread.Model.MergePolicy.Always)
Sheet0.SetColumnMerge(-1, FarPoint.Web.Spread.Model.MergePolicy.Always)

Using Sparklines

You
can
create
a
small
graph
in
a
cell
that
uses
data
from
a
range
of
cells.
The
data
for
the
sparkline
is
limited
to
one
column
or
row
of
values.
You
can
set
the
sparkline
type
to
column,
line,
or
winloss,
as
shown
in
the
following
figure.
The
images
were
created
using
a
minimum
axis
of
-9
and
a
maximum
axis
of
15.

The
column
sparkline
draws
the
values
as
a
column
chart.
The
line
sparkline
draws
the
values
as
a
line
chart.
The
winloss
sparkline
shows
the
points
with
the
same
size.
Negative
points
extend
down
from
the
axis
and
positive
points
extend
up.

The
graphs
can
display
colors
for
the
marker
points.
You
can
set
colors
for
the
high,
low,
negative,
first,
and
last
points.

Spread for ASP.NET Developer’s Guide 240

Copyright © GrapeCity, Inc. All rights reserved.

The
graphs
have
horizontal
and
vertical
axes.

Sparklines
are
stored
as
groups.
A
group
contains
at
least
one
sparkline.

The
Sparkline
graph
requires
the
following
information
in
the
web.config
file.
This
example
is
based
on
IIS7.

Code
<system.webServer>
<validation validateIntegratedModeConfiguration="false"/>
<handlers>
...
<add name="chart" path="FpChart.axd" verb="*"
type="FarPoint.Web.Chart.ChartImageHttpHandler"/>
</handlers>
// If you are using integrated managed pipeline mode,
//set validateIntegratedModeConfiguration to false.
<validation validateIntegratedModeConfiguration="false"/>

This
example
is
based
on
IIS8.

Code
<system.webServer>
 <handlers>
 <add name="FpChart" verb="*" path="FpChart.axd" preCondition="integratedMode"
type="FarPoint.Web.Chart.ChartImageHttpHandler"/>
 </handlers>
 <validation validateIntegratedModeConfiguration="false"/>
 </system.webServer>

For
more
information,
see
the
following
topics:

Adding
a
Sparkline
to
a
Cell
Customizing
Markers
and
Pointers
Specifying
Horizontal
and
Vertical
Axes
Working
with
Sparklines

Adding a Sparkline to a Cell

You
can
add
a
sparkline
to
a
cell
using
code
or
the
designer.

Using
Code

1.
 Specify
a
cell
to
create
the
sparkline
in.
2.
 Specify
a
range
of
cells
for
the
data.

Spread for ASP.NET Developer’s Guide 241

Copyright © GrapeCity, Inc. All rights reserved.

3.
 Set
any
properties
for
the
sparkline
(such
as
points
and
colors).
4.
 Add
the
sparkline
to
the
cell
with
the
AddSparkline
('AddSparkline
Method'
in
the
on-line
documentation)
method.

Example

This
example
creates
a
column
sparkline
in
a
cell
and
shows
negative
and
series
colors.

C#
FarPoint.Web.Spread.SheetView sv = new FarPoint.Web.Spread.SheetView();
FarPoint.Web.Spread.Chart.SheetCellRange data = new
FarPoint.Web.Spread.Chart.SheetCellRange(sv, 0,0,1, 5);
FarPoint.Web.Spread.Chart.SheetCellRange data2 = new
FarPoint.Web.Spread.Chart.SheetCellRange(sv, 5,0,1,1);
FarPoint.Web.Spread.ExcelSparklineSetting ex = new
FarPoint.Web.Spread.ExcelSparklineSetting();
ex.ShowMarkers = true;
ex.ShowNegative = true;
ex.NegativeColor = Color.Red;
// Use with a Column or Winloss type
ex.SeriesColor = Color.Olive;
fpSpread1.Sheets[0] = sv;
fpSpread1.Sheets[0].RowCount = 6;
fpSpread1.Sheets[0].ColumnCount = 6;
sv.Cells[0, 0].Value = 2;
sv.Cells[0, 1].Value = 5;
sv.Cells[0, 2].Value = 4;
sv.Cells[0, 3].Value = -1;
sv.Cells[0, 4].Value = 3;
fpSpread1.Sheets[0].AddSparkline(data, data2, FarPoint.Web.Spread.SparklineType.Column,
ex);

VB
Dim sv As New FarPoint.Web.Spread.SheetView()
Dim data As New FarPoint.Web.Spread.Chart.SheetCellRange(sv, 0, 0, 1, 5)
Dim data2 As New FarPoint.Web.Spread.Chart.SheetCellRange(sv, 5, 0, 1, 1)
Dim ex As New FarPoint.Web.Spread.ExcelSparklineSetting()
ex.ShowMarkers = True
ex.ShowNegative = True
ex.NegativeColor = Color.Red
' Use with a Column or Winloss type
ex.SeriesColor = Color.Olive
FpSpread1.Sheets(0) = sv
FpSpread1.Sheets(0).RowCount = 6
FpSpread1.Sheets(0).ColumnCount = 6
sv.Cells(0, 0).Value = 2
sv.Cells(0, 1).Value = 5
sv.Cells(0, 2).Value = 4
sv.Cells(0, 3).Value = -1
sv.Cells(0, 4).Value = 3
FpSpread1.Sheets(0).AddSparkline(data, data2, FarPoint.Web.Spread.SparklineType.Column,
ex)

Using
the
Spread
Designer

Spread for ASP.NET Developer’s Guide 242

Copyright © GrapeCity, Inc. All rights reserved.

1.
 Type
data
in
a
cell
or
a
column
or
row
of
cells
in
the
designer.
2.
 Select
a
cell
for
the
sparkline.
3.
 Select
the
Insert
menu.
4.
 Select
a
sparkline
type.
5.
 Set
the
Data
Range
in
the
Create
Sparklines
dialog
(such
as
=Sheet1!E1:E3).
6.
 Select
OK.
7.
 Select
Apply
and
Exit
from
the
File
menu
to
save
your
changes
and
close
the
designer.

Customizing Markers and Pointers

You
can
show
markers
or
points
in
the
sparkline
graphs.
The
following
image
displays
the
points
in
a
line
sparkline.
You
can
specify
different
colors
for
low
or
negative,
high,
first,
and
last
points.

The
high
point
is
the
point
for
the
largest
value.
The
low
point
is
the
smallest
value.
The
negative
point
represents
negative
values.
The
first
point
is
the
first
point
that
is
drawn
on
the
graph.
The
last
point
is
the
last
point
that
is
drawn
on
the
graph.

The
SeriesColor
('SeriesColor
Property'
in
the
on-line
documentation)
property
applies
to
the
line
for
the
line
spark
type.
The
MarkersColor
('MarkersColor
Property'
in
the
on-line
documentation)
property
is
only
for
the
line
type
sparkline.
See
the
ExcelSparklineSetting
('ExcelSparklineSetting
Class'
in
the
on-line
documentation)
class
for
a
list
of
sparkline
properties
and
additional
code
samples.

Using
Code

1.
 Specify
a
cell
to
create
the
sparkline
in.
2.
 Specify
a
range
of
cells
for
the
data.
3.
 Set
any
properties
for
the
sparkline
(such
as
ShowFirst
('ShowFirst
Property'
in
the
on-line
documentation)
and
FirstMarkerColor
('FirstMarkerColor
Property'
in
the
on-line
documentation)).

4.
 Add
the
sparkline
to
the
cell.

Example

This
example
creates
a
line
sparkline
in
a
cell
and
shows
different
markers
and
colors.

C#
FarPoint.Web.Spread.SheetView sv = new FarPoint.Web.Spread.SheetView();
FarPoint.Web.Spread.Chart.SheetCellRange data = new
FarPoint.Web.Spread.Chart.SheetCellRange(sv, 0,0,1, 5);
FarPoint.Web.Spread.Chart.SheetCellRange data2 = new
FarPoint.Web.Spread.Chart.SheetCellRange(sv, 5,0,1,1);
FarPoint.Web.Spread.ExcelSparklineSetting ex = new
FarPoint.Web.Spread.ExcelSparklineSetting();

Spread for ASP.NET Developer’s Guide 243

Copyright © GrapeCity, Inc. All rights reserved.

ex.AxisColor = Color.SaddleBrown;
ex.ShowNegative = true;
ex.ShowFirst = true;
ex.ShowHigh = true;
ex.ShowLow = true;
ex.ShowLast = true;
ex.FirstMarkerColor = Color.Blue;
ex.HighMarkerColor = Color.DarkGreen;
ex.MarkersColor = Color.Aquamarine;
ex.LowMarkerColor = Color.Red;
ex.LastMarkerColor = Color.Orange;
ex.ShowMarkers = true;
fpSpread1.Sheets[0] = sv;
fpSpread1.Sheets[0].RowCount = 6;
fpSpread1.Sheets[0].ColumnCount = 6;
sv.Cells[0, 0].Value = 2;
sv.Cells[0, 1].Value = 5;
sv.Cells[0, 2].Value = 4;
sv.Cells[0, 3].Value = 1;
sv.Cells[0, 4].Value = 3;
fpSpread1.Sheets[0].AddSparkline(data, data2, FarPoint.Web.Spread.SparklineType.Line,
ex);

VB
Dim sv As New FarPoint.Web.Spread.SheetView()
Dim data As New FarPoint.Web.Spread.Chart.SheetCellRange(sv, 0, 0, 1, 5)
Dim data2 As New FarPoint.Web.Spread.Chart.SheetCellRange(sv, 5, 0, 1, 1)
Dim ex As New FarPoint.Web.Spread.ExcelSparklineSetting()
ex.AxisColor = Color.SaddleBrown
ex.ShowFirst = True
ex.ShowHigh = True
ex.ShowLow = True
ex.ShowLast = True
ex.FirstMarkerColor = Color.Blue
ex.HighMarkerColor = Color.DarkGreen
ex.MarkersColor = Color.Aquamarine
ex.LowMarkerColor = Color.Red
ex.LastMarkerColor = Color.Orange
ex.ShowMarkers = True
FpSpread1.Sheets(0) = sv
FpSpread1.Sheets(0).RowCount = 6
FpSpread1.Sheets(0).ColumnCount = 6
sv.Cells(0, 0).Value = 2
sv.Cells(0, 1).Value = 5
sv.Cells(0, 2).Value = 4
sv.Cells(0, 3).Value = 1
sv.Cells(0, 4).Value = 3
FpSpread1.Sheets(0).AddSparkline(data, data2, FarPoint.Web.Spread.SparklineType.Line,
ex)

Using
the
Spread
Designer

1.
 Type
data
in
a
cell
or
a
column
or
row
of
cells
in
the
designer.
2.
 Select
a
cell
for
the
sparkline.
3.
 Select
the
Insert
menu.

Spread for ASP.NET Developer’s Guide 244

Copyright © GrapeCity, Inc. All rights reserved.

4.
 Select
a
sparkline
type.
5.
 Set
the
Data
Range
in
the
Create
Sparklines
dialog
(such
as
=Sheet1!E1:E3).
6.
 Select
OK.
7.
 Select
the
sparkline
cell,
select
the
Marker
Color
or
Sparkline
Color
icon,
and
set
the
colors.
8.
 Select
Apply
and
Exit
from
the
File
menu
to
save
your
changes
and
close
the
designer.

Specifying Horizontal and Vertical Axes

The
horizontal
axis
has
a
general
type.
The
general
type
specifies
that
all
the
points
are
painted
along
the
axis
at
the
same
distance.

Set
the
DisplayXAxis
('DisplayXAxis
Property'
in
the
on-line
documentation)
property
if
you
wish
to
display
the
axis
line.
The
following
image
displays
all
three
points
on
the
graph.

You
can
specify
different
minimum
and
maximum
value
options
for
the
vertical
axis.
The
automatic
option
allows
each
sparkline
to
have
a
different
minimum
and
maximum
value.
The
same
option
uses
the
same
minimum
and
maximum
value
for
all
the
sparklines.
The
custom
option
allows
you
to
specify
the
minimum
and
maximum
value
for
all
the
sparklines
in
a
group.

If
the
custom
option
is
used
for
the
vertical
axis,
and
the
minimum
value
is
equal
to
or
larger
than
all
data
points,
points
or
lines
are
not
drawn.
Lines
or
columns
are
truncated
if
they
are
not
completely
in
the
drawing
area.
If
a
column
sparkline
has
at
least
one
point
drawn
completely
or
partially,
then
all
columns
with
values
less
than
the
minimum
are
drawn
as
thin
columns
that
extend
down.

See
the
ManualMax
('ManualMax
Property'
in
the
on-line
documentation),ManualMin
('ManualMin
Property'
in
the
on-line
documentation),
MaxAxisType
('MaxAxisType
Property'
in
the
on-line
documentation),
and
MinAxisType
('MinAxisType
Property'
in
the
on-line
documentation)
properties
in
the
ExcelSparklineSetting
('ExcelSparklineSetting
Class'
in
the
on-line
documentation)
class
for
vertical
axis
examples.

Using
Code

1.
 Create
an
ExcelSparklineSetting
('ExcelSparklineSetting
Class'
in
the
on-line
documentation)
object.

2.
 Set
the
DisplayXAxis
('DisplayXAxis
Property'
in
the
on-line
documentation)
property
to
true
if
you
wish
to
display
the
axis.

3.
 Add
values
and
dates
to
the
cells.
4.
 Add
the
sparkline
to
the
cell.

Example

This
example
creates
a
column
sparkline
in
a
cell
with
a
horizontal
axis.

C#
FarPoint.Web.Spread.ExcelSparklineSetting ex = new
FarPoint.Web.Spread.ExcelSparklineSetting();
ex.DisplayXAxis = true;
ex.Formula = "Sheet1!A1:C1";
fpSpread1.Sheets[0].RowCount = 4;
fpSpread1.Sheets[0].ColumnCount = 4;

Spread for ASP.NET Developer’s Guide 245

Copyright © GrapeCity, Inc. All rights reserved.

fpSpread1.Sheets[0].Cells[0, 0].Text = "1/2/2011";
fpSpread1.Sheets[0].Cells[0, 1].Text = "1/3/2011";
fpSpread1.Sheets[0].Cells[0, 2].Text = "1/5/2011";
fpSpread1.Sheets[0].Cells[1, 0].Value = 2;
fpSpread1.Sheets[0].Cells[1, 1].Value = 11;
fpSpread1.Sheets[0].Cells[1, 2].Value = 4;
fpSpread1.Sheets[0].AddSparkline("Sheet1!A2:C2", "Sheet1!D2:D2",
FarPoint.Web.Spread.SparklineType.Column, ex);

VB
Dim ex As New FarPoint.Web.Spread.ExcelSparklineSetting()
ex.DisplayXAxis = True
ex.Formula = "Sheet1!A1:C1"
FpSpread1.Sheets(0).RowCount = 4
FpSpread1.Sheets(0).ColumnCount = 4
FpSpread1.Sheets(0).Cells(0, 0).Text = "1/2/2011"
FpSpread1.Sheets(0).Cells(0, 1).Text = "1/3/2011"
FpSpread1.Sheets(0).Cells(0, 2).Text = "1/5/2011"
FpSpread1.Sheets(0).Cells(1, 0).Value = 2
FpSpread1.Sheets(0).Cells(1, 1).Value = 11
FpSpread1.Sheets(0).Cells(1, 2).Value = 4
FpSpread1.Sheets(0).AddSparkline("Sheet1!A2:C2", "Sheet1!D2:D2",
FarPoint.Web.Spread.SparklineType.Column, ex)

Using
the
Spread
Designer

1.
 Type
data
in
a
cell
or
a
column
or
row
of
cells
in
the
designer.
2.
 Type
dates
in
a
cell
or
a
column
or
row
of
cells
in
the
designer.
3.
 Select
a
cell
for
the
sparkline.
4.
 Select
the
Insert
menu.
5.
 Select
a
sparkline
type.
6.
 Set
the
Data
Range
in
the
Create
Sparklines
dialog
(such
as
=Sheet1!E1:E3).
7.
 Select
OK.
8.
 Select
the
sparkline
cell,
select
the
Axis
icon,
and
then
make
any
changes
to
the
axis.
9.
 Select
Apply
and
Exit
from
the
File
menu
to
save
your
changes
and
close
the
designer.

Working with Sparklines

You
can
group,
clear,
and
switch
rows
and
columns
with
sparklines.

Grouping
merges
sparklines
into
a
new
group
and
removes
them
from
the
old
groups.
If
the
selected
sparklines
belong
to
different
groups
with
different
types,
the
new
group
will
have
the
type
of
the
last
selected
group.
The
new
group
will
also
have
the
empty
cell,
style,
and
axis
settings
of
the
last
selected
group.

Ungrouping
selected
sparkline
groups
separates
them
into
different
groups
that
contain
only
one
sparkline.
The
data
and
location
range
of
the
original
sparkline
are
used
in
the
new
groups.
The
settings
of
the
original
group
are
also
used
in
the
new
groups.

You
can
clear
a
sparkline
in
code
with
the
ClearSparklines
('ClearSparklines
Method'
in
the
on-line
documentation)
method
in
the
SheetView
('SheetView
Class'
in
the
on-line
documentation)
class.

You
can
switch
the
range
of
data
used
in
the
sparkline
from
row
to
column
or
column
to
row.
Use
the
SwitchRowColumn
('SwitchRowColumn
Method'
in
the
on-line
documentation)
method
in
the
ExcelSparklineGroup
('ExcelSparklineGroup
Class'
in
the
on-line
documentation)
class
in
code.
The
range
of
data
should
have
the
same
number
of
rows
and
columns.
Use
the
AddSquareSparkline
('AddSquareSparkline

Spread for ASP.NET Developer’s Guide 246

Copyright © GrapeCity, Inc. All rights reserved.

Method'
in
the
on-line
documentation)
method
in
the
SheetView
('SheetView
Class'
in
the
on-line
documentation)
class
to
add
a
sparkline
that
can
be
switched.

Using
Code

1.
 Use
the
GroupSparkline
('GroupSparkline
Method'
in
the
on-line
documentation)
method
to
group
sparkline
cells.

2.
 Use
the
UngroupSparkline
('UngroupSparkline
Method'
in
the
on-line
documentation)
method
to
ungroup
sparkline
cells.

Example

This
example
shows
how
to
use
the
GroupSparkline
('GroupSparkline
Method'
in
the
on-line
documentation)
method
or
the
UngroupSparkline
('UngroupSparkline
Method'
in
the
on-line
documentation)
method.

C#
fpSpread1.Sheets[0].GroupSparkline(new FarPoint.Web.Spread.Model.CellRange[] { new
FarPoint.Web.Spread.Model.CellRange(5, 0, 3, 1) });
// fpSpread1.Sheets[0].UnGroupSparkline(new FarPoint.Web.Spread.Model.CellRange[] { new
FarPoint.Web.Spread.Model.CellRange(5, 0, 3, 1) });

VB
FpSpread1.Sheets(0).GroupSparkline(New FarPoint.Web.Spread.Model.CellRange() {New
FarPoint.Web.Spread.Model.CellRange(5, 0, 3, 1)})
'FpSpread1.Sheets(0).UnGroupSparkline(New FarPoint.Web.Spread.Model.CellRange() {New
FarPoint.Web.Spread.Model.CellRange(5, 0, 3, 1)})

Using
the
Spread
Designer

1.
 Select
the
sparkline
cells.
2.
 Select
Group
or
Ungroup
in
the
Group
section
of
the
toolbar
to
group
or
ungroup
sparklines.
3.
 Select
Clear
if
you
wish
to
remove
any
sparklines.
4.
 Use
the
Edit
Data
option
to
edit
the
data
or
switch
the
range
of
data
used
in
the
sparkline.
5.
 Select
Apply
and
Exit
from
the
File
menu
to
save
your
changes
and
close
the
designer.

Spread for ASP.NET Developer’s Guide 247

Copyright © GrapeCity, Inc. All rights reserved.

Customizing with Cell Types

Cell
types
define
the
type
of
information
that
appears
in
a
cell,
and
how
that
information
is
displayed,
and
how
the
user
can
interact
with
it.
There
are
two
different
groups
of
cell
types
that
can
be
set
for
cells
in
a
sheet:
ones
that
are
simply
related
to
formatting
of
text
in
a
cell
and
ones
that
display
a
control
or
graphic.

Understanding
How
Cell
Types
Work
Understanding
Cell
Type
Basics
Understanding
How
Cell
Types
Display
Data
Understanding
How
Cell
Type
Affects
Model
Data
Determining
the
Cell
Type
of
a
Cell

Working
with
Editable
Cell
Types
Setting
a
Currency
Cell
Limiting
Values
for
a
Currency
Cell
Setting
a
Date-Time
Cell
Setting
a
Double
Cell
Setting
a
General
Cell
Setting
an
Integer
Cell
Setting
a
Percent
Cell
Setting
a
Regular
Expression
Cell
Setting
a
Text
Cell

Working
with
Graphical
Cell
Types
Setting
a
Button
Cell
Setting
a
Check
Box
Cell
Setting
a
Combo
Box
Cell
Setting
a
Hyperlink
Cell
Setting
an
Image
Cell
Setting
a
Label
Cell
Setting
a
List
Box
Cell
Setting
a
Multiple-Column
Combo
Box
Cell
Setting
a
Radio
Button
List
Cell
Setting
a
Tag
Cloud
Cell

Working
with
ASP.NET
AJAX
Extender
Cell
Types
Setting
an
Automatic-Completion
Cell
Setting
a
Combo
Box
Cell
Setting
a
Calendar
Cell
Setting
a
Filtered
Text
Cell
Setting
a
Masked
Edit
Cell
Setting
a
Mutually
Exclusive
Check
Box
Cell
Setting
a
Numeric
Spin
Cell
Setting
a
Rating
Cell
Setting
a
Slider
Cell
Setting
a
Slide
Show
Cell
Setting
a
Text
Box
with
Watermark
Cell

Using
Validation
Controls

For
other
ways
to
set
the
appearance
of
the
cell,
refer
to
Customizing
the
Appearance
of
a
Cell.
For
other
ways
to
set
the
user
interaction
at
the
cell
level,
refer
to
Customizing
Interaction
with
Cells.

For
information
on
automatic
assignment
of
cell
types
for
bound
data,
refer
to
Setting
the
Cell
Types
for
Bound

Spread for ASP.NET Developer’s Guide 248

Copyright © GrapeCity, Inc. All rights reserved.

Data.

For
information
on
the
various
cell
type
classes,
refer
to
the
cell
type
classes
in
the
Assembly
Reference
(on-line
documentation).

Understanding How Cell Types Work

These
topics
describe
how
cell
types
work:

Understanding
Cell
Type
Basics
Understanding
How
Cell
Types
Display
Data
Understanding
How
Cell
Type
Affects
Model
Data
Determining
the
Cell
Type
of
a
Cell

Understanding Cell Type Basics

You
can
specify
the
cell
type
for
individual
cells,
columns,
rows,
a
range
of
cells,
or
an
entire
sheet.
For
any
cell
type
there
are
properties
of
a
cell
that
can
be
set.
In
general,
working
with
cell
types
includes
defining
the
cell
type,
setting
the
properties,
and
applying
that
cell
type
to
cells.

Editor,
Formatter,
and
Renderer

A
cell
type
consists
of
an
editor,
a
renderer,
and
a
formatter.
The
editor
is
an
actual
control
instance
that
Spread
creates
and
places
in
the
location
of
the
cell
when
you
go
into
edit
mode.
The
editor
is
responsible
for
creating
and
managing
the
cell's
edit
control
when
in
edit
mode.
The
formatter
decides
how
the
displayed
text
appears.
The
formatter
is
responsible
for
converting
the
cell's
value
to
and
from
text
(for
example
when
getting
or
setting
a
cell's
Text
('Text
Property'
in
the
on-line
documentation)
property).
The
renderer
is
code
that
paints
that
control
inside
the
cell
rectangle
when
the
editor
is
not
there
(paints
the
cell
when
not
in
edit
mode).

In
most
cases,
you
want
the
cell
to
look
the
same
whether
you
are
in
edit
mode
or
not
in
edit
mode.
In
these
cases,
you
would
create
a
single
cell
type
and
assign
it
to
the
cell's
CellType
('CellType
Property'
in
the
on-line
documentation)
property.
This
single
cell
type
is
used
as
the
cell's
editor,
renderer,
and
formatter.
If
you
want
the
cell
to
appear
differently
depending
on
whether
you
are
in
edit
mode
or
not
in
edit
mode,
then
you
can
create
two
different
cell
types
and
assign
one
cell
type
as
the
cell's
editor
and
the
other
cell
type
as
the
cell's
renderer.
You
probably
also
want
to
assign
one
of
the
cell
types
as
the
cell's
formatter.
For
more
information,
refer
to
the
ICellType
('ICellType
Interface'
in
the
on-line
documentation)
interface.

BaseCellType

The
design
of
cell
editing
requires
that
the
cell
type
return
an
editor
control
which
is
then
placed
over
the
cell.
The
editor
control
can
be
text
based
(for
example,
text
box)
or
graphics
based
(for
example,
check
box).
The
editor
control
can
drop
down
lists
(for
example,
combo
box).
The
BaseCellType
('BaseCellType
Class'
in
the
on-line
documentation)
class
is
a
class
from
which
the
built-in
text
based
cell
types
(for
example,
general,
text,
number,
data-time,
etc.)
are
derived.
The
class
can
also
be
used
to
derive
custom
cell
types
that
are
text
based.
The
data
model
can
hold
any
value,
including
colors.
The
cell
type
is
always
passed
the
raw
value
from
the
data
model.

Header
Cells

While
you
can
assign
a
cell
type
to
the
cells
in
the
row
header
or
column
header,
the
cell
type
is
only
used
for
painting
purposes;
header
cells
are
renderable
but
are
not
editable.
In‑cell
editing
is
limited
to
cells
in
the
data
area.
If
you
want
to
have
something
editable
that
acts
like
a
header,
you
can
hide
(turn
off)
the
column
header,
freeze
the
first
row
of
the
spreadsheet,
then
use
the
frozen
row
to
act
as
your
header
cells.

Understanding How Cell Types Display Data

Spread for ASP.NET Developer’s Guide 249

Copyright © GrapeCity, Inc. All rights reserved.

The
cell
type
affects
how
the
contents
of
the
cell
are
displayed.
The
cell
contains
formatted
and
unformatted
data.

The
Text
('Text
Property'
in
the
on-line
documentation)
property
contains
the
formatted
data
which
is
displayed
in
the
cell;
the
Value
('Value
Property'
in
the
on-line
documentation)
property
contains
the
unformatted
data
which
is
saved
in
the
model.
You
can
use
the
SheetView
GetText
('GetText
Method'
in
the
on-line
documentation)
and
GetValue
('GetValue
Method'
in
the
on-line
documentation)
methods
to
obtain
the
contents
of
the
cell,
regardless
of
cell
type.
For
more
information
about
data
methods
and
properties,
refer
to
Placing
and
Retrieving
Data.

The
following
table
lists
the
editable
cell
types,
and
how
each
cell
type
works
with
the
data,
whether
formatted
(Text
('Text
Property'
in
the
on-line
documentation)
property)
or
unformatted
(Value
('Value
Property'
in
the
on-
line
documentation)
property).

Editable
Cell
Type Sample
Input

Resultant
(Text)
Formatted
Data

Resultant
(Value)
Unformatted
Data

CurrencyCellType
('CurrencyCellType
Class'
in
the
on-line
documentation)

"$10,000.00" "$10,000.00" 10000.00

DateTimeCellType
('DateTimeCellType
Class'
in
the
on-line
documentation)

"10/29/2002" "10/29/2002" DateTime
object
of
Tuesday,
October
29,
2002
12:00:00
AM

DoubleCellType
('DoubleCellType
Class'
in
the
on-line
documentation)

"10000.00" "10000.00" 10000.00

GeneralCellType
('GeneralCellType
Class'
in
the
on-line
documentation)

Any
text String
of
that
data

Depends
on
whether
DateTime,
Boolean,
or
Text
returns
the
DateTime
object,
the
Boolean
value,
or
the
Text
value

IntegerCellType
('IntegerCellType
Class'
in
the
on-line
documentation)

"12345" "12345" 12345

PercentCellType
('PercentCellType
Class'
in
the
on-line
documentation)

"15%" "15%" 0.15

RegExpCellType
('RegExpCellType
Class'
in
the
on-line
documentation)
(Regular
Expression)

"123-45-
6789"

"123-45-6789" "123-45-6789"

TextCellType
('TextCellType
Class'
in
the
on-line
documentation)

Any
text String
of
that
text

String
of
that
text

The
DateTime
cell
returns
data
in
the
format
of
the
FormatString
('FormatString
Property'
in
the
on-line
documentation)
property
setting.
In
this
example,
the
format
string
is
set
to
"F".

If
the
cell's
Multiline
('Multiline
Property'
in
the
on-line
documentation)
property
is
set
to
true,
you
can
include
a
line
feed
character
to
include
a
line
break
when
setting
text.

Numbers
are
converted
to
scientific
notation
if
they
are
greater
than
999,999,999,999,999
or
less
than
-
999,999,999,999,999.
Low
fraction
numbers
are
also
converted
to
scientific
notation.

The
following
table
lists
the
graphical
cell
types,
and
how
each
cell
type
works
with
the
data,
whether
formatted
(Text
('Text
Property'
in
the
on-line
documentation)
property)
or
unformatted
(Value
('Value
Property'
in
the
on-
line
documentation)
property).

Spread for ASP.NET Developer’s Guide 250

Copyright © GrapeCity, Inc. All rights reserved.

Graphical
Cell
Type Sample
Input

Resultant
(Text)
Formatted
Data

Resultant
(Value)
Unformatted
Data

ButtonCellType
('ButtonCellType
Class'
in
the
on-
line
documentation)

null null null

CheckBoxCellType
('CheckBoxCellType
Class'
in
the
on-line
documentation)

True
(checked)

"True" 1

 False
(unchecked)

"False" 0

 Not
set;
looks
false

Empty
string Null

ComboBoxCellType
('ComboBoxCellType
Class'
in
the
on-line
documentation)

Any
item Text
of
selected
item

Text
of
selected
item
or
index
of
selected
item

 No
item
selected

Empty
string Null

HyperLinkCellType
('HyperLinkCellType
Class'
in
the
on-line
documentation)

Any
text String
of
that
text "True"
(for
visited
link)
or
"False"
(for
not
visited)

ImageCellType
('ImageCellType
Class'
in
the
on-
line
documentation)

LabelCellType
('LabelCellType
Class'
in
the
on-
line
documentation)

Any
text String
of
that
text String
of
that
text

ListBoxCellType
('ListBoxCellType
Class'
in
the
on-line
documentation)

Any
item
selected

Text
of
the
selected
item

Text
of
or
index
of
selected
item

MultiColumnComboBoxCellType
('MultiColumnComboBoxCellType
Class'
in
the
on-line
documentation)

Any
item Text
of
selected
item

Text
of
selected
item
or
index
of
selected
item

RadioButtonListCellType
('RadioButtonListCellType
Class'
in
the
on-line
documentation)

Any
item
selected

Text
of
the
selected
item

Text
of
or
index
of
selected
item

 No
item
selected

Empty
string Null

Understanding How Cell Type Affects Model Data

The
cell
type
has
two
methods
that
control
how
data
is
displayed
from
the
data
model
and
how
data
is
written
to
the
data
model.
The
formatter
method
takes
the
data
from
the
data
model
and
formats
it
for
display.
The
parser
method
writes
the
data
to
the
data
model.
Different
cell
types
write
different
types
of
data
to
the
data
model.

The
following
table
lists
the
editable
cell
types,
and
how
each
cell
type
works
with
the
model.

Editable
Cell
Type Data
Type
Written
to
Model
CurrencyCellType
('CurrencyCellType
Class'
in
the
on-line
documentation)

Decimal

DateTimeCellType
('DateTimeCellType
Class'
in
the
on-line Date-Time
Object

Spread for ASP.NET Developer’s Guide 251

Copyright © GrapeCity, Inc. All rights reserved.

documentation)

DoubleCellType
('DoubleCellType
Class'
in
the
on-line
documentation)

Double

GeneralCellType
('GeneralCellType
Class'
in
the
on-line
documentation)

Depends
whether
Date-Time,
Boolean,
or
String

IntegerCellType
('IntegerCellType
Class'
in
the
on-line
documentation)

Integer

PercentCellType
('PercentCellType
Class'
in
the
on-line
documentation)

String

RegExpCellType
('RegExpCellType
Class'
in
the
on-line
documentation)

String

TextCellType
('TextCellType
Class'
in
the
on-line
documentation)

String

The
following
table
lists
the
graphical
cell
types,
and
how
each
cell
type
works
with
the
model.

Graphical
Cell
Type Data
Type
Written
to
Model
ButtonCellType
('ButtonCellType
Class'
in
the
on-
line
documentation)

Boolean

CheckBoxCellType
('CheckBoxCellType
Class'
in
the
on-line
documentation)

Integer

ComboBoxCellType
('ComboBoxCellType
Class'
in
the
on-line
documentation)

Depends
on
value
of
EditorValue
property.
String,
if
EditorValue
=
String
or
item
data,
Integer,
if
EditorValue
=
index

HyperLinkCellType
('HyperLinkCellType
Class'
in
the
on-line
documentation)

String

ImageCellType
('ImageCellType
Class'
in
the
on-
line
documentation)

Null

LabelCellType
('LabelCellType
Class'
in
the
on-line
documentation)

String

MultiColumnComboBoxCellType
('MultiColumnComboBoxCellType
Class'
in
the
on-line
documentation)

Type
of
the
selected
value

RadioButtonListCellType
('RadioButtonListCellType
Class'
in
the
on-line
documentation)

Depends
on
value
of
EditorValue
property.
String,
if
EditorValue
=
String
or
item
data,
Integer,
if
EditorValue
=
index

TagCloudCellType
('TagCloudCellType
Class'
in
the
on-line
documentation)

Null

Determining the Cell Type of a Cell

You
can
determine
the
cell
type
of
a
cell.
You
can
use
the
GetCellType
('GetCellType
Method'
in
the
on-line
documentation)
method
of
the
SheetView
('SheetView
Class'
in
the
on-line
documentation)
class.

Using
Code

You
can
use
the
GetCellType
('GetCellType
Method'
in
the
on-line
documentation)
method
to
get
the
cell
type.

Spread for ASP.NET Developer’s Guide 252

Copyright © GrapeCity, Inc. All rights reserved.

Example

The
following
code
uses
the
GetCellType
('GetCellType
Method'
in
the
on-line
documentation)
method.

C#
FarPoint.Web.Spread.SheetView sv = FpSpread1.ActiveSheetView;
sv.Cells[0,0].CellType=new FarPoint.Web.Spread.ButtonCellType();
ListBox1.Items.Add(Convert.ToString(sv.GetCellType(0,0)));

VB
Dim sv As FarPoint.Web.Spread.SheetView
sv = FpSpread1.ActiveSheetView
sv.Cells(0,0).CellType=New FarPoint.Web.Spread.ButtonCellType()
ListBox1.Items.Add(Convert.ToString(sv.GetCellType(0,0)))

Working with Editable Cell Types

There
are
a
set
of
tasks
that
relate
to
working
with
editable
cell
types
in
the
spreadsheet.
These
include:

Setting
a
Currency
Cell
Limiting
Values
for
a
Currency
Cell
Setting
a
Date-Time
Cell
Displaying
a
Calendar
in
a
Date-Time
Cell
Displaying
a
Number
Pad
in
Number
Cells
(on-line
documentation)
Setting
a
Double
Cell
Setting
a
General
Cell
Setting
an
Integer
Cell
Setting
a
Percent
Cell
Setting
a
Regular
Expression
Cell
Setting
a
Text
Cell

For
information
on
the
various
cell
type
classes,
refer
to
the
cell
type
classes
in
the
Assembly
Reference
(on-line
documentation).

Setting a Currency Cell

You
can
use
currency
cells
to
restrict
users
to
entering
currency
values
and
to
display
data
as
currency
values.
The
currency
cell
has
a
default
error
message
that
is
displayed
if
the
user
types
an
invalid
value
and
tries
to
leave
the
cell.
This
message
can
be
changed
using
the
properties
for
the
currency
cell
class.

By
default,
Spread
uses
the
regional
Windows
settings
(or
options)
for
the
formatting
of
currency.
The
CurrencyCellType
('CurrencyCellType
Class'
in
the
on-line
documentation)
class
does
not
use
the
NumberFormatInfo
property
inherited
from
the
GeneralCellType.
The
currency
cell
type
always
uses
the
System.Threading.Thread.CurrentThread.CurrentCulture.
These
settings
are:

currency
symbol
(and
whether
to
display
it)
separator
character
(and
whether
to
display
it)
decimal
symbol
whether
to
display
a
leading
zero
positive
currency
format
negative
currency
format

You
can
specify
an
edit
format
with
the
EditMode
('EditMode
Property'
in
the
on-line
documentation)

Spread for ASP.NET Developer’s Guide 253

Copyright © GrapeCity, Inc. All rights reserved.

property
and
the
CurrencyCellType.EditModeSettings
('CurrencyCellType.EditModeSettings
Class'
in
the
on-line
documentation)
class.

For
details
on
the
properties
and
methods
for
this
cell
type,
refer
to
the
CurrencyCellType
('CurrencyCellType
Class'
in
the
on-line
documentation)
class.

See
how
to
define
the
limits
for
values
at
Limiting
Values
for
a
Currency
Cell.

Using
Code

1.
 Define
a
currency
cell
type
by
creating
an
instance
of
the
CurrencyCellType
('CurrencyCellType
Class'
in
the
on-line
documentation)
class.

2.
 Specify
the
formatting
of
a
currency
cell
type.
3.
 Assign
the
currency
cell
type
to
a
cell.

Example

C#
FarPoint.Web.Spread.CurrencyCellType currcell = new
FarPoint.Web.Spread.CurrencyCellType();
currcell.MinimumValue = 1;
FpSpread1.ActiveSheetView.Cells[1,1].CellType = currcell;

VB
Dim currcell As New FarPoint.Web.Spread.CurrencyCellType()
currcell.MinimumValue = 1
FpSpread1.ActiveSheetView.Cells(1,1).CellType = currcell

Using
Code

1.
 Define
a
currency
cell
type
by
creating
an
instance
of
the
CurrencyCellType
('CurrencyCellType
Class'
in
the
on-line
documentation)
class.

2.
 Specify
the
formatting
of
a
currency
cell
type.
3.
 Assign
the
currency
cell
type
to
a
cell.
4.
 Set
the
cell
value.

Example

C#
FarPoint.Web.Spread.CurrencyCellType c = new FarPoint.Web.Spread.CurrencyCellType();
System.Globalization.NumberFormatInfo nfi = new
System.Globalization.NumberFormatInfo();

Spread for ASP.NET Developer’s Guide 254

Copyright © GrapeCity, Inc. All rights reserved.

nfi.CurrencyDecimalDigits = 3;
nfi.CurrencyDecimalSeparator = ",";
nfi.CurrencySymbol = "$";
c.NumberFormat = nfi;
FpSpread1.ActiveSheetView.Cells[0, 0].CellType = c;
FpSpread1.ActiveSheetView.Cells[0, 0].Value = 234.567;

VB
Dim c As New FarPoint.Web.Spread.CurrencyCellType
Dim nfi As New System.Globalization.NumberFormatInfo
nfi.CurrencyDecimalDigits = 3
nfi.CurrencyDecimalSeparator = ","
nfi.CurrencySymbol = "$"
c.NumberFormat = nfi
FpSpread1.ActiveSheetView.Cells(0, 0).CellType = c
FpSpread1.ActiveSheetView.Cells(0, 0).Value = 234.567

Using
the
Spread
Designer

1.
 In
the
work
area,
select
the
cell
or
cells
for
which
you
want
to
set
the
cell
type.
2.
 Select
the
Home
menu.
3.
 Select
the
SetCellType
icon
under
the
CellType
section.
4.
 Select
the
cell
type
and
any
other
cell
properties.
5.
 Select
OK
to
close
the
dialog.
6.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Limiting Values for a Currency Cell

You
can
set
the
minimum
and
maximum
values
that
can
be
entered
in
a
currency
cell
and
notify
the
user
with
a
message
if
the
entry
is
smaller
than
the
minimum
or
larger
than
the
maximum.
Use
the
MinimumValue
('MinimumValue
Property'
in
the
on-line
documentation)
and
MaximumValue
('MaximumValue
Property'
in
the
on-line
documentation)
properties
of
the
CurrencyCellType
('CurrencyCellType
Class'
in
the
on-line
documentation)
class
to
set
the
values.

Double,
integer,
and
percent
cells
also
support
minimum
and
maximum
values.

To
assign
the
CurrencyCellType
to
a
cell,
refer
to
Setting
a
Currency
Cell.

Using
Code

1.
 Create
the
currency
cell
type
and
set
a
custom
error
message.
2.
 Specify
the
minimum
or
maximum
value
or
both
of
a
currency
cell
type.

Spread for ASP.NET Developer’s Guide 255

Copyright © GrapeCity, Inc. All rights reserved.

3.
 Assign
the
currency
cell
type
to
a
cell.

Example

C#
FarPoint.Web.Spread.CurrencyCellType currcell = new
FarPoint.Web.Spread.CurrencyCellType("Pick a number between 1 and 10!");
currcell.MinimumValue = 1;
currcell.MaximumValue = 10;
FpSpread1.ActiveSheetView.Cells[1,1].CellType = currcell;

VB
Dim currcell As New FarPoint.Web.Spread.CurrencyCellType("Pick a number between 1 and
10!")
currcell.MinimumValue = 1
currcell.MaximumValue = 10
FpSpread1.ActiveSheetView.Cells(1,1).CellType = currcell

Using
the
Spread
Designer

1.
 In
the
work
area,
select
the
cell
or
cells
for
which
you
want
to
set
the
cell
type.
2.
 Select
the
Home
menu.
3.
 Select
the
SetCellType
icon
under
the
CellType
section.
4.
 Select
the
cell
type
and
set
cell
properties
such
as
MinimumValue,
MaximumValue,
or
ErrorMessage.
5.
 Select
OK
to
close
the
dialog.
6.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Setting a Date-Time Cell

You
can
use
date-time
cells
to
restrict
users
to
entering
dates
or
times
and
to
display
data
as
date
or
time
values.

You
determine
the
format
of
the
date
and
time
to
display
by
specifying
the
DateTimeFormatInfo
object.
For
a
complete
list
of
date
and
time
formats,
refer
to
the
DateTimeCellType
('DateTimeCellType
Class'
in
the
on-line
documentation)
class.

To
create
a
time
cell
to
display
only
hours
and
minutes,
set
the
format
string
to
"hh:mm".

If
a
date
time
cell
displays
dates
and
times
in
long
date
and
time
format,
and
the
current
date
and
time
is
"10/29/2002
11:10:01",
the
Text
('Text
Property'
in
the
on-line
documentation)
property
returns
"Tuesday,
October
29,
2002
11:10:01
AM"
as
the
formatted
value
of
the
cell.
The
Value
('Value
Property'
in
the
on-line
documentation)
property
returns
the
date-time
object.

You
can
specify
an
edit
mode
format
with
the
EditMode
('EditMode
Property'
in
the
on-line
documentation)
property
and
the
DateTimeCellType.EditModeSettings
('DateTimeCellType.EditModeSettings
Class'
in
the
on-line
documentation)
class.

For
details
on
the
properties
and
methods
for
this
cell
type,
refer
to
the
DateTimeCellType
('DateTimeCellType
Class'
in
the
on-line
documentation)
class.

Using
Code

1.
 Define
the
date-time
cell
type
by
creating
an
instance
of
the
DateTimeCellType
('DateTimeCellType
Class'
in
the
on-line
documentation)
class.

2.
 Specify
the
message
to
display
if
invalid.

Spread for ASP.NET Developer’s Guide 256

Copyright © GrapeCity, Inc. All rights reserved.

3.
 Specify
the
format
of
the
date
to
display
using
the
FormatString
('FormatString
Property'
in
the
on-line
documentation)
property.

4.
 Assign
the
date-time
cell
type
to
a
cell.

Example

Display
the
date
in
the
format
of
Tuesday,
March
04
(day
of
week,
month
and
number
of
day)
in
the
second
row,
second
column
cell.
If
the
user
inputs
an
invalid
entry,
display
a
note,
as
shown
in
the
figure
below.

C#
FarPoint.Web.Spread.DateTimeCellType datecell = new
FarPoint.Web.Spread.DateTimeCellType();
datecell.ErrorMessage = "Need a date!!!";
datecell.FormatString = "dddd, MMMM d";
FpSpread1.ActiveSheetView.Columns[1].Width = 175;
FpSpread1.ActiveSheetView.Cells[1, 1].CellType = datecell;

VB
Dim datecell As New FarPoint.Web.Spread.DateTimeCellType()
datecell.ErrorMessage = "Need a date!!!"
datecell.FormatString = "dddd, MMMM d"
FpSpread1.ActiveSheetView.Columns(1).Width = 175
FpSpread1.ActiveSheetView.Cells(1, 1).CellType = datecell

Using
the
Spread
Designer

1.
 In
the
work
area,
select
the
cell
or
cells
for
which
you
want
to
set
the
cell
type.
2.
 Select
the
Home
menu.
3.
 Select
the
SetCellType
icon
under
the
CellType
section.
4.
 Select
the
cell
type
and
any
other
cell
properties.
5.
 Select
OK
to
close
the
dialog.
6.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Displaying a Calendar in a Date-Time Cell

You
can
display
a
pop-up
calendar
in
the
date-time
cell
as
shown
in
the
following
image.

Spread for ASP.NET Developer’s Guide 257

Copyright © GrapeCity, Inc. All rights reserved.

Set
the
ShowPopupButton
('ShowPopupButton
Property'
in
the
on-line
documentation)
property
to
True
to
display
the
calendar.
Double-click
the
cell
to
enter
edit
mode
and
then
click
or
tap
on
the
drop-down
button
to
show
the
calendar.
Select
a
date
and
then
press
the
Enter
key
to
finish
editing
the
cell.

Example

This
example
allows
the
calendar
to
be
displayed.

C#
FarPoint.Web.Spread.DateTimeCellType datecell = new
FarPoint.Web.Spread.DateTimeCellType();
datecell.ShowPopupButton = true;
FpSpread1.ActiveSheetView.Columns[1].Width = 175;
FpSpread1.ActiveSheetView.Cells[1,1].CellType = datecell;

VB
Dim datecell As New FarPoint.Web.Spread.DateTimeCellType()
datecell.ShowPopupButton = True
FpSpread1.ActiveSheetView.Columns(1).Width = 175
FpSpread1.ActiveSheetView.Cells(1, 1).CellType = datecell

Setting a Double Cell

You
can
use
double
(numeric
value)
cells
to
restrict
users
to
entering
double-precision
floating
point
numbers
and
to
display
data
as
these
numbers.
You
can
also
specify
minimum
and
maximum
values
as
well
as
the
number
of
decimal
digits.

The
double
cell
has
a
default
error
message
that
is
displayed
if
the
user
types
an
invalid
value
and
tries
to
leave
the
cell.

You
can
specify
an
edit
mode
format
with
the
EditMode
('EditMode
Property'
in
the
on-line
documentation)
property
and
the
DoubleCellType.EditModeSettings
('DoubleCellType.EditModeSettings
Class'
in
the
on-

Spread for ASP.NET Developer’s Guide 258

Copyright © GrapeCity, Inc. All rights reserved.

line
documentation)
class.

For
details
on
the
properties
and
methods
for
this
cell
type,
refer
to
the
DoubleCellType
('DoubleCellType
Class'
in
the
on-line
documentation)
class.

Using
Code

1.
 Define
the
double
cell
type
by
creating
an
instance
of
the
DoubleCellType
('DoubleCellType
Class'
in
the
on-line
documentation)
class.

2.
 Assign
the
double
cell
type
to
a
cell.

Example

This
example
sets
a
cell
to
a
double
cell
type.

C#
FarPoint.Web.Spread.DoubleCellType dblcell = new FarPoint.Web.Spread.DoubleCellType();
FpSpread1.ActiveSheetView.Cells[1, 1].CellType = dblcell;

VB
Dim dblcell As New FarPoint.Web.Spread.DoubleCellType()
FpSpread1.ActiveSheetView.Cells(1, 1).CellType = dblcell

Using
the
Spread
Designer

1.
 In
the
work
area,
select
the
cell
or
cells
for
which
you
want
to
set
the
cell
type.
2.
 Select
the
Home
menu.
3.
 Select
the
SetCellType
icon
under
the
CellType
section.
4.
 Select
the
cell
type
and
any
other
cell
properties.
5.
 Select
OK
to
close
the
dialog.
6.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Setting a General Cell

Users
can
type
text
or
numbers
in
a
general
cell
type.
The
general
cell
type
can
also
be
used
as
a
base
from
which
to
inherit
generic
cell
type
information.

The
general
cell
will
format
the
values
the
user
types
into
strings,
numbers,
or
dates.
The
text
cell
formats
user
typed
values
as
strings.

For
details
on
the
properties
and
methods
for
this
cell
type,
refer
to
the
GeneralCellType
('GeneralCellType
Class'
in
the
on-line
documentation)
class.

Using
Code

1.
 Define
the
general
cell
type
by
creating
an
instance
of
the
GeneralCellType
('GeneralCellType
Class'
in
the
on-line
documentation)
class.

2.
 Assign
the
general
cell
type
to
a
cell.

Example

This
example
sets
a
cell
to
be
a
general
cell.

Spread for ASP.NET Developer’s Guide 259

Copyright © GrapeCity, Inc. All rights reserved.

C#
FarPoint.Web.Spread.GeneralCellType gencell = new
FarPoint.Web.Spread.GeneralCellType();
FpSpread1.ActiveSheetView.Cells[1, 1].CellType = gencell;

VB
Dim gencell As New FarPoint.Web.Spread.GeneralCellType()
FpSpread1.ActiveSheetView.Cells(1, 1).CellType = gencell

Using
the
Spread
Designer

1.
 In
the
work
area,
select
the
cell
or
cells
for
which
you
want
to
set
the
cell
type.
2.
 Select
the
Home
menu.
3.
 Select
the
SetCellType
icon
under
the
CellType
section.
4.
 Select
the
cell
type
and
any
other
cell
properties.
5.
 Select
OK
to
close
the
dialog.
6.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Setting an Integer Cell

You
can
use
integer
cells
to
restrict
users
to
entering
numeric
values
as
integers
only
and
to
display
data
as
integers.
The
default
error
message
is
displayed
if
the
user
types
a
decimal
value
and
tries
to
leave
the
cell.

The
following
image
displays
the
default
error
message.

You
can
specify
an
edit
mode
format
with
the
EditMode
('EditMode
Property'
in
the
on-line
documentation)
property
and
the
IntegerCellType.EditModeSettings
('IntegerCellType.EditModeSettings
Class'
in
the
on-
line
documentation)
class.

For
details
on
the
properties
and
methods
for
this
cell
type,
refer
to
the
IntegerCellType
('IntegerCellType
Class'
in
the
on-line
documentation)
class.

Using
Code

1.
 Define
the
integer
cell
type
by
creating
an
instance
of
the
IntegerCellType
('IntegerCellType
Class'
in
the
on-line
documentation)
class.

2.
 Assign
the
integer
cell
type
to
a
cell.

Example

This
example
sets
a
cell
to
be
an
integer
cell.

C#
FarPoint.Web.Spread.IntegerCellType intcell = new
FarPoint.Web.Spread.IntegerCellType();
FpSpread1.ActiveSheetView.Cells[1, 1].CellType = intcell;

Spread for ASP.NET Developer’s Guide 260

Copyright © GrapeCity, Inc. All rights reserved.

VB
Dim intcell As New FarPoint.Web.Spread.IntegerCellType()
FpSpread1.ActiveSheetView.Cells(1, 1).CellType = intcell

Using
the
Spread
Designer

1.
 In
the
work
area,
select
the
cell
or
cells
for
which
you
want
to
set
the
cell
type.
2.
 Select
the
Home
menu.
3.
 Select
the
SetCellType
icon
under
the
CellType
section.
4.
 Select
the
cell
type
and
any
other
cell
properties.
5.
 Select
OK
to
close
the
dialog.
6.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Setting a Percent Cell

You
can
use
a
percent
cell
to
display
percent
values.
In
a
percent
cell
type,
a
value
of
0.35
is
displayed
as
35%.
You
can
use
a
percent
cell
for
displaying
values
as
percentages
and
restricting
inputs
to
percentage
numeric
values.

The
percent
cell
has
a
default
error
message
that
is
displayed
if
the
user
types
an
invalid
value
and
tries
to
leave
the
cell.

For
details
on
the
properties
and
methods
for
this
cell
type,
refer
to
the
PercentCellType
('PercentCellType
Class'
in
the
on-line
documentation)
class.

Using
Code

1.
 Define
the
percent
cell
type
by
creating
an
instance
of
the
PercentCellType
('PercentCellType
Class'
in
the
on-line
documentation)
class.

2.
 Assign
the
percent
cell
type
to
a
cell.

Example

This
example
sets
a
cell
to
be
a
percent
cell.

C#
FarPoint.Web.Spread.PercentCellType pctcell = new
FarPoint.Web.Spread.PercentCellType();
FpSpread1.ActiveSheetView.Cells[1, 1].CellType = pctcell;

Spread for ASP.NET Developer’s Guide 261

Copyright © GrapeCity, Inc. All rights reserved.

VB
Dim pctcell As New FarPoint.Web.Spread.PercentCellType()
FpSpread1.ActiveSheetView.Cells(1, 1).CellType = pctcell

Using
the
Spread
Designer

1.
 In
the
work
area,
select
the
cell
or
cells
for
which
you
want
to
set
the
cell
type.
2.
 Select
the
Home
menu.
3.
 Select
the
SetCellType
icon
under
the
CellType
section.
4.
 Select
the
cell
type
and
any
other
cell
properties.
5.
 Select
OK
to
close
the
dialog.
6.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Setting a Regular Expression Cell

A
regular
expression
cell
is
a
cell
that
contains
a
text
box
that
restricts
the
way
data
is
entered
in
the
cell
to
valid
entries
defined
in
a
regular
expression.

A
default
error
message
is
displayed
if
the
user
types
an
invalid
value
and
tries
to
leave
the
cell.

For
details
on
the
properties
and
methods
for
this
cell
type,
refer
to
the
RegExpCellType
('RegExpCellType
Class'
in
the
on-line
documentation)
class.

The
Regular
Expression
cell
type
expects
the
data
in
the
cell
to
be
a
string.
If
you
are
working
with
other
data
types,
such
as
date-time,
then
you
need
to
get
the
date-time
input,
convert
it
to
a
string
for
the
cell
in
the
Format
override,
then
convert
the
data
back
to
a
date-time
in
the
Parse
override.

For
more
information
about
creating
regular
expressions,
refer
to
the
following
Microsoft
web
site
topics:

http://msdn.microsoft.com/en-us/library/hs600312(v=vs.110).aspx

http://msdn.microsoft.com/en-
us/library/system.web.ui.webcontrols.regularexpressionvalidator.validationexpression(v=vs.110).aspx

Using
Code

1.
 Define
the
regular
expression
cell
type
by
creating
an
instance
of
the
RegExpCellType
('RegExpCellType
Class'
in
the
on-line
documentation)
class.

2.
 Create
a
regular
expression.
3.
 Create
a
message
to
display
to
the
user
when
expression
is
not
valid.
4.
 Apply
the
regular
expression
cell
type
to
a
cell
or
range
of
cells.

Example

To
create
a
cell
that
restricts
user
input
to
match
a
regular
expression,
use
this
code.

C#

Spread for ASP.NET Developer’s Guide 262

Copyright © GrapeCity, Inc. All rights reserved.

http://msdn.microsoft.com/en-us/library/hs600312(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.regularexpressionvalidator.validationexpression(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.regularexpressionvalidator.validationexpression(v=vs.110).aspx

FarPoint.Web.Spread.RegExpCellType rgex = new FarPoint.Web.Spread.RegExpCellType();
rgex.ValidationExpression = "^\\d{3}-\\d{2}-\\d{4}$";
rgex.ErrorMessage = "SSN (ex, 123-45-6789)";
FpSpread1.ActiveSheetView.Cells[0, 0].CellType = rgex;

VB
Dim rgex As New FarPoint.Web.Spread.RegExpCellType()
rgex.ValidationExpression = "^\d{3}-\d{2}-\d{4}$"
rgex.ErrorMessage = "SSN (ex, 123-45-6789)"
FpSpread1.ActiveSheetView.Cells(0, 0).CellType = rgex

Using
the
Spread
Designer

1.
 In
the
work
area,
select
the
cell
or
cells
for
which
you
want
to
set
the
cell
type.
2.
 Select
the
Home
menu.
3.
 Select
the
SetCellType
icon
under
the
CellType
section.
4.
 Select
the
cell
type
and
any
other
cell
properties.
5.
 Select
OK
to
close
the
dialog.
6.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Setting a Text Cell

You
can
use
text
cells
to
restrict
users
to
entering
text
values
and
to
display
data
as
text.
You
can
also
specify
the
maximum
text
length
and
a
password
field.

The
following
image
displays
a
text
cell
with
a
password.

For
details
on
the
properties
and
methods
for
this
cell
type,
refer
to
the
TextCellType
('TextCellType
Class'
in
the
on-line
documentation)
class.

For
information
about
checking
a
regular
expression
in
a
cell,
refer
to
Setting
a
Regular
Expression
Cell.

If
you
anticipate
that
users
need
to
display
text
with
multiple
blank
spaces
between
consecutive
words,
you
should
set
the
AllowWrap
('AllowWrap
Property'
in
the
on-line
documentation)
property
to
false;
otherwise,
the
control
uses
spaces
for
formatting
that
Internet
Explorer
will
trim
as
extra
blank
spaces
(Internet
Explorer
allows
one
space
in
a
TD
element).
If
you
set
the
AllowWrap
('AllowWrap
Property'
in
the
on-line
documentation)
property
to
false,
the
control
uses
the
web
space
character
for
spaces,
and
the
spaces
are
not
trimmed
in
the
text.

Using
Code

1.
 Define
the
text
cell
type
by
creating
an
instance
of
the
TextCellType
('TextCellType
Class'
in
the
on-line
documentation)
class.

2.
 Set
properties
for
the
text
cell.
3.
 Apply
the
text
cell
type
to
a
cell
or
range
of
cells.

Example

Spread for ASP.NET Developer’s Guide 263

Copyright © GrapeCity, Inc. All rights reserved.

This
example
sets
a
password
and
a
maximum
length
for
the
cell.

C#
FarPoint.Web.Spread.TextCellType tcell = new FarPoint.Web.Spread.TextCellType();
tcell.Password = true;
tcell.MaxLength = 5;
FpSpread1.ActiveSheetView.Cells[0, 0].CellType = tcell;

VB
Dim tcell As New FarPoint.Web.Spread.TextCellType()
tcell.Password = True
tcell.MaxLength = 5
FpSpread1.ActiveSheetView.Cells(0, 0).CellType = tcell

Using
the
Spread
Designer

1.
 In
the
work
area,
select
the
cell
or
cells
for
which
you
want
to
set
the
cell
type.
2.
 Select
the
Home
menu.
3.
 Select
the
SetCellType
icon
under
the
CellType
section.
4.
 Select
the
cell
type
and
any
other
cell
properties.
5.
 Select
OK
to
close
the
dialog.
6.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Working with Graphical Cell Types

There
are
several
cell
types
in
the
spreadsheet
that
have
a
graphical
appearance.
The
following
tasks
show
how
to
create
them:

Setting
a
Button
Cell
Setting
a
Check
Box
Cell
Setting
a
Combo
Box
Cell
Setting
a
Hyperlink
Cell
Setting
an
Image
Cell
Setting
a
Label
Cell
Setting
a
List
Box
Cell
Setting
a
Multiple-Column
Combo
Box
Cell
Setting
a
Radio
Button
List
Cell
Setting
a
Tag
Cloud
Cell

For
information
on
the
various
cell
type
classes,
refer
to
the
cell
type
classes
in
the
Assembly
Reference
(on-line
documentation).

Setting a Button Cell

A
button
cell
displays
a
rectangular
button
(with
the
word
Button
by
default
unless
you
specify
otherwise)
that
behaves
like
a
button
control.
You
can
specify
the
text
for
that
button
or
you
can
substitute
the
entire
graphic
image.
You
can
also
specify
text
to
appear
underlined
and
blue,
as
a
hypertext
link
would
appear.
The
default
appearance
and
the
three
possible
alternatives
are
shown
in
this
figure.

Spread for ASP.NET Developer’s Guide 264

Copyright © GrapeCity, Inc. All rights reserved.

To
create
a
cell
that
acts
like
a
button,
follow
this
procedure.

For
details
on
the
properties
and
methods
for
this
cell
type,
refer
to
the
ButtonCellType
('ButtonCellType
Class'
in
the
on-line
documentation)
class
in
the
Assembly
Reference
(on-line
documentation).

Using
Code

1.
 Define
the
button
cell
type
by
creating
an
instance
of
the
ButtonCellType
class
and
specify
whether
it
is
push
button,
image
button,
or
link
button.

2.
 Specify
the
properties
of
the
button
by
setting
the
properties
of
that
instance.
Specify
the
text
in
the
button
or
an
image
to
use.

3.
 Specify
the
command
to
execute
when
the
button
is
selected.
4.
 Assign
the
type
to
a
cell
(or
cells).
5.
 Use
the
ButtonCommand
('ButtonCommand
Event'
in
the
on-line
documentation)
event
to
respond
to
the
selected
button.

Example

In
this
example,
create
a
button
with
text
in
the
first
cell,
a
button
with
a
stored
image
in
the
cell
diagonally
below
that,
and
a
button
with
link
text
in
the
one
diagonally
below
that.
These
are
identical
to
those
pictured
in
the
figure
(except
for
placement).
Use
the
ButtonCommand
('ButtonCommand
Event'
in
the
on-line
documentation)
event
to
respond
to
the
selected
button.

C#
FpSpread1.ActiveSheetView.Cells[0, 0].CellType = new
FarPoint.Web.Spread.ButtonCellType("OneCommand",
FarPoint.Web.Spread.ButtonType.PushButton, "Click");
FpSpread1.ActiveSheetView.Cells[1, 1].CellType = new
FarPoint.Web.Spread.ButtonCellType("OneCommand",
FarPoint.Web.Spread.ButtonType.ImageButton, "images/addtocart.gif");
FpSpread1.ActiveSheetView.Cells[2, 2].CellType = new
FarPoint.Web.Spread.ButtonCellType("OneCommand",
FarPoint.Web.Spread.ButtonType.LinkButton, "www.componentone.com");

protected void FpSpread1_ButtonCommand(object sender,

Spread for ASP.NET Developer’s Guide 265

Copyright © GrapeCity, Inc. All rights reserved.

FarPoint.Web.Spread.SpreadCommandEventArgs e)
 {
 System.Drawing.Point p;
 p = (System.Drawing.Point)e.CommandArgument;
 TextBox1.Text = "You clicked the button in row " + p.X + " , column " +
p.Y;
 }

VB
Dim btnc1 As New FarPoint.Web.Spread.ButtonCellType()
btnc1.CommandName = "OneCommand"
btnc1.ButtonType = FarPoint.Web.Spread.ButtonType.PushButton
btnc1.Text = "Click"
FpSpread1.ActiveSheetView.Cells(0, 0).CellType = btnc1

Dim btnc2 As New FarPoint.Web.Spread.ButtonCellType()
btnc2.CommandName = "OneCommand"
btnc2.ButtonType = FarPoint.Web.Spread.ButtonType.ImageButton
btnc2.ImageUrl = "addtocart.gif"
FpSpread1.ActiveSheetView.Cells(1, 1).CellType = btnc2

Dim btnc3 As New FarPoint.Web.Spread.ButtonCellType()
btnc3.CommandName = "OneCommand"
btnc3.ButtonType = FarPoint.Web.Spread.ButtonType.LinkButton
btnc3.Text = "www.componentone.com"
FpSpread1.ActiveSheetView.Cells(2, 2).CellType = btnc3

Private Sub FpSpread1ButtonCommand(ByVal sender As Object, ByVal e As
FarPoint.Web.Spread.SpreadCommandEventArgs) Handles FpSpread1.ButtonCommand
 TextBox1.Text = "You clicked the button in row " & e.CommandArgument.X & " , column
" & e.CommandArgument.Y
End Sub

Using
the
Spread
Designer

1.
 In
the
work
area,
select
the
cell
or
cells
for
which
you
want
to
set
the
cell
type.
2.
 Select
the
Home
menu.
3.
 Select
the
SetCellType
icon
under
the
CellType
section.
4.
 Select
the
cell
type
and
any
other
cell
properties.
5.
 Select
OK
to
close
the
dialog.
6.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Setting a Check Box Cell

A
check
box
cell
displays,
by
default,
a
small
check
box
that
can
have
one
of
two
states,
checked
or
unchecked.
You
can
customize
the
check
box
by
specifying
the
images
for
the
two
states.
You
can
also
specify
whether
the
value
is
Boolean
(true
or
false)
or
an
integer
(0
or
1).
Default
appearances
are
shown
here.

Spread for ASP.NET Developer’s Guide 266

Copyright © GrapeCity, Inc. All rights reserved.

To
create
a
cell
that
acts
like
a
check
box,
follow
this
procedure.

For
details
on
the
properties
and
methods
for
this
cell
type,
refer
to
the
CheckBoxCellType
('CheckBoxCellType
Class'
in
the
on-line
documentation)
class
in
the
Assembly
Reference
(on-line
documentation).

Using
Code

1.
 Define
the
check
box
cell
type
by
creating
an
instance
of
the
CheckBoxCellType
('CheckBoxCellType
Class'
in
the
on-line
documentation)
class.

2.
 Specify
the
properties
of
the
check
box
cell.
3.
 Enter
the
text
that
goes
along
with
each
check
box.
4.
 Specify
the
location
of
the
images
for
the
checked
and
unchecked
boxes
if
you
do
not
want
to
use
the
defaults.
5.
 Assign
the
check
box
cell
type
to
a
cell
(or
cells).

Example

This
example
creates
a
check
box
cell
with
custom
images
and
text.

C#
FarPoint.Web.Spread.CheckBoxCellType chkbx = new
FarPoint.Web.Spread.CheckBoxCellType();
chkbx.Text = "Spotted";
chkbx.CheckedImageUrl = "img/checked.gif";
chkbx.UncheckedImageUrl = "img/unchecked.gif";
FpSpread1.ActiveSheetView.Cells[0, 0].CellType = chkbx;

VB
Dim chkbx As New FarPoint.Web.Spread.CheckBoxCellType()
chkbx.Text = "Spotted"
chkbx.CheckedImageUrl = "img/checked.gif"
chkbx.UncheckedImageUrl = "img/unchecked.gif"
FpSpread1.ActiveSheetView.Cells(0, 0).CellType = chkbx

Using
the
Spread
Designer

1.
 In
the
work
area,
select
the
cell
or
cells
for
which
you
want
to
set
the
cell
type.

Spread for ASP.NET Developer’s Guide 267

Copyright © GrapeCity, Inc. All rights reserved.

2.
 Select
the
Home
menu.
3.
 Select
the
SetCellType
icon
under
the
CellType
section.
4.
 Select
the
cell
type
and
any
other
cell
properties.
5.
 Select
OK
to
close
the
dialog.
6.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Setting a Combo Box Cell

A
combo
box
cell
displays
an
editable
type
box
with
a
drop‑down
list
of
items
when
the
cell
is
selected.
The
user
may
either
type
in
the
editable
box
(which
searches
for
the
item
in
the
list)
or
select
an
item
from
the
drop‑down
list.
You
can
customize
the
appearance
of
the
drop‑down
list
as
well
as
its
behavior.

The
combo
box
cell
can
be
bound
to
data
by
setting
the
DataSource
('DataSource
Property'
in
the
on-line
documentation),
DataSourceID
('DataSourceID
Property'
in
the
on-line
documentation),
DataMember
('DataMember
Property'
in
the
on-line
documentation),
DataTextField
('DataTextField
Property'
in
the
on-line
documentation),
or
DataValueField
('DataValueField
Property'
in
the
on-line
documentation)
property.

To
create
a
cell
that
acts
like
a
combo
box,
follow
the
procedure
described
here.

For
details
on
the
properties
and
methods
for
this
cell
type,
refer
to
the
ComboBoxCellType
('ComboBoxCellType
Class'
in
the
on-line
documentation)
class
in
the
Assembly
Reference
(on-line
documentation).

Using
Code

1.
 Define
a
combo
box
cell
type
by
creating
an
instance
of
the
ComboBoxCellType
('ComboBoxCellType
Class'
in
the
on-line
documentation)
class.

2.
 Specify
the
items
in
the
list
that
appear
as
part
of
the
combo
box.
3.
 Assign
the
list
of
items
to
a
cell
(or
cells)
defined
as
a
combo
box
cell(s).
4.
 Specify
any
properties
for
that
cell
(or
cells).
5.
 Assign
the
combo
box
cell
type
to
a
cell
(or
cells).

Example

This
example
creates
a
string
array
and
adds
the
items
to
the
combo
cell.

C#
string[] cbstr;
cbstr = new String[] {"Jan", "Feb", "Mar", "Apr", "May", "Jun"};
FarPoint.Web.Spread.ComboBoxCellType cmbbx = new
FarPoint.Web.Spread.ComboBoxCellType(cbstr);
FpSpread1.ActiveSheetView.Cells[1, 1].CellType = cmbbx;

Spread for ASP.NET Developer’s Guide 268

Copyright © GrapeCity, Inc. All rights reserved.

VB
Dim cbstr As string()
cbstr = new String() {"Jan", "Feb", "Mar", "Apr", "May", "Jun"}
Dim cmbbx As New FarPoint.Web.Spread.ComboBoxCellType(cbstr)
FpSpread1.ActiveSheetView.Cells(1, 1).CellType = cmbbx

Using
Code

1.
 Define
a
combo
box
cell
type
by
creating
an
instance
of
the
ComboBoxCellType
('ComboBoxCellType
Class'
in
the
on-line
documentation)
class.

2.
 Specify
the
data
base
table
that
is
the
source
of
the
combo
box
drop-down
list.
3.
 Populate
a
combo
box
drop-down
list
with
values
from
a
database
table.
4.
 Specify
any
properties
for
that
cell
(or
cells).
5.
 Assign
the
combo
box
cell
type
to
a
cell
(or
cells).

Example

This
example
creates
a
dataset
and
adds
the
items
to
the
combo
cell.

C#
System.Data.DataSet ds = new System.Data.DataSet();
System.Data.DataTable name;
System.Data.DataTable city;
name = ds.Tables.Add("Customers");
name.Columns.AddRange(new System.Data.DataColumn[] {new
System.Data.DataColumn("LastName", typeof(string)), new
System.Data.DataColumn("FirstName", typeof(string)), new System.Data.DataColumn("ID",
typeof(Int32))});
name.Rows.Add(new object[] {"Fielding", "William", 0});
name.Rows.Add(new object[] {"Williams", "Arthur", 1});
name.Rows.Add(new object[] {"Zuchini", "Theodore", 2});
city = ds.Tables.Add("City/State");
city.Columns.AddRange(new System.Data.DataColumn[] {new System.Data.DataColumn("City",
typeof(string)), new System.Data.DataColumn("Owner", typeof(Int32)), new
System.Data.DataColumn("State", typeof(string))});
city.Rows.Add(new object[] {"Atlanta", 0, "Georgia"});
city.Rows.Add(new object[] {"Boston", 1, "Mass."});
city.Rows.Add(new object[] {"Tampa", 2, "Fla."});

FarPoint.Web.Spread.ComboBoxCellType c = new FarPoint.Web.Spread.ComboBoxCellType();
System.Data.DataTable dt;
System.Collections.ArrayList al = new
System.Collections.ArrayList(ds.Tables[0].Rows.Count);

dt = ds.Tables[0];
for (int i = 0; i < (dt.Rows.Count - 1); i++)
{
 al.Add(dt.Rows[i][0]);
}
string[] s = null;
s = (string[])al.ToArray(typeof(string));
c.Items = s;
c.ShowButton = true;
FpSpread1.Sheets[0].Cells[1,1].CellType = c;

Spread for ASP.NET Developer’s Guide 269

Copyright © GrapeCity, Inc. All rights reserved.

VB
Dim ds As New System.Data.DataSet
Dim name As System.Data.DataTable
Dim city As System.Data.DataTable
name = ds.Tables.Add("Customers")
name.Columns.AddRange(New System.Data.DataColumn() {New
System.Data.DataColumn("LastName", Type.GetType("System.String")), New
System.Data.DataColumn("FirstName", Type.GetType("System.String")), New
System.Data.DataColumn("ID", Type.GetType("System.Int32"))})
name.Rows.Add(New Object() {"Fielding", "William", 0})
name.Rows.Add(New Object() {"Williams", "Arthur", 1})
name.Rows.Add(New Object() {"Zuchini", "Theodore", 2})
city = ds.Tables.Add("City/State")
city.Columns.AddRange(New System.Data.DataColumn() {New System.Data.DataColumn("City",
Type.GetType("System.String")), New System.Data.DataColumn("Owner",
Type.GetType("System.Int32")), New System.Data.DataColumn("State",
Type.GetType("System.String"))})
city.Rows.Add(New Object() {"Atlanta", 0, "Georgia"})
city.Rows.Add(New Object() {"Boston", 1, "Mass."})
city.Rows.Add(New Object() {"Tampa", 2, "Fla."})
Dim c As New FarPoint.Web.Spread.ComboBoxCellType
Dim dt As System.Data.DataTable
Dim al As New ArrayList(ds.Tables(0).Rows.Count)
dt = ds.Tables(0)
Dim i As Int32
For i = 0 To dt.Rows.Count - 1
al.Add(dt.Rows(i)(0))
Next
Dim s As String()
s = al.ToArray(GetType(String))
c.Items = s
c.ShowButton = True
FpSpread1.Sheets(0).Cells(1, 1).CellType = c

Using
the
Spread
Designer

1.
 In
the
work
area,
select
the
cell
or
cells
for
which
you
want
to
set
the
cell
type.
2.
 Select
the
Home
menu.
3.
 Select
the
SetCellType
icon
under
the
CellType
section.
4.
 Select
the
cell
type
and
any
other
cell
properties.
5.
 Select
OK
to
close
the
dialog.
6.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Setting a Hyperlink Cell

A
hyperlink
cell
displays
either
text
or
an
image
that
can
serve
as
a
hyperlink
when
clicked.
The
destination
universal
resource
locator
(URL),
sometimes
called
the
address,
in
the
hyperlink
can
be
any
valid
URL,
such
as
www.yoursite.com
or
emailto:support@fpoint.com.
For
up-level
browsers
that
support
it,
a
text
tip
appears
with
the
destination
URL
when
the
cursor
pauses
over
the
hyperlink
cell.
For
down-level
browsers,
the
status
bar
displays
the
URL
when
the
cursor
is
over
the
link.

You
can
specify
the
target
in
which
to
display
the
destination,
for
example
a
new
window
(target
=
"_blank")
or
the
same
window
(target=
"_self").

Spread for ASP.NET Developer’s Guide 270

Copyright © GrapeCity, Inc. All rights reserved.

To
create
a
cell
that
acts
like
a
hyperlink,
follow
the
procedure
described
here.

For
details
on
the
properties
and
methods
for
this
cell
type,
refer
to
the
HyperLinkCellType
('HyperLinkCellType
Class'
in
the
on-line
documentation)
class
in
the
Assembly
Reference
(on-line
documentation).

Using
Code

1.
 Define
the
hyperlink
cell
type
by
creating
an
instance
of
the
HyperLinkCellType
('HyperLinkCellType
Class'
in
the
on-line
documentation)
class.

2.
 Choose
the
graphic,
if
you
are
making
a
hyperlink
with
a
graphical
image,
and
make
sure
the
graphic
file
is
in
the
correct
directory
and
is
the
correct
file
type
for
the
browser
to
display
it.

3.
 Set
the
size
of
the
cell,
if
you
want
it
to
match
the
size
of
a
graphic
to
be
used
in
the
hyperlink.
4.
 Specify
the
destination
URL
for
the
hyperlink.
You
can
optionally
set
the
target.
The
destination
URL
is
displayed

as
text
if
the
cell
does
not
use
a
graphic.
5.
 Assign
the
hyperlink
cell
to
a
cell
(or
cells).

Example

This
example
sets
the
size
of
the
cell
(by
column
and
row)
so
that
the
graphic
fits
in
it,
then
defines
the
location
of
the
graphic
to
use
as
a
hyperlink
button,
then
specifies
the
destination
URL
(and
has
it
opening
is
a
separate
window).

C#
FpSpread1.ActiveSheetView.Columns[1].Width = 145;
FpSpread1.ActiveSheetView.Rows[1].Height = 45;
string linkImage = @"images\fplogo.jpg";
string linkURL = "http://www.componentone.com";
string linkTarget = "_blank";
FarPoint.Web.Spread.HyperLinkCellType linkcell = new
FarPoint.Web.Spread.HyperLinkCellType();
linkcell.ImageUrl = linkImage;
linkcell.NavigateUrl = linkURL;
linkcell.Target = linkTarget;
FpSpread1.ActiveSheetView.Cells[1, 1].CellType = linkcell;

VB
FpSpread1.ActiveSheetView.Columns(1).Width = 145
FpSpread1.ActiveSheetView.Rows(1).Height = 45
Dim linkimage As String = "images\fplogo.jpg"
Dim linkURL As String = "http://www.componentone.com"
Dim linkTarget As String = "_blank"
Dim linkcell As New FarPoint.Web.Spread.HyperLinkCellType()
linkcell.ImageUrl = linkImage
linkcell.NavigateUrl = linkURL
linkcell.Target = linkTarget
FpSpread1.ActiveSheetView.Cells(1, 1).CellType = linkcell

Spread for ASP.NET Developer’s Guide 271

Copyright © GrapeCity, Inc. All rights reserved.

Using
the
Spread
Designer

1.
 In
the
work
area,
select
the
cell
or
cells
for
which
you
want
to
set
the
cell
type.
2.
 Select
the
Home
menu.
3.
 Select
the
SetCellType
icon
under
the
CellType
section.
4.
 Select
the
cell
type
and
any
other
cell
properties.
5.
 Select
OK
to
close
the
dialog.
6.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Setting an Image Cell

An
image
cell
can
contain
a
graphic
image
from
a
file.
The
cell
may
or
may
not
already
have
text
associated
with
it.
The
text
can
be
displayed
to
the
right
or
the
left
of
the
image
in
the
cell.

To
create
a
cell
that
contains
an
image,
follow
this
procedure.

For
details
on
the
properties
and
methods
for
this
cell
type,
refer
to
the
ImageCellType
('ImageCellType
Class'
in
the
on-line
documentation)
class
in
the
Assembly
Reference
(on-line
documentation).

Using
Code

1.
 Define
the
image
cell
type
by
creating
an
instance
of
the
ImageCellType
('ImageCellType
Class'
in
the
on-
line
documentation)
class.

2.
 Set
the
text
to
appear
to
the
left
or
right
of
the
image.
3.
 Assign
the
image
cell
to
a
cell
(or
cells).

Example

This
example
sets
the
column
and
width
of
the
cell
so
that
the
image
and
text
can
appear
together
alongside
each
other,
sets
the
cell
type
to
image
cell,
and
sets
the
defined
text
to
appear
to
the
left
of
the
graphic
image.

C#
FpSpread1.Sheets[0].Columns[1].Width = 240;
FpSpread1.Sheets[0].Rows[1].Height = 50;
FarPoint.Web.Spread.ImageCellType imagecell = new FarPoint.Web.Spread.ImageCellType();
imagecell.ImageUrl = "images\fplogo.jpg";
imagecell.TextOnRight = false; // display text to left of image
FpSpread1.ActiveSheetView.Cells[1,1].Text="This is the logo.";
FpSpread1.ActiveSheetView.Cells[1,1].CellType = imagecell;

VB
FpSpread1.Sheets(0).Columns(1).Width = 240

Spread for ASP.NET Developer’s Guide 272

Copyright © GrapeCity, Inc. All rights reserved.

FpSpread1.Sheets(0).Rows(1).Height = 50
Dim imagecell As New FarPoint.Web.Spread.ImageCellType()
imagecell.ImageUrl = "images\fplogo.jpg"
imagecell.TextOnRight = false
FpSpread1.ActiveSheetView.Cells(1,1).Text="This is the logo."
FpSpread1.ActiveSheetView.Cells(1,1).CellType = imagecell

Using
the
Spread
Designer

1.
 In
the
work
area,
select
the
cell
or
cells
for
which
you
want
to
set
the
cell
type.
2.
 Select
the
Home
menu.
3.
 Select
the
SetCellType
icon
under
the
CellType
section.
4.
 Select
the
cell
type
and
any
other
cell
properties.
5.
 Select
OK
to
close
the
dialog.
6.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Setting a Label Cell

A
label
cell
is
a
cell
that
cannot
be
edited
by
the
end
user
and
serves
as
a
label
for
other
cells.

To
create
a
cell
that
contains
a
label,
follow
this
procedure.

For
details
on
the
properties
and
methods
for
this
cell
type,
refer
to
the
LabelCellType
('LabelCellType
Class'
in
the
on-line
documentation)
class
in
the
Assembly
Reference
(on-line
documentation).

Using
Code

1.
 Define
the
label
cell
type
by
creating
an
instance
of
the
LabelCellType
('LabelCellType
Class'
in
the
on-
line
documentation)
class.

2.
 Format
and
specify
the
text
to
appear
as
the
label.
3.
 Assign
the
label
cell
type
to
a
cell.

Example

This
example
creates
a
label
cell
that
displays
a
currency
value.

C#
FarPoint.Web.Spread.LabelCellType lblcell = new FarPoint.Web.Spread.LabelCellType();
int i =100;
string fstring = i.ToString("C");
lblcell.FormatString = fstring;
FpSpread1.ActiveSheetView.Cells[0, 0].CellType = lblcell;
FpSpread1.ActiveSheetView.Cells[0, 0].Text = fstring;

VB
Dim lblcell As New FarPoint.Web.Spread.LabelCellType()
Dim i As Integer = 100
Dim fstring As String = i.ToString("C")

Spread for ASP.NET Developer’s Guide 273

Copyright © GrapeCity, Inc. All rights reserved.

lblcell.FormatString = fstring
FpSpread1.ActiveSheetView.Cells(0, 0).CellType = lblcell
FpSpread1.ActiveSheetView.Cells(0, 0).Text = fstring

Using
the
Spread
Designer

1.
 In
the
work
area,
select
the
cell
or
cells
for
which
you
want
to
set
the
cell
type.
2.
 Select
the
Home
menu.
3.
 Select
the
SetCellType
icon
under
the
CellType
section.
4.
 Select
the
cell
type
and
any
other
cell
properties.
5.
 Select
OK
to
close
the
dialog.
6.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Setting a List Box Cell

A
list
box
cell
is
a
cell
that
displays
a
list
of
items
when
selected.

To
create
a
cell
that
contains
a
list
box,
follow
this
procedure.

For
details
on
the
properties
and
methods
for
this
cell
type,
refer
to
the
ListBoxCellType
('ListBoxCellType
Class'
in
the
on-line
documentation)
class
in
the
Assembly
Reference
(on-line
documentation).

Using
Code

1.
 Define
the
list
box
cell
type
by
creating
an
instance
of
the
ListBoxCellType
('ListBoxCellType
Class'
in
the
on-line
documentation)
class.

2.
 Specify
the
list
of
items.
3.
 Assign
the
list
box
cell
type
to
a
cell.

Example

Display
the
list
of
several
elements.

C#
FarPoint.Web.Spread.ListBoxCellType lbcell = new FarPoint.Web.Spread.ListBoxCellType();
lbcell.Items = new String[] {"Carbon", "Oxygen", "Hydrogen"};
lbcell.SelectedBackColor = System.Drawing.Color.Yellow;
lbcell.SelectedForeColor = System.Drawing.Color.DarkBlue;
FpSpread1.ActiveSheetView.Cells[1, 1].CellType = lbcell;

VB
Dim lbcell As New FarPoint.Web.Spread.ListBoxCellType()
lbcell.Items = new String() {"Carbon", "Oxygen", "Hydrogen"}
lbcell.SelectedBackColor = System.Drawing.Color.Yellow
lbcell.SelectedForeColor = System.Drawing.Color.DarkBlue

Spread for ASP.NET Developer’s Guide 274

Copyright © GrapeCity, Inc. All rights reserved.

FpSpread1.ActiveSheetView.Cells(1, 1).CellType = lbcell

Using
the
Spread
Designer

1.
 In
the
work
area,
select
the
cell
or
cells
for
which
you
want
to
set
the
cell
type.
2.
 Select
the
Home
menu.
3.
 Select
the
SetCellType
icon
under
the
CellType
section.
4.
 Select
the
cell
type
and
any
other
cell
properties.
5.
 Select
OK
to
close
the
dialog.
6.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Setting a Multiple-Column Combo Box Cell

You
can
create
a
combo
box
cell
with
multiple
columns
in
the
drop-down
list.
You
can
provide
a
drop-down
list
and
allow
the
user
to
choose
from
a
displayed
list.

You
specify
the
list
of
items
by
binding
the
cell.
You
can
also
choose
which
column
is
displayed
in
the
edit
area
of
the
cell
with
the
ColumnEditName
('ColumnEditName
Property'
in
the
on-line
documentation)
property.

The
multi-column
combo
cell
can
be
bound
to
data
by
setting
the
DataSource
('DataSource
Property'
in
the
on-
line
documentation),
DataSourceID
('DataSourceID
Property'
in
the
on-line
documentation),
DataMember
('DataMember
Property'
in
the
on-line
documentation),
DataColumn
('DataColumn
Property'
in
the
on-line
documentation),
or
DataColumnName
('DataColumnName
Property'
in
the
on-
line
documentation)
property.

For
details
on
the
properties
and
methods
for
the
multi-column
combo
box
cell
type,
refer
to
the
MultiColumnComboBoxCellType
('MultiColumnComboBoxCellType
Class'
in
the
on-line
documentation)
class
in
the
Assembly
Reference
(on-line
documentation).

For
details
on
the
combo
cell
type,
refer
to
the
ComboBoxCellType
('ComboBoxCellType
Class'
in
the
on-line
documentation)
class
in
the
Assembly
Reference
(on-line
documentation).

Using
Code

1.
 Define
the
multi-column
combo
cell
type
by
creating
an
instance
of
the
MultiColumnComboBoxCellType
('MultiColumnComboBoxCellType
Class'
in
the
on-line
documentation)
class.

2.
 Create
a
dataset.
3.
 Specify
the
list
of
options
by
binding.

Spread for ASP.NET Developer’s Guide 275

Copyright © GrapeCity, Inc. All rights reserved.

4.
 Set
the
display
properties
such
as
the
ShowButton
('ShowButton
Property'
in
the
on-line
documentation)
property.

5.
 Assign
the
cell
type
to
a
specific
cell.

Example

Display
a
multi-column
combo
cell.

C#
string conStr = "Provider=Microsoft.JET.OLEDB.4.0;data source=
C:\\common\\Patients2000.mdb";
string sqlStr = "SELECT * FROM Patients";
System.Data.OleDb.OleDbConnection conn = new System.Data.OleDb.OleDbConnection(conStr);
System.Data.DataSet ds = new System.Data.DataSet();
System.Data.OleDb.OleDbDataAdapter da = new System.Data.OleDb.OleDbDataAdapter(sqlStr,
conn); da.Fill(ds);
FarPoint.Web.Spread.MultiColumnComboBoxCellType mcombo = new
FarPoint.Web.Spread.MultiColumnComboBoxCellType();
mcombo.DataSource = ds;
mcombo.DataColumnName = "Patients";
mcombo.ShowButton = true;
fpSpread1.Sheets[0].Cells[0, 0].CellType = mcombo;

VB
Dim conStr As String = "Provider=Microsoft.JET.OLEDB.4.0;data source=
C:\Common\Patients2000.mdb"
Dim sqlStr As String = "SELECT * FROM Patients"
Dim conn As New System.Data.OleDb.OleDbConnection(conStr)
Dim ds As System.Data.DataSet = New System.Data.DataSet()
Dim da As New System.Data.OleDb.OleDbDataAdapter(sqlStr, conn)
da.Fill(ds)
Dim mcombo As New FarPoint.Web.Spread.MultiColumnComboBoxCellType()
mcombo.DataSource = ds
mcombo.DataColumnName = "Patients"
mcombo.ShowButton = True
FpSpread1.Sheets(0).Cells(0, 0).CellType = mcombo

Using
the
Spread
Designer

1.
 In
the
work
area,
select
the
cell
or
cells
for
which
you
want
to
set
the
cell
type.
2.
 Select
the
Home
menu.
3.
 Select
the
SetCellType
icon
under
the
CellType
section.
4.
 Select
the
cell
type
and
any
other
cell
properties.
5.
 Select
OK
to
close
the
dialog.
6.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Setting a Radio Button List Cell

A
radio
button
cell
is
a
cell
that
displays
a
radio
button
(or
option
button)
list.
You
can
specify
the
list
of
options
and
specify
whether
to
display
the
list
horizontally
or
vertically.
By
default,
the
list
displays
horizontally
in
the
cell.
To
display
the
list
vertically,
set
the
RepeatDirection
('RepeatDirection
Property'
in
the
on-line
documentation)
property
to
Vertical.
Use
the
Values
('Values
Property'
in
the
on-line
documentation)
property
to
add
the
list
of
options.

Spread for ASP.NET Developer’s Guide 276

Copyright © GrapeCity, Inc. All rights reserved.

The
following
figures
display
the
horizontal
and
vertical
directions.

Spread
does
not
support
radio
buttons
without
labels;
each
radio
button
must
have
a
label.

To
create
a
cell
that
displays
a
radio
button
list,
follow
the
procedure
described
below.

For
details
on
the
properties
and
methods
for
this
cell
type,
refer
to
the
RadioButtonListCellType
('RadioButtonListCellType
Class'
in
the
on-line
documentation)
class
in
the
Assembly
Reference
(on-line
documentation).

Using
Code

1.
 Set
the
size
of
the
cell
(or
column)
to
fit
the
list
of
options.
2.
 Define
the
radio
button
list
cell
type
by
creating
an
instance
of
the
RadioButtonListCellType
('RadioButtonListCellType
Class'
in
the
on-line
documentation)
class.

3.
 Specify
the
list
of
options.
4.
 Set
the
display
properties
of
the
cell.
5.
 Assign
the
radio
button
list
cell
type
to
a
specific
cell.

Example

Display
the
vertical
list
of
colors
as
radio
buttons.

C#
FpSpread1.ActiveSheetView.Columns[1].Width = 250;
string[] rbval;
string[] rbstr;
rbstr = new String[] {"Red", "Green", "Blue"};
rbval = new String[] {"R", "G", "B"};
FarPoint.Web.Spread.RadioButtonListCellType rblct = new
FarPoint.Web.Spread.RadioButtonListCellType(rbstr);
rblct.Values = rbval;
rblct.RepeatDirection = RepeatDirection.Vertical;
FpSpread1.ActiveSheetView.Cells[1, 1].CellType = rblct;

VB
FpSpread1.ActiveSheetView.Columns(1).Width = 250
Dim rbstr As String()
Dim rbval As String()
rbstr = New String() {"Red", "Green", "Blue"}
rbval = New String() {"R", "G", "B"}

Spread for ASP.NET Developer’s Guide 277

Copyright © GrapeCity, Inc. All rights reserved.

Dim rblct As New FarPoint.Web.Spread.RadioButtonListCellType(rbstr)
rblct.Values = rbval
rblct.RepeatDirection = RepeatDirection.Vertical
FpSpread1.ActiveSheetView.Cells(1, 1).CellType = rblct

Using
the
Spread
Designer

1.
 In
the
work
area,
select
the
cell
or
cells
for
which
you
want
to
set
the
cell
type.
2.
 Select
the
Home
menu.
3.
 Select
the
SetCellType
icon
under
the
CellType
section.
4.
 Select
the
cell
type
and
any
other
cell
properties.
5.
 Select
OK
to
close
the
dialog.
6.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Setting a Tag Cloud Cell

A
tag
cloud
cell
allows
you
to
display
a
box
or
cloud
of
text
tags,
a
weighted
list
of
linked
items.
In
the
figure
below
several
strings
(Web
site
names)
are
listed
in
a
tag
cloud
in
the
order
of
their
weights.
The
color
of
the
text
is
also
an
indication
of
their
weights.
Notice
that
they
have
corresponding
link
URLs.

A
text
tip
appears
with
the
HTML
anchor
for
the
cloud
item
when
the
cursor
pauses
over
the
cell
as
displayed
in
the
above
image.
You
can
specify
an
additional
text
tip
with
the
Title
('Title
Property'
in
the
on-line
documentation)
property.

You
can
customize
how
many
tags
are
displayed,
their
order,
their
font
and
color,
and
other
aspects
of
the
tag
cloud.
The
size
of
the
displayed
item
depends
on
the
weight
of
the
item.
The
tag
cloud
cell
can
also
be
bound
to
a
data
source.

For
details
on
the
properties
and
methods
for
this
cell
type,
refer
to
the
TagCloudCellType
('TagCloudCellType
Class'
in
the
on-line
documentation)
class.

You
can
also
use
the
TagCloudItem
class
to
specify
properties
for
the
tag
cloud
cell.

Using
Code

Spread for ASP.NET Developer’s Guide 278

Copyright © GrapeCity, Inc. All rights reserved.

To
set
up
a
tag
cloud
cell
type,
simply
define
the
tags
and
weights
and
assign
the
tag
cloud
cell
type
to
a
particular
cell.

Example

This
example
puts
items
in
the
cell,
sets
the
rank
colors
and
weights,
and
creates
links
for
the
items.

C#
// Place this code in ASPX.Form load:
string[] text = { "GrapeCity", "Blog", "Ning", "Fusion", "Alliance", "Google",
"Microsoft", "Support" };
string[] weight = { "290", "50", "41", "56", "78", "170", "208", "140" };
string[] href = { "http://www.componentone.com", "http://www.FarPointSpread.com/Blog",
"http://www.ning.com", "http://labs.developerfusion.co.uk", "http://aspalliance.com/",
"http://www.google.com", "http://www.microsoft.com", "http://www.clubFarPoint.com" };
string[] rc = { "Red", "Orange", "Black", "Black", "Black", "Blue", "Green" };

FarPoint.Web.Spread.TagCloudCellType tagger = new
FarPoint.Web.Spread.TagCloudCellType();
tagger.BackColor = System.Drawing.Color.Empty;
tagger.RankingColors = rc;
tagger.HoverColor = "Yellow";
tagger.DisplayCount = 8;
tagger.SortOrder = FarPoint.Web.Spread.SortOrder.WeightDescending;

FpSpread1.Sheets[0].Cells[0, 0].CellType = tagger;
FpSpread1.Sheets[0].Cells[0, 0].Value =
FarPoint.Web.Spread.TagCloudCellType.ConvertToTagCloudItems(text, weight, href);
FpSpread1.Sheets[0].Columns[0, 0].Width = 200;
FpSpread1.Sheets[0].Rows[0, 0].Height = 120;

VB
' Place this code in ASPX.Form load:
Dim text As String() = { "GrapeCity", "Blog", "Ning", "Fusion", "Alliance", "Google",
"Microsoft", "Support" }
Dim weight As String() = { "290", "50", "41", "56", "78", "170", "208", "140" }
Dim href As String() = { "http://www.componentone.com",
"http://www.FarPointSpread.com/Blog", "http://www.ning.com",
"http://labs.developerfusion.co.uk", "http://aspalliance.com/",
"http://www.google.com", "http://www.microsoft.com", "http://www.clubFarPoint.com" }
Dim rc As String() = {"Red", "Orange", "Black", "Black", "Black", "Blue", "Green"}

Dim tagger As New FarPoint.Web.Spread.TagCloudCellType()
tagger.BackColor = System.Drawing.Color.Empty
tagger.RankingColors = rc
tagger.HoverColor = "Yellow"
tagger.DisplayCount = 8
tagger.SortOrder = FarPoint.Web.Spread.SortOrder.WeightDescending

FpSpread1.Cells(0, 0).CellType = tagger
FpSpread1.Cells(0, 0).Value =
FarPoint.Web.Spread.TagCloudCellType.ConvertToTagCloudItems(text, weight, href)
FpSpread1.Sheets(0).Columns(0, 0).Width = 200
FpSpread1.Sheets(0).Rows(0, 0).Height = 120

Using
the
Spread
Designer

Spread for ASP.NET Developer’s Guide 279

Copyright © GrapeCity, Inc. All rights reserved.

1.
 In
the
work
area,
select
the
cell
or
cells
for
which
you
want
to
set
the
cell
type.
2.
 Select
the
Home
menu.
3.
 Select
the
SetCellType
icon
under
the
CellType
section.
4.
 Select
the
cell
type
and
any
other
cell
properties.
5.
 Select
OK
to
close
the
dialog.
6.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Working with ASP.NET AJAX Extender Cell Types

There
are
several
cell
types
that
are
made
available
by
using
ASP.NET
AJAX.
The
following
tasks
show
how
to
create
them:

Setting
an
Automatic-Completion
Cell
Setting
a
Calendar
Cell
Setting
a
Combo
Box
Cell
Setting
a
Filtered
Text
Cell
Setting
a
Masked
Edit
Cell
Setting
a
Mutually
Exclusive
Check
Box
Cell
Setting
a
Numeric
Spin
Cell
Setting
a
Rating
Cell
Setting
a
Slider
Cell
Setting
a
Slide
Show
Cell
Setting
a
Text
Box
with
Watermark
Cell

These
cell
types
are
dependent
on
the
extenders
of
the
Microsoft
ASP.NET
AJAX
Control
Toolkit.
The
appearance
and
behavior
of
these
cell
types
are
controlled
by
the
AJAX
Control
Toolkit.
For
more
information,
see
the
Microsoft
AJAX
site
or
https://ajaxcontroltoolkit.codeplex.com/.

All
controls
in
the
AJAX
Control
Toolkit
can
add
or
attach
client
behaviors
to
a
target
control.
The
target
control
is
exposed
as
the
Editor
property
of
the
extender
cell
type
in
Spread.

Multiple
behaviors
can
be
attached
to
the
same
target
control,
which
is
also
supported
in
the
AJAX
extender
implementation
of
Spread.
For
example,
we
can
add
a
MaskedEditExtender
to
DateCalendarCellType.
As
a
result,
this
cell
type
combines
two
extenders.

Unlike
the
other
cell
types
in
Spread,
there
are
no
restrictions
and
validation
of
any
of
the
extenders
properties,
so
use
this
cell
type
carefully
and
provide
validation
as
needed.

Be
aware
of
these
limitations
to
these
AJAX
cell
types.

The
AJAX
Control
Toolkit
is
still
under
development,
so
some
of
the
control
properties
don’t
behave
correctly
as
designed.
When
users
export
these
cell
types
to
PDF
or
Excel
files,
only
the
cell
type
value
is
exported.

Follow
these
guidelines
for
using
AJAX
extenders
in
a
development
environment.

A
ScriptManager
must
be
placed
on
the
Page
in
order
to
use
AJAX
extenders.
If
you
use
the
.NET
2.0
framework
version
of
the
FarPoint.Web.Spread.Extender.dll
assembly
in
the
.NET
3.5
framework,
and
you
wish
to
use
the
3.5
version
of
the
AJAXControlToolkit.dll
assembly,
you
would
need
to
add
binding
redirect
code
to
the
web.config
file
(See
the
code
below).
To
set
a
binding
redirect,
code
similar
to
the
following
would
need
to
be
added
to
the
Web
config
file
(the
version
number
should
match
the
actual
version
number
of
the
assembly).

Code
<runtime> <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<dependentAssembly> <assemblyIdentity name="AjaxControlToolkit"

Spread for ASP.NET Developer’s Guide 280

Copyright © GrapeCity, Inc. All rights reserved.

http://ajax.asp.net/ajaxtoolkit/
http://ajax.asp.net/ajaxtoolkit/
https://ajaxcontroltoolkit.codeplex.com/

publicKeyToken="28f01b0e84b6d53e"/> <bindingRedirect
oldVersion="1.0.0.0-1.1.0.0" newVersion="3.0.20229.20843"/>
</dependentAssembly> </assemblyBinding> </runtime>

For
more
information
on
AJAX
support,
refer
to
Working
with
AJAX.

For
information
on
the
various
cell
type
classes,
refer
to
the
cell
type
classes
in
the
Assembly
Reference
(on-line
documentation).

Setting an Automatic-Completion Cell

You
can
provide
an
automatic-completion
edit
box
with
the
AutoCompleteCellType
('AutoCompleteCellType
Class'
in
the
on-line
documentation)
class
that
attempts
to
complete
the
typed
entry.

This
cell
type
is
dependent
on
the
AutoComplete
extender
of
the
Microsoft
ASP.NET
AJAX
Control
Toolkit.
The
appearance
and
behavior
of
this
cell
type
is
controlled
by
the
AJAX
Control
Toolkit.
For
more
information,
see
the
Microsoft
AJAX
site.

All
controls
in
the
AJAX
Control
Toolkit
can
add
or
attach
client
behaviors
to
a
target
control.
The
target
control
is
exposed
as
the
Editor
property
of
the
extender
cell
type
in
Spread.

Unlike
the
other
cell
types
in
Spread,
there
are
no
restrictions
and
validation
of
any
of
the
Extenders
properties,
so
use
this
cell
type
carefully
and
provide
validation
as
needed.

For
a
list
of
limitations
with
this
AJAX
cell
type,
refer
to
Working
with
ASP.NET
AJAX
Extender
Cell
Types.

For
details
on
the
properties
and
methods
for
this
cell
type,
refer
to
the
AutoCompleteCellType
('AutoCompleteCellType
Class'
in
the
on-line
documentation)
class.

Setting a Calendar Cell

You
can
provide
a
date-selection
box
that
has
a
drop-down
calendar
with
the
DateCalendarCellType
('DateCalendarCellType
Class'
in
the
on-line
documentation)
class.

This
cell
type
is
dependent
on
the
Calendar
extender
of
the
Microsoft
ASP.NET
AJAX
Control
Toolkit.
The
appearance
and
behavior
of
this
cell
type
is
controlled
by
the
AJAX
Control
Toolkit.
For
more
information,
see
the
Microsoft
AJAX
site.

All
controls
in
the
AJAX
Control
Toolkit
can
add
or
attach
client
behaviors
to
a
target
control.
The
target
control
is
exposed
as
the
Editor
property
of
the
extender
cell
type
in
Spread.

Unlike
the
other
cell
types
in
Spread,
there
are
no
restrictions
and
validation
of
any
of
the
Extenders
properties,
so
use
this
cell
type
carefully
and
provide
validation
as
needed.

Spread for ASP.NET Developer’s Guide 281

Copyright © GrapeCity, Inc. All rights reserved.

http://ajax.asp.net/ajaxtoolkit/
http://ajax.asp.net/ajaxtoolkit/
http://ajax.asp.net/ajaxtoolkit/

For
a
list
of
limitations
with
this
AJAX
cell
type,
refer
to
Working
with
ASP.NET
AJAX
Extender
Cell
Types.

For
details
on
the
properties
and
methods
for
this
cell
type,
refer
to
the
DateCalendarCellType
('DateCalendarCellType
Class'
in
the
on-line
documentation)
class.

Setting a Combo Box Cell

You
can
provide
a
combo
box
that
has
a
drop-down
list
with
the
AjaxComboBoxCellType
('AjaxComboBoxCellType
Class'
in
the
on-line
documentation)
class.

This
cell
type
is
dependent
on
the
combo
extender
of
the
Microsoft
ASP.NET
AJAX
Control
Toolkit.
The
appearance
and
behavior
of
this
cell
type
is
controlled
by
the
AJAX
Control
Toolkit.
For
more
information,
see
the
Microsoft
AJAX
site.
This
celltype
requires
version
3.0.3.512
or
later
of
the
Ajax
Toolkit.

All
controls
in
the
AJAX
Control
Toolkit
can
add
or
attach
client
behaviors
to
a
target
control.
The
target
control
is
exposed
as
the
Editor
property
of
the
extender
cell
type
in
Spread.

Unlike
the
other
cell
types
in
Spread,
there
are
no
restrictions
and
validation
of
any
of
the
Extenders
properties,
so
use
this
cell
type
carefully
and
provide
validation
as
needed.

For
a
list
of
limitations
with
this
AJAX
cell
type,
refer
to
Working
with
ASP.NET
AJAX
Extender
Cell
Types.

For
details
on
the
properties
and
methods
for
this
cell
type,
refer
to
the
AjaxComboBoxCellType
('AjaxComboBoxCellType
Class'
in
the
on-line
documentation)
class.

Setting a Filtered Text Cell

You
can
provide
a
filtered
text
box
with
the
FilteredTextCellType
('FilteredTextCellType
Class'
in
the
on-line
documentation)
class.
This
cell
type
allows
you
to
type
certain
specified
characters
without
a
mask.

This
cell
type
is
dependent
on
the
FilteredText
extender
of
the
Microsoft
ASP.NET
AJAX
Control
Toolkit.
The
appearance
and
behavior
of
this
cell
type
is
controlled
by
the
AJAX
Control
Toolkit.
For
more
information,
see
the
Microsoft
AJAX
site.

All
controls
in
the
AJAX
Control
Toolkit
can
add
or
attach
client
behaviors
to
a
target
control.
The
target
control
is
exposed
as
the
Editor
property
of
the
extender
cell
type
in
Spread.

Unlike
the
other
cell
types
in
Spread,
there
are
no
restrictions
and
validation
of
any
of
the
Extenders
properties,
so
use
this
cell
type
carefully
and
provide
validation
as
needed.

For
a
list
of
limitations
with
this
AJAX
cell
type,
refer
to
Working
with
ASP.NET
AJAX
Extender
Cell
Types.

For
details
on
the
properties
and
methods
for
this
cell
type,
refer
to
the
FilteredTextCellType
('FilteredTextCellType
Class'
in
the
on-line
documentation)
class.

Setting a Masked Edit Cell

You
can
provide
a
masked
edit
cell
with
the
MaskedEditCellType
('MaskedEditCellType
Class'
in
the
on-line
documentation)
class.
This
cell
type
allows
you
to
type
certain
specified
characters
using
a
mask.

This
cell
type
is
dependent
on
the
MaskedEdit
extender
of
the
Microsoft
ASP.NET
AJAX
Control
Toolkit.
The
appearance
and
behavior
of
this
cell
type
is
controlled
by
the
AJAX
Control
Toolkit.
For
more
information,
see
the
Microsoft
AJAX
site.

Spread for ASP.NET Developer’s Guide 282

Copyright © GrapeCity, Inc. All rights reserved.

http://ajax.asp.net/ajaxtoolkit/
http://ajax.asp.net/ajaxtoolkit/
http://ajax.asp.net/ajaxtoolkit/

All
controls
in
the
AJAX
Control
Toolkit
can
add
or
attach
client
behaviors
to
a
target
control.
The
target
control
is
exposed
as
the
Editor
property
of
the
extender
cell
type
in
Spread.

Unlike
the
other
cell
types
in
Spread,
there
are
no
restrictions
and
validation
of
any
of
the
Extenders
properties,
so
use
this
cell
type
carefully
and
provide
validation
as
needed.

For
a
list
of
limitations
with
this
AJAX
cell
type,
refer
to
Working
with
ASP.NET
AJAX
Extender
Cell
Types.

For
details
on
the
properties
and
methods
for
this
cell
type,
refer
to
the
MaskedEditCellType
('MaskedEditCellType
Class'
in
the
on-line
documentation)
class.

Setting a Mutually Exclusive Check Box Cell

You
can
provide
a
series
of
mutually
exclusive
check
box
cells
with
the
MutuallyExclusiveCheckBoxCellType
('MutuallyExclusiveCheckBoxCellType
Class'
in
the
on-line
documentation)
class.
This
cell
type
allows
you
to
have
a
group
of
check
box
cells
where
the
user
can
only
check
one
at
a
time.

This
cell
type
is
dependent
on
the
MutuallyExclusiveCheckBox
extender
of
the
Microsoft
ASP.NET
AJAX
Control
Toolkit.
The
appearance
and
behavior
of
this
cell
type
is
controlled
by
the
AJAX
Control
Toolkit.
For
more
information,
see
the
Microsoft
AJAX
site.

All
controls
in
the
AJAX
Control
Toolkit
can
add
or
attach
client
behaviors
to
a
target
control.
The
target
control
is
exposed
as
the
Editor
property
of
the
extender
cell
type
in
Spread.

Unlike
the
other
cell
types
in
Spread,
there
are
no
restrictions
and
validation
of
any
of
the
Extenders
properties,
so
use
this
cell
type
carefully
and
provide
validation
as
needed.

For
a
list
of
limitations
with
this
AJAX
cell
type,
refer
to
Working
with
ASP.NET
AJAX
Extender
Cell
Types.

For
details
on
the
properties
and
methods
for
this
cell
type,
refer
to
the
MutuallyExclusiveCheckBoxCellType
('MutuallyExclusiveCheckBoxCellType
Class'
in
the
on-line
documentation)
class.

Setting a Numeric Spin Cell

You
can
provide
a
numeric
cell
with
up-down
spin
buttons
with
the
NumericUpDownCellType
('NumericUpDownCellType
Class'
in
the
on-line
documentation)
class.

This
cell
type
is
dependent
on
the
NumericUpDown
extender
of
the
Microsoft
ASP.NET
AJAX
Control
Toolkit.
The
appearance
and
behavior
of
this
cell
type
is
controlled
by
the
AJAX
Control
Toolkit.
For
more
information,
see
the
Microsoft
AJAX
site.

All
controls
in
the
AJAX
Control
Toolkit
can
add
or
attach
client
behaviors
to
a
target
control.
The
target
control
is
exposed
as
the
Editor
property
of
the
extender
cell
type
in
Spread.

Unlike
the
other
cell
types
in
Spread,
there
are
no
restrictions
and
validation
of
any
of
the
Extenders
properties,
so
use
this
cell
type
carefully
and
provide
validation
as
needed.

For
a
list
of
limitations
with
this
AJAX
cell
type,
refer
to
Working
with
ASP.NET
AJAX
Extender
Cell
Types.

For
details
on
the
properties
and
methods
for
this
cell
type,
refer
to
the
NumericUpDownCellType
('NumericUpDownCellType
Class'
in
the
on-line
documentation)
class.

Setting a Rating Cell

You
can
provide
a
rating
cell
that
displays
the
stars
(or
other
icon)
with
the
RatingCellType
('RatingCellType
Class'
in
the
on-line
documentation)
class.

Spread for ASP.NET Developer’s Guide 283

Copyright © GrapeCity, Inc. All rights reserved.

http://ajax.asp.net/ajaxtoolkit/
http://ajax.asp.net/ajaxtoolkit/

This
cell
type
is
dependent
on
the
Rating
extender
of
the
Microsoft
ASP.NET
AJAX
Control
Toolkit.
The
appearance
and
behavior
of
this
cell
type
is
controlled
by
the
AJAX
Control
Toolkit.
For
more
information,
see
the
Microsoft
AJAX
site.

All
controls
in
the
AJAX
Control
Toolkit
can
add
or
attach
client
behaviors
to
a
target
control.
The
target
control
is
exposed
as
the
Editor
property
of
the
extender
cell
type
in
Spread.

Unlike
the
other
cell
types
in
Spread,
there
are
no
restrictions
and
validation
of
any
of
the
Extenders
properties,
so
use
this
cell
type
carefully
and
provide
validation
as
needed.

For
a
list
of
limitations
with
this
AJAX
cell
type,
refer
to
Working
with
ASP.NET
AJAX
Extender
Cell
Types.

For
details
on
the
properties
and
methods
for
this
cell
type,
refer
to
the
RatingCellType
('RatingCellType
Class'
in
the
on-line
documentation)
class.

Setting a Slider Cell

You
can
provide
a
slider
control
cell
with
the
SliderCellType
('SliderCellType
Class'
in
the
on-line
documentation)
class.

This
cell
type
is
dependent
on
the
Slider
extender
of
the
Microsoft
ASP.NET
AJAX
Control
Toolkit.
The
appearance
and
behavior
of
this
cell
type
is
controlled
by
the
AJAX
Control
Toolkit.
For
more
information,
see
the
Microsoft
AJAX
site.

All
controls
in
the
AJAX
Control
Toolkit
can
add
or
attach
client
behaviors
to
a
target
control.
The
target
control
is
exposed
as
the
Editor
property
of
the
extender
cell
type
in
Spread.

Unlike
the
other
cell
types
in
Spread,
there
are
no
restrictions
and
validation
of
any
of
the
Extenders
properties,
so
use
this
cell
type
carefully
and
provide
validation
as
needed.

For
a
list
of
limitations
with
this
AJAX
cell
type,
refer
to
Working
with
ASP.NET
AJAX
Extender
Cell
Types.

For
details
on
the
properties
and
methods
for
this
cell
type,
refer
to
the
SliderCellType
('SliderCellType
Class'
in
the
on-line
documentation)
class.

Setting a Slide Show Cell

You
can
provide
a
cell
that
displays
a
slide-show
with
the
SlideShowCellType
('SlideShowCellType
Class'
in
the
on-line
documentation)
class.

This
cell
type
is
dependent
on
the
SlideShow
extender
of
the
Microsoft
ASP.NET
AJAX
Control
Toolkit.
The
appearance
and
behavior
of
this
cell
type
is
controlled
by
the
AJAX
Control
Toolkit.
For
more
information,
see
the
Microsoft
AJAX
site.

All
controls
in
the
AJAX
Control
Toolkit
can
add
or
attach
client
behaviors
to
a
target
control.
The
target
control
is
exposed
as
the
Editor
property
of
the
extender
cell
type
in
Spread.

Unlike
the
other
cell
types
in
Spread,
there
are
no
restrictions
and
validation
of
any
of
the
Extenders
properties,
so
use
this
cell
type
carefully
and
provide
validation
as
needed.

For
a
list
of
limitations
with
this
AJAX
cell
type,
refer
to
Working
with
ASP.NET
AJAX
Extender
Cell
Types.

For
details
on
the
properties
and
methods
for
this
cell
type,
refer
to
the
SlideShowCellType
('SlideShowCellType
Class'
in
the
on-line
documentation)
class.

Spread for ASP.NET Developer’s Guide 284

Copyright © GrapeCity, Inc. All rights reserved.

http://ajax.asp.net/ajaxtoolkit/
http://ajax.asp.net/ajaxtoolkit/
http://ajax.asp.net/ajaxtoolkit/
http://ajax.asp.net/ajaxtoolkit/

Setting a Text Box with Watermark Cell

You
can
provide
a
text
box
cell
that
displays
a
watermark
with
the
TextBoxWatermarkCellType
('TextBoxWatermarkCellType
Class'
in
the
on-line
documentation)
class.

Without
focus
(watermark
displayed) Edit
mode
(watermark
not
displayed)

This
cell
type
is
dependent
on
the
TextBoxWatermark
extender
of
the
Microsoft
ASP.NET
AJAX
Control
Toolkit.
The
appearance
and
behavior
of
this
cell
type
is
controlled
by
the
AJAX
Control
Toolkit.
For
more
information,
see
the
Microsoft
AJAX
site.

All
controls
in
the
AJAX
Control
Toolkit
can
add
or
attach
client
behaviors
to
a
target
control.
The
target
control
is
exposed
as
the
Editor
property
of
the
extender
cell
type
in
Spread.

Unlike
the
other
cell
types
in
Spread,
there
are
no
restrictions
and
validation
of
any
of
the
Extenders
properties,
so
use
this
cell
type
carefully
and
provide
validation
as
needed.

For
a
list
of
limitations
with
this
AJAX
cell
type,
refer
to
Working
with
ASP.NET
AJAX
Extender
Cell
Types.

For
details
on
the
properties
and
methods
for
this
cell
type,
refer
to
the
TextBoxWatermarkCellType
('TextBoxWatermarkCellType
Class'
in
the
on-line
documentation)
class.

Using Validation Controls

You
can
prevent
a
user
from
entering
invalid
characters
in
a
cell
by
using
a
validation
control
in
the
Spread
cell.
You
can
validate
the
data
when
pasting
to
a
cell
or
cell
range
by
setting
the
NonEditModeValidation
('NonEditModeValidation
Property'
in
the
on-line
documentation)
property
to
True
when
using
a
validation
control.
Set
the
AllowServerValidators
('AllowServerValidators
Property'
in
the
on-line
documentation)
property
to
True
to
support
server
validation
using
custom
validator
controls.
You
can
also
display
an
error
message
when
the
data
is
invalid
with
the
ValidationErrorMessage
('ValidationErrorMessage
Property'
in
the
on-line
documentation)
property.

Initialize
the
validation
control
and
then
add
the
validation
control
to
the
Spread
cell
to
provide
validation.

You
can
use
validation
controls
instead
of
the
standard
validation
by
setting
the
Validators
('Validators
Property'
in
the
on-line
documentation)
property.
The
following
cell
types
provide
this
option:

CurrencyCellType
('CurrencyCellType
Class'
in
the
on-line
documentation)
DateTimeCellType
('DateTimeCellType
Class'
in
the
on-line
documentation)
DoubleCellType
('DoubleCellType
Class'
in
the
on-line
documentation)
GeneralCellType
('GeneralCellType
Class'
in
the
on-line
documentation)
IntegerCellType
('IntegerCellType
Class'
in
the
on-line
documentation)
PercentCellType
('PercentCellType
Class'
in
the
on-line
documentation)
RegExpCellType
('RegExpCellType
Class'
in
the
on-line
documentation)
TextCellType
('TextCellType
Class'
in
the
on-line
documentation)

If
the
validation
fails,
the
onErrorMessageShown
('ErrorMessageShown'
in
the
on-line
documentation)
event
occurs
and
the
user
cannot
change
the
active
cell.

The
validation
is
not
supported
if
the
ShowEditor
('ShowEditor
Property'
in
the
on-line
documentation)
property
is
true.

If
you
receive
an
error
such
as,
"UnobtrusiveValidationMode
requires
a
ScriptResourceMapping
for
'jquery'"
in
Visual
Studio
2012,
then
you
may
need
to
add
the
following
information
to
web.config.

<appSettings>

Spread for ASP.NET Developer’s Guide 285

Copyright © GrapeCity, Inc. All rights reserved.

http://ajax.asp.net/ajaxtoolkit/

<add
key="ValidationSettings:UnobtrusiveValidationMode"
value="None"/>
</appSettings>

Using
Code

1.
 Add
the
validator
code
to
the
ASPX
page.
2.
 Create
the
cell.
3.
 Create
a
validator.
4.
 Create
validation
messages.
5.
 Set
the
Validators
property.

Example

This
example
creates
a
cell
and
assigns
a
basic
validator
to
the
cell.

Code
<asp:RequiredFieldValidator ID="RequiredFieldValidator1" runat="server"
ErrorMessage="RequiredFieldValidator"></asp:RequiredFieldValidator>
 <asp:CompareValidator ID="CompareValidator1" runat="server"
ErrorMessage="CompareValidator"></asp:CompareValidator>
 <asp:RangeValidator ID="RangeValidator1" runat="server"
ErrorMessage="RangeValidator"></asp:RangeValidator>

C#
protected void Page_Load(object sender, System.EventArgs e)
{
if (IsPostBack) return;
FpSpread1.Sheets[0].RowCount = 10;
FpSpread1.Sheets[0].ColumnCount = 7;
// RequiredFieldValidator, from code
FarPoint.Web.Spread.TextCellType txt1 = new FarPoint.Web.Spread.TextCellType();
RequiredFieldValidator rfv = new RequiredFieldValidator();
rfv.ErrorMessage = "RequiredFieldValidator, from code: value required!";
txt1.Validators.Add(rfv);
FpSpread1.ActiveSheetView.Cells[0, 0].Text = "RequiredFieldValidator, from code";
FpSpread1.ActiveSheetView.Cells[0, 1].CellType = txt1;

// RequiredFieldValidator, from toolbox
FarPoint.Web.Spread.TextCellType txt2 = new FarPoint.Web.Spread.TextCellType();
RequiredFieldValidator1.ErrorMessage = "RequiredFieldValidator, from toolbox: value
required!";
txt2.Validators.Add(RequiredFieldValidator1);
FpSpread1.ActiveSheetView.Cells[1, 0].Text = "RequiredFieldValidator, from toolbox";
FpSpread1.ActiveSheetView.Cells[1, 1].CellType = txt2;

// CompareValidator, from toolbox
FarPoint.Web.Spread.TextCellType txt3 = new FarPoint.Web.Spread.TextCellType();
CompareValidator1.ErrorMessage = "CompareValidator, from toolbox: password does not
match! Enter \"Spread\"";
CompareValidator1.ValueToCompare = "Spread";
txt3.Validators.Add(CompareValidator1);
FpSpread1.ActiveSheetView.Cells[2, 0].Text = "CompareValidator, from toolbox";
FpSpread1.ActiveSheetView.Cells[2, 1].CellType = txt3;

// CompareValidator, from code

Spread for ASP.NET Developer’s Guide 286

Copyright © GrapeCity, Inc. All rights reserved.

FarPoint.Web.Spread.TextCellType txt4 = new FarPoint.Web.Spread.TextCellType();
CompareValidator cv = new CompareValidator();
cv.ErrorMessage = "CompareValidator, from toolbox: password does not match! Enter
\"Spread\"";
cv.ValueToCompare = "Spread";
txt4.Validators.Add(cv);
FpSpread1.ActiveSheetView.Cells[3, 0].Text = "CompareValidator, from code";
FpSpread1.ActiveSheetView.Cells[3, 1].CellType = txt4;

// RangeValidator, from toolbox
FarPoint.Web.Spread.TextCellType txt5 = new FarPoint.Web.Spread.TextCellType();
RangeValidator1.ErrorMessage = "RangeValidator, from toolbox: value should in range [10
- 15]";
RangeValidator1.MinimumValue = "10"; RangeValidator1.MaximumValue = "15";
RangeValidator1.Type = ValidationDataType.Integer;
txt5.Validators.Add(RangeValidator1);
FpSpread1.ActiveSheetView.Cells[4, 0].Text = "RangeValidator, from toolbox";
FpSpread1.ActiveSheetView.Cells[4, 1].CellType = txt5;

// RangeValidator, from code
FarPoint.Web.Spread.TextCellType txt6 = new FarPoint.Web.Spread.TextCellType();
RangeValidator rv = new RangeValidator();
rv.ErrorMessage = "RangeValidator, from toolbox: value should in range [10 - 15]";
rv.MinimumValue = "10"; rv.MaximumValue = "15";
rv.Type = ValidationDataType.Integer;
txt6.Validators.Add(rv);
FpSpread1.ActiveSheetView.Cells[5, 0].Text = "RangeValidator, from toolbox";
FpSpread1.ActiveSheetView.Cells[5, 1].CellType = txt6;
}

VB
Protected Sub Page_Load(sender As Object, e As System.EventArgs)
If IsPostBack Then
 Return
End If
FpSpread1.Sheets(0).RowCount = 10
FpSpread1.Sheets(0).ColumnCount = 7
' RequiredFieldValidator, from code
Dim txt1 As New FarPoint.Web.Spread.TextCellType()
Dim rfv As New RequiredFieldValidator()
rfv.ErrorMessage = "RequiredFieldValidator, from code: value required!"
txt1.Validators.Add(rfv)
FpSpread1.ActiveSheetView.Cells(0, 0).Text = "RequiredFieldValidator, from code"
FpSpread1.ActiveSheetView.Cells(0, 1).CellType = txt1

' RequiredFieldValidator, from toolbox
Dim txt2 As New FarPoint.Web.Spread.TextCellType()
RequiredFieldValidator1.ErrorMessage = "RequiredFieldValidator, from toolbox: value
required!"
txt2.Validators.Add(RequiredFieldValidator1)
FpSpread1.ActiveSheetView.Cells(1, 0).Text = "RequiredFieldValidator, from toolbox"
FpSpread1.ActiveSheetView.Cells(1, 1).CellType = txt2

' CompareValidator, from toolbox
Dim txt3 As New FarPoint.Web.Spread.TextCellType()
CompareValidator1.ErrorMessage = "CompareValidator, from toolbox: password does not
match! Enter ""Spread"""
CompareValidator1.ValueToCompare = "Spread"

Spread for ASP.NET Developer’s Guide 287

Copyright © GrapeCity, Inc. All rights reserved.

txt3.Validators.Add(CompareValidator1)
FpSpread1.ActiveSheetView.Cells(2, 0).Text = "CompareValidator, from toolbox"
FpSpread1.ActiveSheetView.Cells(2, 1).CellType = txt3

' CompareValidator, from code
Dim txt4 As New FarPoint.Web.Spread.TextCellType()
Dim cv As New CompareValidator()
cv.ErrorMessage = "CompareValidator, from toolbox: password does not match! Enter
""Spread"""
cv.ValueToCompare = "Spread"
txt4.Validators.Add(cv)
FpSpread1.ActiveSheetView.Cells(3, 0).Text = "CompareValidator, from code"
FpSpread1.ActiveSheetView.Cells(3, 1).CellType = txt4

' RangeValidator, from toolbox
Dim txt5 As New FarPoint.Web.Spread.TextCellType()
RangeValidator1.ErrorMessage = "RangeValidator, from toolbox: value should in range [10
- 15]"
RangeValidator1.MinimumValue = "10"
RangeValidator1.MaximumValue = "15"
RangeValidator1.Type = ValidationDataType.[Integer]
txt5.Validators.Add(RangeValidator1)
FpSpread1.ActiveSheetView.Cells(4, 0).Text = "RangeValidator, from toolbox"
FpSpread1.ActiveSheetView.Cells(4, 1).CellType = txt5

' RangeValidator, from code
Dim txt6 As New FarPoint.Web.Spread.TextCellType()
Dim rv As New RangeValidator()
rv.ErrorMessage = "RangeValidator, from toolbox: value should in range [10 - 15]"
rv.MinimumValue = "10"
rv.MaximumValue = "15"
rv.Type = ValidationDataType.[Integer]
txt6.Validators.Add(rv)
FpSpread1.ActiveSheetView.Cells(5, 0).Text = "RangeValidator, from toolbox"
FpSpread1.ActiveSheetView.Cells(5, 1).CellType = txt6
End Sub

This
example
supports
server
validation
using
a
custom
validator
control.

Code
<FarPoint:FpSpread ID="FpSpread1" runat="server" BorderColor="Black"
BorderStyle="Solid" BorderWidth="1px" Height="200" Width="400">
 <commandbar backcolor="Control" buttonfacecolor="Control"
buttonhighlightcolor="ControlLightLight" buttonshadowcolor="ControlDark"></commandbar>
 <sheets>
 <FarPoint:SheetView SheetName="Sheet1"></FarPoint:SheetView>
 </sheets>
</FarPoint:FpSpread>

<asp:CustomValidator ID="CustomValidator2" runat="server" ErrorMessage="Error of server
side" OnServerValidate="CustomValidator2_ServerValidate"></asp:CustomValidator>

C#
protected void Page_Load(object sender, EventArgs e)
{
 if (IsPostBack) return;
 TextCellType txt = new FarPoint.Web.Spread.TextCellType();

Spread for ASP.NET Developer’s Guide 288

Copyright © GrapeCity, Inc. All rights reserved.

 txt.AllowServerValidators = true;// New property to enable server validating with
validator controls
 txt.Validators.Add(CustomValidator2);
 FpSpread1.ActiveSheetView.Cells[1, 1].CellType = txt;
 FpSpread1.ActiveSheetView.Cells[1, 1].BackColor = Color.LightPink;
}
protected void CustomValidator2_ServerValidate(object source, ServerValidateEventArgs
args)
{
int value = 0;
args.IsValid = int.TryParse(args.Value, out value) && value < 10;// Accept integer
number less than 10;
}

VB
Protected Sub Page_Load(sender As Object, e As System.EventArgs)
 If IsPostBack Then
 Return

Dim txt As New FarPoint.Web.Spread.TextCellType()
 txt.AllowServerValidators = True 'New property to enable server validating with
validator controls
 txt.Validators.Add(CustomValidator2)
 FpSpread1.ActiveSheetView.Cells(1, 1).CellType = txt
 FpSpread1.ActiveSheetView.Cells(1, 1).BackColor = Color.LightPink
End Sub
Protected Sub CustomValidator2_ServerValidate(source As Object, args As
ServerValidateEventArgs)
 Dim value As Integer = 0
 args.IsValid = Integer.TryParse(args.Value, value) AndAlso value < 10 'Accept integer
number less than 10
End Sub

Spread for ASP.NET Developer’s Guide 289

Copyright © GrapeCity, Inc. All rights reserved.

Managing Data Binding

You
can
connect
the
spreadsheet
in
the
component
to
a
database
or
other
data
source.
You
can
manage
how
data
in
the
spreadsheet
is
bound.
Tasks
involved
include:

Data
Binding
Overview
Binding
to
a
Data
Source
Binding
to
a
Range
Model
Data
Binding
in
ASP.NET
4.5
Setting
the
Cell
Types
for
Bound
Data
Displaying
Data
as
a
Hierarchy
Handling
Row
Expansion
Adding
an
Unbound
Row
Limiting
Postbacks
When
Updating
Bound
Data
Tutorial:
Binding
to
a
Corporate
Database

Data Binding Overview

You
can
bind
the
component
to
a
data
set.
When
you
bind
the
component
using
the
default
settings,
data
from
the
data
set
is
read
into
the
columns
and
rows
of
the
sheet
to
which
you
bind
the
data.
Columns
are
associated
with
fields,
and
rows
represent
each
record
in
the
data
set.

For
the
basic
steps
used
to
set
up
data
binding,
see
Binding
to
a
Data
Source.
For
a
detailed
walk-through
of
binding
to
a
database
see,
Tutorial:
Binding
to
a
Corporate
Database.

You
can
customize
data
binding
in
many
ways,
including:

You
might
want
to
specify
a
particular
data
table
within
a
data
source
that
has
multiple
tables.
Use
the
SheetView
class,
DataMember
('DataMember
Property'
in
the
on-line
documentation)
property
to
specify
the
particular
data
member.
You
can
perform
more
specific
manipulations
once
the
data
is
bound.
You
can
use
the
DataField
('DataField
Property'
in
the
on-line
documentation)
property
in
the
Column
('Column
Class'
in
the
on-line
documentation)
class
to
bind
a
column
to
a
particular
data
field.
For
instance,
if
you
want
the
bound
column
3
to
be
displayed
first
on
the
spreadsheet,
or
if
you
want
to
hide
a
column
of
data,
or
if
you
simply
want
to
display
the
bound
columns
in
general
in
a
different
order
than
they
exist
in
the
data
set,
you
can
use
the
DataField
('DataField
Property'
in
the
on-line
documentation)
property
in
the
particular
column
to
achieve
this.
You
might
want
to
specify
the
key
number
as
opposed
to
the
row
number;
if
so,
use
the
DataKeyField
('DataKeyField
Property'
in
the
on-line
documentation)
property
of
the
sheet.
You
can
use
the
SQLDataAdapter
instead
of
the
OLEDB
adapter
when
binding
to
a
data
set.
To
do
so,
use
the
SQLDataAdapter
to
set
up
your
data
set
and
bind
it
to
the
spreadsheet.
In
bound
mode,
the
data
model
wraps
the
supplied
data
source
and
if
needed
can
supply
additional
data
and
interactivity
not
available
from
the
data
source,
for
example
cell
formulas
and
unbound
rows
and
columns.
In
a
few
cases,
you
may
need
to
create
your
own
custom
data
model
for
performance
reasons.
For
more
information
about
developing
custom
data
models,
refer
to
Using
Sheet
Models.
Spread
offers
properties
to
work
with
model
data
binding
in
ASP.NET
4.5
and
later.
For
more
information,
see
Model
Data
Binding
in
ASP.NET
4.5.

There
are
many
alternative
ways
to
set
up
data
binding.
To
learn
more
about
data
binding
in
Visual
Studio
.NET,
consult
the
Visual
Studio
.NET
documentation.

How
you
handle
state
management
while
bound
to
a
database
or
working
with
large
data
sets
can
affect
your
application’s
performance.
You
need
to
set
up
state
management
to
optimize
performance
and
account
for
other
factors.
For
more
information,
refer
to
Maintaining
State.
If
your
data
set
is
not
getting
updated
when
you
click
the
Update
button,
see
the
information
and

Spread for ASP.NET Developer’s Guide 290

Copyright © GrapeCity, Inc. All rights reserved.

instructions
in
Limiting
Postbacks
When
Updating
Bound
Data
to
make
sure
that
you
have
code
in
your
page
load
event
so
that
you
only
re-create
the
bound
data
when
you
are
loading
for
the
first
time
and
not
overwriting
it
on
each
post
back.

Binding to a Data Source

The
following
instructions
provide
the
code
necessary
to
bind
the
FpSpread
component
to
a
data
set.

The
basic
procedure
is
to
bind
data
either
to
the
sheet
directly
or
to
a
data
model
that
the
sheet
uses.
This
means
either
using
the
DefaultSheetDataModel
('DefaultSheetDataModel
Class'
in
the
on-line
documentation)
class
to
construct
a
data
model
and
then
in
the
SheetView
('SheetView
Class'
in
the
on-line
documentation)
class
set
the
DataModel
('DataModel
Property'
in
the
on-line
documentation)
property
to
the
newly
created
data
model
or
setting
the
DataSource
('DataSource
Property'
in
the
on-line
documentation)
member
in
the
SheetView
class.

How
you
handle
state
management
while
bound
to
a
database
or
working
with
large
data
sets
can
affect
your
application’s
performance.
You
need
to
set
up
state
management
to
optimize
performance
and
account
for
other
factors.
For
more
information,
refer
to
Maintaining
State.
If
your
data
set
is
not
getting
updated
when
you
click
the
Update
button,
see
the
information
and
instructions
in
Limiting
Postbacks
When
Updating
Bound
Data
to
make
sure
that
you
have
code
in
your
page
load
event
so
that
you
only
re-create
the
bound
data
when
you
are
loading
for
the
first
time
and
not
overwriting
it
on
each
post
back.

Using
Code

1.
 Create
a
data
model
and
set
it
equal
to
a
DefaultSheetDataModel
object,
specifying
a
data
set
for
the
new
model’s
dataSource
parameter.
Other
parameter
options
are
available
for
the
DefaultSheetDataModel
constructor.
Refer
to
the
Assembly
Reference
(on-line
documentation)
for
complete
information.

2.
 Set
the
SheetView
object’s
DataModel
('DataModel
Property'
in
the
on-line
documentation)
property
equal
to
the
new
data
model.

Example

This
example
code
binds
the
FpSpread
component
to
a
data
set
named
dataSet1.

C#
// Create a data model using a data set.
FarPoint.Web.Spread.Model.DefaultSheetDataModel model = new
FarPoint.Web.Spread.Model.DefaultSheetDataModel(dataSet1);
FpSpread1.Sheets[0].DataModel = model;

VB
' Create a data model using a data set.
Dim model As New FarPoint.Web.Spread.Model.DefaultSheetDataModel(dataSet1)
FpSpread1.Sheets(0).DataModel = model

Using
a
Shortcut

Set
the
FpSpread
DataSource
('DataSource
Property'
in
the
on-line
documentation)
property.

Spread for ASP.NET Developer’s Guide 291

Copyright © GrapeCity, Inc. All rights reserved.

Example

This
example
code
uses
the
FpSpread
DataSource
('DataSource
Property'
in
the
on-line
documentation)
property
to
bind
to
a
data
set.

C#
FpSpread1.DataSource = ds;

VB
FpSpread1.DataSource = ds

Binding to a Range

You
can
bind
a
range
of
cells
using
the
CellRange
('CellRange
Property'
in
the
on-line
documentation)
property
in
the
SpreadDataSource
('SpreadDataSource
Class'
in
the
on-line
documentation)
class.
This
process
creates
a
data
source
of
the
cell
range
using
the
SpreadDataSource
control.
This
data
source
can
then
be
bound
to
other
controls
(such
as
a
chart
or
list
box).
You
can
put
the
initial
data
in
the
Spread
component
by
binding
it
to
a
data
source
or
leaving
the
component
unbound
and
putting
the
data
in
the
cells
with
code
or
other
means
(such
as
typing
in
the
cells).
If
the
component
is
unbound,
then
the
DataTextField
property
would
be
the
same
as
the
column
header
text.

The
SpreadDataSource
control
can
be
created
with
code
or
added
to
the
Toolbox
in
Visual
Studio.

There
are
many
alternative
ways
to
set
up
data
binding.
To
learn
more
about
data
binding
in
Visual
Studio
.NET,
consult
the
Visual
Studio
.NET
documentation.

Using
the
Properties
Window

1.
 Add
the
SpreadDataSource
control
to
the
form
(double-click
the
icon
in
the
toolbox).
2.
 Set
the
CellRange
property
in
the
properties
window.
3.
 Set
the
sheet
name.
4.
 Set
the
SpreadID
property.
5.
 Set
the
DataSource
property
of
the
control
you
want
to
bind
to.

Using
Code

1.
 Create
a
data
source.
2.
 Set
the
Spread
DataSource
('DataSource
Property'
in
the
on-line
documentation)
property
to
the
data

source.
3.
 Create
a
Spread
data
source
object.
4.
 Set
the
CellRange
('CellRange
Property'
in
the
on-line
documentation)
and
other
properties
for
the
SpreadDataSource
('SpreadDataSource
Class'
in
the
on-line
documentation)
class.

5.
 Add
the
Spread
data
source
to
the
page.
6.
 Add
a
list
box
control
to
the
page.

Example

This
example
binds
the
Spread
component
to
a
data
source,
creates
a
cell
range
data
source,
and
then
binds
the
cell
range
data
source
to
a
list
box
control.

C#
System.Data.DataTable dt = new System.Data.DataTable("Test");

Spread for ASP.NET Developer’s Guide 292

Copyright © GrapeCity, Inc. All rights reserved.

System.Data.DataRow dr = default(System.Data.DataRow);
dt.Columns.Add("Series0");
dt.Columns.Add("Series1");
dt.Columns.Add("Series2");
dr = dt.NewRow();
dr[0] = 2;
dr[1] = 1;
dr[2] = 5;
dt.Rows.Add(dr);
dr = dt.NewRow();
dr[0] = 4;
dr[1] = 2;
dr[2] = 5;
dt.Rows.Add(dr);
dr = dt.NewRow();
dr[0] = 3;
dr[1] = 4;
dr[2] = 5;
dt.Rows.Add(dr);
dr = dt.NewRow();
dr[0] = 3;
dr[1] = 4;
dr[2] = 5;

FpSpread1.DataSource = dt;
FarPoint.Web.Spread.SpreadDataSource spreadDS = new
FarPoint.Web.Spread.SpreadDataSource();
spreadDS.SheetName = FpSpread1.ActiveSheetView.SheetName;
spreadDS.SpreadID = "FpSpread1";//FpSpread1.ID;
spreadDS.CellRange = new FarPoint.Web.Spread.Model.CellRange(0, 0, 3, 1);
this.Controls.Add(spreadDS);
this.ListBox1.DataSource = spreadDS;
this.ListBox1.DataTextField = "Series0";
this.ListBox1.DataBind();

VB
Dim dt As New System.Data.DataTable("Test")
Dim dr As System.Data.DataRow
dt.Columns.Add("Series0")
dt.Columns.Add("Series1")
dt.Columns.Add("Series2")
dr = dt.NewRow()
dr(0) = 2
dr(1) = 1
dr(2) = 5
dt.Rows.Add(dr)
dr = dt.NewRow()
dr(0) = 4
dr(1) = 2
dr(2) = 5
dt.Rows.Add(dr)
dr = dt.NewRow()
dr(0) = 3
dr(1) = 4
dr(2) = 5
dt.Rows.Add(dr)

Spread for ASP.NET Developer’s Guide 293

Copyright © GrapeCity, Inc. All rights reserved.

dr = dt.NewRow()
dr(0) = 3
dr(1) = 4
dr(2) = 5
FpSpread1.DataSource = dt
Dim spreadDS As New FarPoint.Web.Spread.SpreadDataSource()
spreadDS.SheetName = FpSpread1.ActiveSheetView.SheetName
spreadDS.SpreadID = "FpSpread1"
spreadDS.CellRange = New FarPoint.Web.Spread.Model.CellRange(0, 0, 3, 1)
Controls.Add(spreadDS)
ListBox1.DataSource = spreadDS
ListBox1.DataTextField = "Series0"
ListBox1.DataBind()

If
your
data
set
is
not
updated
when
you
click
the
Update
button,
make
sure
that
you
have
code
similar
to
this
in
your
page
load
event
so
that
you
only
re-create
the
bound
data
when
you
are
loading
for
the
first
time
and
not
overwriting
it
on
each
post
back.

C#
if !(Page.IsPostBack)
{
 FpSpread1.DataBind();
}

VB
If Not Page.IsPostBack Then
 FpSpread1.DataBind()
End If

Model Data Binding in ASP.NET 4.5

Spread
for
ASP.NET
supports
model
data
binding
as
provided
by
ASP.NET
4.5.
The
Spread
component
provides
the
ItemType
('ItemType
Property'
in
the
on-line
documentation)
property,
as
well
as
the
SelectMethod
('SelectMethod
Property'
in
the
on-line
documentation),
UpdateMethod
('UpdateMethod
Property'
in
the
on-line
documentation),
InsertMethod
('InsertMethod
Property'
in
the
on-line
documentation),
and
DeleteMethod
('DeleteMethod
Property'
in
the
on-line
documentation)
properties
for
working
with
model
binding.

Model
data
binding
only
takes
effect
in
.NET
4.5
or
higher;
if
you
try
to
use
model
data
binding
in
another
.NET
environment,
nothing
happens.
If
you
use
model
data
binding
and
the
DataSourceID
('DataSourceID
Property'
in
the
on-line
documentation)
property
in
the
same
project,
the
component
throws
an
exception.
If
you
use
the
DataSourceID
('DataSourceID
Property'
in
the
on-line
documentation)
and
set
one
of
the
model
data
binding
properties,
such
as
SelectMethod
('SelectMethod
Property'
in
the
on-line
documentation)
or
UpdateMethod
('UpdateMethod
Property'
in
the
on-line
documentation),
the
component
will
also
throw
an
exception.

The
ItemType
('ItemType
Property'
in
the
on-line
documentation)
property
indicates
the
type
of
data
item
used
in
model
data
binding.
By
default,
it
is
empty.
Set
this
property
to
use
strongly
typed
data
binding.
If
you
set
the
ItemType
('ItemType
Property'
in
the
on-line
documentation)
property
and
set
some
sheets'
SelectMethod
('SelectMethod
Property'
in
the
on-line
documentation)
property,
the
.NET
framework
will
try
to
cast
the
data
items
to
the
type
declared
by
the
ItemType
('ItemType
Property'
in
the
on-line
documentation)
property.
Therefore,
you
should
set
the
ItemType
('ItemType
Property'
in
the
on-line
documentation)
and
SelectMethod
('SelectMethod
Property'
in
the
on-line
documentation)
properties
to
the
same
data
types,
or
set
the
SelectMethod
('SelectMethod
Property'
in
the
on-line
documentation)
to
a
parent
data
type.
If
you
do
not,
the
component
will
throw
an
exception.

Spread for ASP.NET Developer’s Guide 294

Copyright © GrapeCity, Inc. All rights reserved.

The
SelectMethod
('SelectMethod
Property'
in
the
on-line
documentation),
UpdateMethod
('UpdateMethod
Property'
in
the
on-line
documentation),
InsertMethod
('InsertMethod
Property'
in
the
on-line
documentation),
and
DeleteMethod
('DeleteMethod
Property'
in
the
on-line
documentation)
properties
set
the
name
of
the
method
to
use
to
get,
update,
insert,
or
delete
a
data
item
in
the
data
source.
Note
the
following
when
using
these
properties.

If
you
set
some
of
these
properties,
they
are
merged
into
the
ActiveSheetView
model
data
binding
properties.
If
you
set
the
SelectMethod
('SelectMethod
Property'
in
the
on-line
documentation)
property
but
do
not
set
one
or
more
of
the
other
model
data
binding
properties,
when
the
component
tries
to
update,
insert,
or
delete
a
data
item,
the
component
will
display
an
error.
You
should
put
the
methods
to
which
the
properties
are
set
in
the
current
page.
If
you
do
not,
the
.NET
framework
might
throw
an
exception.
The
methods
can
be
static
methods
or
instant
methods.
Currently,
the
.NET
Framework
only
accepts
public
methods.

Using
Code

1.
 Set
up
the
data
source.
See
the
example
code
below.
2.
 Bind
the
Spread
component
to
the
data
source.
For
more
information,
see
Binding
to
a
Data
Source.
3.
 If
you
want
to
do
so,
set
the
ItemType
('ItemType
Property'
in
the
on-line
documentation)
property.
4.
 Set
the
SelectMethod
('SelectMethod
Property'
in
the
on-line
documentation),
UpdateMethod
('UpdateMethod
Property'
in
the
on-line
documentation),
InsertMethod
('InsertMethod
Property'
in
the
on-line
documentation),
and
DeleteMethod
('DeleteMethod
Property'
in
the
on-line
documentation)
properties
to
the
names
of
methods
you
provide
in
your
project
for
handling
these
data
binding
tasks.

Example

This
example
code
illustrates
the
model
data
binding
properties.

The
following
code
is
added
to
the
.aspx
page:

<Sheets>

<FarPoint:SheetView
SheetName="Sheet1"

AllowDelete="true"
AllowInsert="true"

ItemType="DeptModel.User"

SelectMethod="GetUsers"
UpdateMethod="UpdateUser"
DeleteMethod="DeleteUser"
InsertMethod="InsertUser">

</FarPoint:SheetView>
</Sheets>

Code
is
added
to
the
.cs
or
.vb
page
to
create
the
methods
referred
to
in
the
.aspx
page,
as
shown
in
the
following
sample.

C#
 public IQueryable<User> GetUsers()
 {
 DeptEntities db = new DeptEntities();
 return db.Users.AsQueryable();
 }

 public bool UpdateUser(string login, string fullName, string email, string
description)
 {
 int rowsAffected = -1;
 using (DeptEntities db = new DeptEntities())
 {
 // user should exist in the database in order to be updated
 User found = db.Users.FirstOrDefault(u => u.Login == login);
 if (found == null) return false;

Spread for ASP.NET Developer’s Guide 295

Copyright © GrapeCity, Inc. All rights reserved.

 // except login name, all other properties of a user can be changed
 found.FullName = fullName; found.Email = email; found.Description = description;
 if (ModelState.IsValid)
 {
 rowsAffected = db.SaveChanges();
 }
 }
 // there should only be one user updated after running this update (1 row at a
time)
 return rowsAffected == 1;
 }

 public bool InsertUser(string login, string fullName, string email, string
description)
 {
 int rowsAffected = -1;
 using (DeptEntities db = new DeptEntities())
 {
 // login name should be unique
 User found = db.Users.FirstOrDefault(u => u.Login == login);
 if (found != null)
 {
 string exceptionMessage = string.Format("Login name should be unique. There is
an existing user with the login name of {0}", login);
 throw new InvalidOperationException(exceptionMessage);
 }
 // create new User
 var user = new User()
 {
 Login = login,
 FullName = fullName,
 Email = email,
 Description = description
 };
 // add user to model, then commit changes
 if (ModelState.IsValid)
 {
 db.Users.AddObject(user);
 rowsAffected = db.SaveChanges();
 }
 }
 return rowsAffected == 1;
 }
 public bool DeleteUser(string login)
 {
 int rowsAffected = -1;
 using (DeptEntities db = new DeptEntities())
 {
 User found = db.Users.FirstOrDefault(u => u.Login == login);
 if (found != null)
 {
 db.Users.DeleteObject(found);
 rowsAffected = db.SaveChanges();
 }
 }
 return rowsAffected == 1;
 }

Spread for ASP.NET Developer’s Guide 296

Copyright © GrapeCity, Inc. All rights reserved.

VB
Public Function GetUsers() As IQueryable(Of User)
 Dim db As New DeptEntities()
 Return db.Users.AsQueryable()
End Function

Public Function UpdateUser(login As String, fullName As String, email As String,
description As String) As Boolean
 Dim rowsAffected As Integer = -1
 Using db As New DeptEntities()
 ' user should exist in the database in order to be updated
 Dim found As User = db.Users.FirstOrDefault(Function(u) u.Login = login)

 If found Is Nothing Then
 Return False
 End If

 ' except login name, all other properties of a user can be changed
 found.FullName = fullName
 found.Email = email
 found.Description = description

 If ModelState.IsValid Then
 rowsAffected = db.SaveChanges()
 End If
 End Using

 ' there should only be one user updated after running this update (1 row at a time)
 Return rowsAffected = 1
End Function

Public Function InsertUser(login As String, fullName As String, email As String,
description As String) As Boolean
 Dim rowsAffected As Integer = -1
 Using db As New DeptEntities()
 ' login name should be unique
 Dim found As User = db.Users.FirstOrDefault(Function(u) u.Login = login)
 If found IsNot Nothing Then
 Dim exceptionMessage As String = String.Format("Login name should be unique. There
is an existing user with the login name of {0}", login)
 Throw New InvalidOperationException(exceptionMessage)
 End If
 ' create new User
 Dim user = New User() With { _
 .Login = login, _
 .FullName = fullName, _
 .Email = email, _
 .Description = description _
 }

 ' add user to model, then commit changes
 If ModelState.IsValid Then
 db.Users.AddObject(user)
 rowsAffected = db.SaveChanges()
 End If
 End Using

 Return rowsAffected = 1
End Function

Spread for ASP.NET Developer’s Guide 297

Copyright © GrapeCity, Inc. All rights reserved.

Public Function DeleteUser(login As String) As Boolean
 Dim rowsAffected As Integer = -1
 Using db As New DeptEntities()
 Dim found As User = db.Users.FirstOrDefault(Function(u) u.Login = login)
 If found IsNot Nothing Then
 db.Users.DeleteObject(found)
 rowsAffected = db.SaveChanges()
 End If
 End Using
 Return rowsAffected = 1
End Function

Setting the Cell Types for Bound Data

The
bound
data
may
be
any
of
several
types
and
Spread
provides
different
cell
types
to
display
that
data
effectively.
Most
often,
you
can
use
the
DataAutoCellTypes
('DataAutoCellTypes
Property'
in
the
on-line
documentation)
property
of
the
sheet
to
allow
Spread
to
automatically
match
the
best
cell
type
with
the
cells
of
data.
With
this
property
you
can
turn
off
the
automatic
assignment
if
in
certain
cases
you
want
to
control
the
cell
type.
For
example,
if
you
have
a
column
of
1's
and
0's
but
you
want
to
treat
them
as
check
box
settings
(checked
and
unchecked)
instead
of
as
numbers,
then
you
can
turn
off
automatic
assignment
and
assign
the
check
box
cell
type
to
that
column
of
cells.

For
more
information
about
the
cell
types
available,
refer
to
Customizing
with
Cell
Types.

Using
the
Properties
Window

1.
 At
design
time,
in
the
Properties
window,
select
the
FpSpread
component.
2.
 Select
the
Sheets
property.
3.
 Click
the
button
to
display
the
SheetView
Collection
Editor.
4.
 Set
the
DataAutoCellTypes
property.
5.
 Select
OK.

Using
a
Shortcut

Set
the
DataAutoCellTypes
('DataAutoCellTypes
Property'
in
the
on-line
documentation)
property.

Example

This
example
code
sets
the
DataAutoCellTypes
('DataAutoCellTypes
Property'
in
the
on-line
documentation)
property.

C#
FpSpread1.Sheets[0].DataAutoCellTypes = true;

VB
FpSpread1.Sheets(0).DataAutoCellTypes = True

Using
Code

1.
 Create
a
data
source.
2.
 Create
a
check
box
cell
column.
3.
 Set
the
DataAutoCellTypes
('DataAutoCellTypes
Property'
in
the
on-line
documentation)
property
to

false.

Spread for ASP.NET Developer’s Guide 298

Copyright © GrapeCity, Inc. All rights reserved.

4.
 Set
the
Spread
DataSource
('DataSource
Property'
in
the
on-line
documentation)
property
to
the
data
source.

Example

This
example
code
sets
the
DataAutoCellTypes
('DataAutoCellTypes
Property'
in
the
on-line
documentation)
property
to
false
and
uses
a
check
box
cell
for
the
number
data.

C#
DataSet ds = new System.Data.DataSet();
DataTable name;
DataTable city;
name = ds.Tables.Add("Customers");
name.Columns.AddRange(new DataColumn[] {new DataColumn("LastName", typeof(string)), new
DataColumn("FirstName", typeof(string)), new DataColumn("ID", typeof(Int32))});
name.Rows.Add(new object[] { "Fielding", "William", 0 });
name.Rows.Add(new object[] { "Williams", "Arthur", 1 });
name.Rows.Add(new object[] { "Zuchini", "Theodore", 1 });
city = ds.Tables.Add("City/State");
city.Columns.AddRange(new DataColumn[] {new DataColumn("City", typeof(string)), new
DataColumn("Owner", typeof(Int32)), new DataColumn("State", typeof(string))});
city.Rows.Add(new object[] { "Atlanta", 0, "Georgia" });
city.Rows.Add(new object[] { "Boston", 1, "Mass." });
city.Rows.Add(new object[] { "Tampa", 2, "Fla." });
FpSpread1.Sheets[0].Columns[2].CellType = new FarPoint.Web.Spread.CheckBoxCellType();
FpSpread1.Sheets[0].DataAutoCellTypes = false;
FpSpread1.DataSource = ds;

VB
Dim ds As New System.Data.DataSet
Dim name As System.Data.DataTable
Dim city As System.Data.DataTable
name = ds.Tables.Add("Customers")
name.Columns.AddRange(New System.Data.DataColumn() {New
System.Data.DataColumn("LastName", Type.GetType("System.String")), New
System.Data.DataColumn("FirstName", Type.GetType("System.String")), New
System.Data.DataColumn("ID", Type.GetType("System.Int32"))})
name.Rows.Add(New Object() {"Fielding", "William", 0})
name.Rows.Add(New Object() {"Williams", "Arthur", 1})
name.Rows.Add(New Object() {"Zuchini", "Theodore", 1})
city = ds.Tables.Add("City/State")
city.Columns.AddRange(New System.Data.DataColumn() {New System.Data.DataColumn("City",
Type.GetType("System.String")), New System.Data.DataColumn("Owner",
Type.GetType("System.Int32")), New System.Data.DataColumn("State",
Type.GetType("System.String"))})
city.Rows.Add(New Object() {"Atlanta", 0, "Georgia"})
city.Rows.Add(New Object() {"Boston", 1, "Mass."})
city.Rows.Add(New Object() {"Tampa", 2, "Fla."})
FpSpread1.Sheets(0).Columns(2).CellType = New FarPoint.Web.Spread.CheckBoxCellType()
FpSpread1.Sheets(0).DataAutoCellTypes = False
FpSpread1.DataSource = ds

Displaying Data as a Hierarchy

Spread for ASP.NET Developer’s Guide 299

Copyright © GrapeCity, Inc. All rights reserved.

You
can
display
relational
data,
such
as
from
a
relational
database,
on
a
sheet
in
hierarchies.
The
following
figure
shows
an
example
of
how
you
can
display
the
data
from
the
database
provided
for
the
tutorials.

To
set
up
hierarchical
data
display,
you
first
create
a
data
set
to
hold
the
relational
data,
then
define
the
relations
between
the
data,
and
finally,
set
the
component
to
display
the
data
as
you
want.
This
is
the
procedure
described
in
the
examples
that
follow.

Properties
such
as
EditModePermanent
('EditModePermanent
Property'
in
the
on-line
documentation)
and
EditModeReplace
('EditModeReplace
Property'
in
the
on-line
documentation)
only
apply
to
the
parent
Spread
and
do
not
apply
to
the
child
sheets
unless
you
set
them
in
the
ChildViewCreated
('ChildViewCreated
Event'
in
the
on-line
documentation)
event.

The
hierarchical
display
of
data,
of
displaying
sheets
within
cells
of
a
spread
sheet,
can
fill
up
the
visible
part
of
the
component
quickly.
In
order
to
let
you
minimize
the
amount
of
hierarchical
overhead,
that
is
the
amount
of
space
taken
by
the
higher
levels
of
the
hierarchy,
you
can
collapse
the
hierarchy
using
the
display
of
the
hierarchy
bar.
For
more
information
about
the
hierarchy
bar,
refer
to
Customizing
the
Hierarchy
Bar.

For
more
information
on
Outlook-style
grouping
for
a
hierarchical
display
of
data,
refer
to
Customizing
Grouping
of
Rows
of
User
Data.

For
more
information
on
row
expansion,
refer
to
Handling
Row
Expansion.

The
SpreadImage
('SpreadImage
Class'
in
the
on-line
documentation)
class
is
not
supported
in
the
ChildViewCreated
('ChildViewCreated
Event'
in
the
on-line
documentation)
event.

Using
a
Shortcut

1.
 Create
your
data
set.
2.
 Set
up
the
data
relations
between
the
data
coming
from
the
data
set,
for
example,
between
tables
coming
from
a

relational
database.
3.
 Set
the
FpSpread
DataSource
('DataSource
Property'
in
the
on-line
documentation)
or
the
sheet
DataSource
('DataSource
Property'
in
the
on-line
documentation)
property
equal
to
the
data
set.

4.
 Provide
code
in
the
FpSpread
component’s
ChildViewCreated
('ChildViewCreated
Event'
in
the
on-line
documentation)
event
for
displaying
the
parent
and
child
views
of
the
data.

Example

Spread for ASP.NET Developer’s Guide 300

Copyright © GrapeCity, Inc. All rights reserved.

This
example
binds
the
component
to
a
data
set
that
contains
multiple
related
tables
from
a
database
and
sets
up
the
component
to
display
the
data
in
hierarchies.
This
example
uses
the
database
provided
for
the
tutorials
(databind.mdb).
If
you
performed
the
default
installation,
the
database
file
is
in
\Program
Files\GrapeCity\Spread.NET
11\docs\Windows
Forms\TutorialFiles.
This
assumes
that
before
this
code
you
have
an
include
statement:

Visual
Basic
Imports System.Data.OleDb

And
here
is
the
code:

Visual
Basic
Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
 If IsPostBack Then Return
 End If
 ' Call subroutines to set up data and format the Spread component
 InitData()
 FormatSpread()
End Sub
Private Sub InitData()
 Dim con As New OleDbConnection()
 Dim cmd As New OleDbCommand()
 Dim da As New OleDbDataAdapter()
 Dim ds As New System.Data.DataSet()
 Dim dt As System.Data.DataTable
con.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0; Data Source=C:\\Program
Files\GrapeCity\Spread.NET 11\Windows Forms\TutorialFiles\databind.mdb"
con.Open()
With cmd
.Connection = con
.CommandType = System.Data.CommandType.TableDirect
.CommandText = "Categories"
End With
da.SelectCommand = cmd
da.Fill(ds, "Categories")
cmd.CommandText = "Products"
da.SelectCommand = cmd
da.Fill(ds, "Products")
cmd.CommandText = "Inventory Transactions"
da.SelectCommand = cmd
da.Fill(ds, "Inventory Transactions")
ds.Relations.Add("Root", ds.Tables("Categories").Columns("CategoryID"),
ds.Tables("Products").Columns("CategoryID"))

ds.Relations.Add("Secondary", ds.Tables("Products").Columns("ProductID"),
ds.Tables("Inventory Transactions").Columns("TransactionID"))
FpSpread1.DataSource = ds
End Sub

Private Sub FormatSpread()
With FpSpread1.Sheets(0)
.ColumnHeader.Rows(0).Height = 30
.Columns(0).Visible = False
.Columns(0).Width = 200
End With
End Sub

Protected Sub FpSpread1_ChildViewCreated(sender As Object, e As

Spread for ASP.NET Developer’s Guide 301

Copyright © GrapeCity, Inc. All rights reserved.

FarPoint.Web.Spread.CreateChildViewEventArgs) Handles FpSpread1.ChildViewCreated
Dim dateType As New FarPoint.Web.Spread.DateTimeCellType()

If e.SheetView.RelationName = "Root" Then
With e.SheetView
.DataAutoCellTypes = False
.ColumnHeader.Rows(0).Height = 30
.Columns(0).Visible = False
.Columns(3).Visible = False
.Columns(4).Visible = False
.Columns(1).Width = 200
.Columns(2).Width = 185
.Columns(6).Width = 85
.Columns(7).Width = 80
.Columns(8).Width = 80
.Columns(5).CellType = New FarPoint.Web.Spread.CurrencyCellType()
.Columns(7).CellType = New FarPoint.Web.Spread.CheckBoxCellType()
End With
Else
With e.SheetView
.DataAutoCellTypes = False
.ColumnHeader.Rows(0).Height = 30
.Columns(0).Visible = False
.Columns(2).Visible = False
.Columns(3).Visible = False
.Columns(4).Visible = False
.Columns(7).Visible = False
.Columns(8).Visible = False
.Columns(9).Visible = False
.Columns(1).Width = 100
.Columns(6).Width = 80
.Columns(5).CellType = New FarPoint.Web.Spread.CurrencyCellType()
.Columns(1).CellType = dateType
'Add a total column
.ColumnCount = .ColumnCount + 1
.ColumnHeader.Cells(0, .ColumnCount - 1).Value = "Total"
.Columns(.ColumnCount - 1).CellType = New FarPoint.Web.Spread.CurrencyCellType()
.Columns(.ColumnCount - 1).Formula = "F1*G1"
End With
End If
End Sub

Handling Row Expansion

With
a
hierarchical
display
of
data,
as
discussed
in
Displaying
Data
as
a
Hierarchy,
users
can
be
allowed
to
expand
the
rows
that
have
more
data
or
they
can
be
prevented
from
expanding
those
rows.
Use
the
GetRowExpandable
('GetRowExpandable
Method'
in
the
on-line
documentation)
and
SetRowExpandable
('SetRowExpandable
Method'
in
the
on-line
documentation)
properties
of
the
sheet
(or
in
the
sheet
models)
to
control
the
ability
of
users
to
expand
the
rows.

You
can
customize
the
icons
for
expanding
and
collapsing
hierarchies.
For
more
information,
refer
to
Customizing
the
Graphical
Interface.

Using
a
Shortcut

Set
the
SetRowExpandable
('SetRowExpandable
Method'
in
the
on-line
documentation)
method.

Spread for ASP.NET Developer’s Guide 302

Copyright © GrapeCity, Inc. All rights reserved.

Example

This
example
code
sets
the
SetRowExpandable
('SetRowExpandable
Method'
in
the
on-line
documentation)
method.

C#
FpSpread1.Sheets[0].DataSource = ds;
FpSpread1.Sheets[0].SetRowExpandable(0, false);

VB
FpSpread1.Sheets(0).DataSource = ds
FpSpread1.Sheets(0).SetRowExpandable(0, False)

Adding an Unbound Row

You
can
add
an
unbound
row
of
cells
to
a
sheet
in
a
component
that
is
bound
to
a
data
source.

Using
a
ShortCut

1.
 Bind
the
data.
2.
 Use
the
AddUnboundRows
('AddUnboundRows
Method'
in
the
on-line
documentation)
method

after
adding
any
data
to
the
data
set.
3.
 Use
the
AddRowToDataSource
('AddRowToDataSource
Method'
in
the
on-line
documentation)

method
to
add
the
row
to
the
data
source.

Example

This
example
code
adds
an
unbound
row,
adds
data
to
the
row,
and
then
adds
the
row
to
the
data
source.

C#
private void FpSpread1ChildViewCreated(object sender,
FarPoint.Web.Spread.CreateChildViewEventArgs e)
{
FarPoint.Web.Spread.SheetView sv;
sv = e.SheetView;
sv.AddUnboundRows(0, 1);
sv.Cells[0, 0].Value = "Dallas";
sv.Cells[0, 1].Value = "0";
sv.Cells[0, 2].Value = "Texas";
sv.AddRowToDataSource(0, true);
}

VB
Private Sub FpSpread1ChildViewCreated(ByVal sender As Object, ByVal e As
FarPoint.Web.Spread.CreateChildViewEventArgs) Handles FpSpread1.ChildViewCreated
Dim sv As FarPoint.Web.Spread.SheetView
sv = e.SheetView
sv.AddUnboundRows(0, 1)
sv.Cells(0, 0).Value = "Dallas"
sv.Cells(0, 1).Value = "0"
sv.Cells(0, 2).Value = "Texas"
sv.AddRowToDataSource(0, True)

Spread for ASP.NET Developer’s Guide 303

Copyright © GrapeCity, Inc. All rights reserved.

End Sub

Limiting Postbacks When Updating Bound Data

If
your
data
set
is
getting
lost
when
you
click
the
Update
button,
make
sure
that
you
have
code
in
your
page
load
event
so
that
you
only
re-create
the
bound
data
when
you
are
loading
for
the
first
time
and
not
overwriting
it
on
each
post
back.

Using
Code

Use
the
IsPostBack
property.

Example

In
this
example,
the
if-endif
structure
surrounding
the
DataBind
('DataBind
Method'
in
the
on-line
documentation)
method
restricts
the
method
from
being
run
on
each
post
back.

C#
if !(Page.IsPostBack)
 {
 ... other code ...
 FpSpread1.DataBind();
 }

VB
If Not Page.IsPostBack Then
 ... other code ...
 FpSpread1.DataBind()
End If

Tutorial: Binding to a Corporate Database

The
following
tutorials
walk
you
through
creating
an
ASP.NET
project
in
Visual
Studio
.NET
using
Spread
for
ASP.NET
and
binding
to
a
database.

Using
Spread
with
Visual
Studio
2012
and
the
SQL
Data
Source
Using
Spread
with
the
AccessDataSource
Control

The
following
tutorial
walks
you
through
creating
an
ASP.NET
project
in
Visual
Studio
.NET
using
Spread
for
ASP.NET.
By
binding
to
a
corporate
database,
you
will
learn
how
to
set
up
a
database
connection
and
bind
the
spreadsheet
to
a
data
source.

The
Microsoft
Jet
4.0
driver
is
not
supported
on
64-bit
processes.

This
tutorial
uses
an
earlier
version
of
Visual
Studio.
In
this
tutorial,
the
major
steps
are:

Adding
Spread
to
a
DataBind
Project
Setting
up
the
Database
Connection
Specifying
the
Data
to
Use
Creating
the
Data
Set
Binding
Spread
to
the
Database
Improving
the
Display
by
Changing
the
Cell
Type

Spread for ASP.NET Developer’s Guide 304

Copyright © GrapeCity, Inc. All rights reserved.

Using Spread with Visual Studio 2012 and the SQL Data Source

Later
versions
of
Visual
Studio
have
data
source
controls
that
require
fewer
steps.
This
list
of
steps
uses
the
SQLDataSource
control
to
bind
the
Spread
control.

1.
 Start
a
new
Visual
Studio
.NET
project.
2.
 Name
the
project
databind.
3.
 Name
the
form
in
the
project
binding.aspx.
4.
 Add
the
FpSpread
component
to
your
project.
5.
 Place
the
component
on
the
form.
6.
 If
the
Toolbox
is
not
displayed,
choose
Toolbox
from
the
View
menu.
7.
 Double-click
the
SqlDataSource
control
(under
the
Data
section
in
the
toolbox)
to
place
it
on
the
form.
8.
 Select
Configure
Data
Source
in
the
pop-up
menu.
Select
New
Connection.
9.
 Choose
Microsoft
Access
Database
File
in
the
Choose
Data
Source
dialog.
10.
 Browse
to
the
data
file.
Select
the
fpnorthwinds.mdb
file
installed
in
the
Spread.NET\Common
folder.
Click

Next.
11.
 Choose
whether
to
save
the
connection
string
in
the
application
configuration
file.
12.
 Select
Specify
columns
from
a
table
or
view
(or
use
a
stored
procedure).
13.
 Select
Customers
under
the
Name:
drop-down.
14.
 Select
ContactName
and
Phone
in
the
Columns:
section.
15.
 Select
Next
and
Finish.
The
Test
Query
button
can
be
used
to
test
the
connection
before
selecting
Finish.
16.
 Bind
the
data
source
to
Spread
by
adding
the
following
code
to
the
form:

C#
FpSpread1.DataSource = SqlDataSource1;

Visual
Basic
FpSpread1.DataSource = SqlDataSource1

17.
 Run
the
project
to
see
the
results.

If
you
do
not
know
how
to
add
the
FpSpread
component
to
the
project,
complete
the
steps
in
Adding
Spread
to
a
Project

Using Spread with the AccessDataSource Control

Later
versions
of
Visual
Studio
have
data
source
controls
that
require
fewer
steps.
This
list
of
steps
uses
the
AccessDataSource
control
to
bind
the
Spread
control.

1.
 Start
a
new
Visual
Studio
.NET
project.
2.
 Name
the
project
databind.
3.
 Name
the
form
in
the
project
binding.aspx.
4.
 Add
the
FpSpread
component
to
your
project.
5.
 Place
the
component
on
the
form.
6.
 If
the
Toolbox
is
not
displayed,
choose
Toolbox
from
the
View
menu.
7.
 Double-click
the
AccessDataSource
control
(under
the
Data
section
in
the
toolbox)
to
place
it
on
the
form.
8.
 Select
Configure
Data
Source
in
the
pop-up
menu
and
browse
to
the
data
file
(mdb
file).
You
may
need
to
add

the
mdb
file
to
the
project
to
see
it
in
the
browse
dialog.
9.
 Click
Next.
10.
 Select
Specify
columns
from
a
table
or
view.
11.
 Select
Products
under
the
Name:
drop-down.

Spread for ASP.NET Developer’s Guide 305

Copyright © GrapeCity, Inc. All rights reserved.

12.
 Select
ProductName,
ProductDescription,
UnitPrice,
and
LeadTime
in
the
Columns:
section.
13.
 Select
Next
and
Finish.
The
Test
Query
button
can
be
used
to
test
the
connection
before
selecting
Finish.
14.
 Bind
the
data
source
to
Spread
by
adding
the
following
code
to
the
form:

C#
FpSpread1.Sheets[0].DataSource = AccessDataSource1;

Visual
Basic
FpSpread1.Sheets(0).DataSource = AccessDataSource1

15.
 Run
the
project
to
see
the
results.

If
you
do
not
know
how
to
add
the
FpSpread
component
to
the
project,
complete
the
steps
in
Adding
Spread
to
a
Project

Adding Spread to a DataBind Project

Use
the
following
steps
to
create
a
project
and
add
the
Spread
control
to
the
form.

1.
 Start
a
new
Visual
Studio
.NET
project.
2.
 Name
the
project
databind.
3.
 Name
the
form
in
the
project
binding.aspx.
4.
 Add
the
FpSpread
component
to
your
project.
5.
 Place
the
component
on
the
form.

If
you
do
not
know
how
to
add
the
FpSpread
component
to
the
project,
complete
the
steps
in
Adding
Spread
to
a
Project

Setting up the Database Connection

You
must
tell
the
project
which
database
you
want
to
use.
In
this
step,
you
will
add
a
OleDbConnection
control
to
your
form,
and
tell
it
the
name
of
the
database
to
use.

1.
 If
the
Toolbox
is
not
displayed,
from
the
View
menu
choose
Toolbox.
2.
 Click
the
Data
tab
to
display
the
available
data
controls.
3.
 Double-click
the
OleDbConnection
control
to
add
it
to
your
form.

The
OleDbConnection
control
is
added
to
your
form,
in
a
new
area
created
below
the
visible
area
of
the
form.
The
data
controls
you
create
in
this
tutorial
will
all
be
placed
in
this
area,
instead
of
in
the
visible
area
of
the
form.

4.
 Press
F4
to
display
the
Properties
window
for
the
OleDbConnection
control.
5.
 In
the
Properties
window,
change
the
name
of
the
control
to
dbConnect.
6.
 In
the
Properties
window,
click
the
ConnectionString
property.
7.
 Click
the
down
arrow
displayed
on
the
right
side
of
the
setting
area,
then
select
New
Connection
from
the
drop-
down
list.
The
Data
Link
Properties
dialog
is
displayed.

8.
 Click
the
Provider
tab,
and
then
select
Microsoft
Jet
4.0
OLE
DB
Provider
from
the
list.
9.
 Click
Next.
10.
 Next
to
the
Select
or
enter
a
database
name
box,
click
the
Browse
button.
11.
 Browse
to
\Program
Files\GrapeCity\Spread.NET
11\docs\Windows
Forms\TutorialFiles\databind.mdb
and

then
choose
Open.
12.
 Click
the
Test
Connection
button.
13.
 If
you
do
not
receive
a
message
stating
the
“Test
connection
succeeded”
retry
steps
6
through
12.

Spread for ASP.NET Developer’s Guide 306

Copyright © GrapeCity, Inc. All rights reserved.

14.
 If
you
received
the
message
“Test
connection
succeeded,”
your
connection
is
complete.
Click
OK
to
close
the
Data
Link
Properties
dialog.

Specifying the Data to Use

Now
that
you
have
specified
the
database
to
use,
you
need
to
retrieve
the
records
from
the
database
table
you
want
to
display
in
your
Spread
component.
To
do
this,
you
will
use
the
OleDbDataAdapter
control.

1.
 If
the
Toolbox
is
not
displayed,
from
the
View
menu
choose
Toolbox.
2.
 Click
the
Data
tab
to
display
the
available
data
controls.
3.
 Double-click
the
OleDbDataAdapter
control
to
add
it
to
your
form.

The
OleDbDataAdapter
control
is
added
in
the
area
below
the
visible
area
of
the
form.
The
Data
Adapter
Configuration
Wizard
appears.

4.
 Choose
Next
to
begin
completing
the
wizard.
5.
 In
the
Choose
Your
Data
Connection
dialog,
under
Which
data
connection
should
the
data
adapter
use?
select
the
connection
you
created
in
Step
2
from
the
drop-down
list.
Then
choose
Next.

6.
 In
the
Choose
a
Query
Type
dialog,
select
Use
SQL
statements
and
then
choose
Next.
7.
 In
the
Generate
the
SQL
statements
dialog,
choose
Query
Builder.
The
Add
Table
dialog
appears
to
let
you
specify
the
table
to
use
in
the
database.

8.
 Select
the
Products
table
from
the
list
and
choose
Add,
then
choose
Close.
9.
 In
the
Query
Builder
dialog,
the
Product
table
appears
in
a
window,
with
a
list
of
the
available
fields
in
the

table.
Select
the
following
fields:
LeadTime
ProductDescription
ProductName
UnitPrice

10.
 The
Query
Builder
creates
your
SQL
query
in
the
status
box.
Your
dialog
should
look
like
this:

Spread for ASP.NET Developer’s Guide 307

Copyright © GrapeCity, Inc. All rights reserved.

11.
 Choose
OK
to
close
the
Query
Builder
dialog,
then
choose
Next
in
the
wizard.
12.
 The
wizard
summarizes
your
choices.
Choose
Finish
to
complete
the
wizard.
13.
 Press
F4
to
display
the
Properties
window
for
the
OleDbDataAdapter
control.
14.
 In
the
Properties
window,
change
the
name
of
the
control
to
dbAdapt.

Creating the Data Set

Now
that
you
have
specified
the
database
and
the
data
to
use
from
the
database,
you
will
create
a
data
set
to
contain
the
data
for
your
Spread
component.

1.
 If
the
Toolbox
is
not
displayed,
from
the
View
menu
choose
Toolbox.
2.
 Click
the
Data
tab
to
display
the
available
data
controls.
3.
 Double-click
the
DataSet
control
to
add
it
to
your
form.
4.
 In
the
Add
Dataset
dialog,
select
Untyped
dataset
and
choose
OK.
5.
 The
DataSet
control
is
added
in
the
area
below
the
visible
area
of
the
form.
6.
 Press
F4
to
display
the
Properties
window
for
the
DataSet
control.
7.
 In
the
Properties
window,
change
the
name
of
the
control
to
dbDataSet.
8.
 Double-click
on
the
form
in
your
project
to
open
the
code
window.
9.
 Select
the
line

C#
// Put user code to initialize the page here.

Spread for ASP.NET Developer’s Guide 308

Copyright © GrapeCity, Inc. All rights reserved.

Visual
Basic
' Put user code to initialize the page here.

and
type
the
following
code
to
replace
it:

C#
DataSet ds;
ds = dbDataSet;
dbAdapt.Fill(ds);

Visual
Basic
Dim ds As DataSet
ds = dbDataSet
dbAdapt.Fill(ds)

This
fills
the
data
set
with
the
data
from
the
database
you
specified,
using
the
fields
you
specified
when
setting
up
the
OleDbDataAdapter
control.

Binding Spread to the Database

Your
data
set
is
ready,
now
you
need
to
add
the
Spread
component
to
display
the
data,
and
provide
code
to
bind
the
Spread
component
to
the
data
set.

1.
 Double-click
on
the
form
to
open
the
code
window.
2.
 Type
the
following
code
below
the
code
you
added
to
create
the
data
set:

C#

FarPoint.Web.Spread.Model.DefaultSheetDataModel model = new
FarPoint.Web.Spread.Model.DefaultSheetDataModel(dbDataSet);
FpSpread1.Sheets[0].DataModel = model;

Visual
Basic
Dim model As FarPoint.Web.Spread.Model.DefaultSheetDataModel = New
FarPoint.Web.Spread.Model.DefaultSheetDataModel(dbDataSet)
FpSpread1.Sheets(0).DataModel = model

3.
 Save
your
project.
4.
 Run
your
project
and
you
should
see
a
form
that
looks
similar
to
the
following:

5.
 If
your
form
does
not
look
similar
to
this
form,
adjust
the
size
of
your
Spread
component,
and
re-check
the
steps

Spread for ASP.NET Developer’s Guide 309

Copyright © GrapeCity, Inc. All rights reserved.

you
have
performed
so
far.
6.
 Stop
the
project.

Improving the Display by Changing the Cell Type

In
this
step,
you
will
change
the
cell
type
for
one
of
the
columns
to
better
display
the
data
from
the
database.

1.
 Double-click
on
the
form
to
open
the
code
window.
2.
 Set
the
cell
type
for
the
UnitPrice
column
by
adding
the
following
code
below
the
code
you
have
already
added:

C#
FarPoint.Web.Spread.StyleInfo style = new FarPoint.Web.Spread.StyleInfo();
FarPoint.Web.Spread.CurrencyCellType curPrice = new
FarPoint.Web.Spread.CurrencyCellType();
curPrice.FixedPoint = true;
style.CellType = curPrice;
style.HorizontalAlign = HorizontalAlign.Right;
style.VerticalAlign = VerticalAlign.Middle;
FpSpread1.ActiveSheetView.SetStyleInfo(-1, 3, style);

Visual
Basic
Dim style As FarPoint.Web.Spread.StyleInfo
style = New FarPoint.Web.Spread.StyleInfo()
Dim curPrice As New FarPoint.Web.Spread.CurrencyCellType()
curPrice.FixedPoint = True
style.CellType = curPrice
style.HorizontalAlign = HorizontalAlign.Right
style.VerticalAlign = VerticalAlign.Middle
FpSpread1.ActiveSheetView.SetStyleInfo(-1, 3, style)

3.
 Save
your
project.

Run
your
project
and
you
should
see
a
form
that
looks
similar
to
the
following:

Your
bound
Spread
component
is
complete!
You
have
completed
this
tutorial.

Spread for ASP.NET Developer’s Guide 310

Copyright © GrapeCity, Inc. All rights reserved.

Managing Data in the Component

The
tasks
involved
with
handling
data
include
these:

Saving
Data
to
the
Server
Placing
and
Retrieving
Data
Server-Side
Scripting

For
information
on
loading
data
from
files
and
saving
data
to
files,
refer
to
Managing
File
Operations.

For
information
about
working
with
bound
data,
refer
to
Managing
Data
Binding.

Saving Data to the Server

You
must
save
changes
from
the
client
in
order
to
update
the
data
on
the
server.
Changes
from
the
client
can
be
saved
either
by
using
the
SaveChanges
('SaveChanges
Method'
in
the
on-line
documentation)
method
in
code
or
by
the
user
clicking
the
Update
button
on
the
command
bar.

Be
sure
to
display
the
command
bar
to
allow
the
Update
button
to
be
displayed.
For
more
information
about
the
command
bar,
refer
to
Customizing
the
Command
Buttons.

Placing and Retrieving Data

You
can
add
and
return
data
for
the
component.
How
you
add
data
or
return
it
depends
on
whether
you
want
to
work
with
formatted
data,
which
might
include
formatting
characters,
or
unformatted
data,
and
whether
you
are
adding
or
returning
data
for
a
range
of
cells
or
an
individual
cell.
You
can
use
sheet
methods
and
cell
properties
to
work
with
formatted
or
unformatted
data.

Read
the
following
sections
for
more
information
and
instructions:

Handling
Data
Using
Sheet
Methods
Handling
Data
Using
Cell
Properties

You
can
place
(set)
data
in
cells
and
retrieve
(get)
the
data.
For
more
information,
refer
to
Understanding
How
Cell
Types
Display
Data.

Handling Data Using Sheet Methods

You
can
place
data
in
cells
as
formatted
or
unformatted
strings
or
as
data
objects.
The
best
way
to
place
data
in
cells
depends
on
whether
you
want
to
add
string
data
or
data
objects,
and
if
you
want
to
add
data
to
an
individual
cell
or
to
a
range
of
cells.

If
you
are
working
with
data
provided
by
a
user,
for
example,
in
a
text
box,
you
will
probably
want
to
add
the
data
as
string
data
that
is
parsed
by
the
FpSpread
component.
If
you
are
adding
several
values
and
want
to
add
them
directly
to
the
data
model,
you
can
add
them
as
objects.

Formatted
data
usually
includes
information
that
denotes
the
context
of
the
data.
Unformatted
data
does
not
include
additional
information
and
might
require
a
specific
format
to
convey
meaning.
For
example,
formatted
currency
data
might
include
currency
and
separator
characters
to
indicate
monetary
value,
as
in
$1,025.34.
Unformatted
data
would
not
include
the
currency
and
separator
characters,
only
the
numeric
value,
as
in
1025.34.

Spread for ASP.NET Developer’s Guide 311

Copyright © GrapeCity, Inc. All rights reserved.

The
following
table
summarizes
the
ways
you
can
add
data
using
methods
at
the
sheet
level.

Data
Description How
Many
Cells

Method

As
a
string
with
formatting
(for
example
"$1,234.56")

Individual
cell GetText
('GetText
Method'
in
the
on-line
documentation)

SetText
('SetText
Method'
in
the
on-line
documentation)

 Range
of
cells GetClip
('GetClip
Method'
in
the
on-line
documentation)

SetClip
('SetClip
Method'
in
the
on-line
documentation)

As
a
string
without
formatting
(for
example
"1234.45")

Individual
cell GetValue
('GetValue
Method'
in
the
on-line
documentation)

SetValue
('SetValue
Method'
in
the
on-line
documentation)

 Range
of
cells GetClipValue
('GetClipValue
Method'
in
the
on-
line
documentation)

SetClipValue
('SetClipValue
Method'
in
the
on-
line
documentation)

As
a
data
object
with
formatting Range
of
cells GetArray
('GetArray
Method'
in
the
on-line
documentation)

SetArray
('SetArray
Method'
in
the
on-line
documentation)

To
add
data
to
a
cell
using
code,

Add
formatted
string
data
by
calling
the
SheetView
object
SetText
('SetText
Method'
in
the
on-line
documentation)
method
or
by
calling
the
Cell
object
Text
('Text
Property'
in
the
on-line
documentation)
property.
Add
data
as
objects
directly
into
the
data
model
by
calling
the
SheetView
object
SetValue
('SetValue
Method'
in
the
on-line
documentation)
method
or
by
calling
the
Cell
('Cell
Class'
in
the
on-line
documentation)
object
Value
('Value
Property'
in
the
on-line
documentation)
property.

To
add
data
to
a
range
of
cells,

Add
formatted
string
data
by
calling
the
SheetView
object
SetClip
('SetClip
Method'
in
the
on-line
documentation)
method.
Add
unformatted
string
data
by
calling
the
SheetView
object
SetClipValue
('SetClipValue
Method'
in
the
on-line
documentation)
method.
Add
data
as
objects
directly
into
the
data
model
by
calling
the
model
SetArray
method.

When
you
work
with
formatted
data,
the
data
is
parsed
by
the
cell
type
formatted
for
that
cell
and
placed
in
the
data
model.
When
you
work
with
unformatted
data,
the
data
goes
directly
into
the
data
model.
If
you
add
data
to
the
sheet
that
is
placed
directly
into
the
data
model,
you
might
want
to
parse
the
data
because
the
component
does
not
do
so.
To
understand
the
effect
that
the
cell
type
has
on
this
data,
refer
to
the
summary
in
Understanding
How
Cell
Types
Display
Data.

You
can
write
HTML
tags
in
cells
using
the
Text
property.
The
following
code
allows
you
to
add
HTML
code
into
a
cell
by
setting
the
EncodeValue
('EncodeValue
Property'
in
the
on-line
documentation)
property
of
Spread:

Spread for ASP.NET Developer’s Guide 312

Copyright © GrapeCity, Inc. All rights reserved.

VB
FpSpread1.EncodeValue = False
FpSpread1.Cells(0, 0).Text = "GrapeCity"

To
add
a
large
amount
of
information
to
the
component,
consider
creating
and
opening
existing
files,
such
as
text
files
or
Excel-formatted
files,
as
explained
in
Opening
Existing
Files.

You
can
also
return
data
by
saving
the
data
or
the
data
and
formatting
to
a
text
file,
Excel-formatted
file,
or
Spread
XML
file.
For
instructions
for
saving
data
to
these
file
types,
see
Saving
Data
to
a
File.

Using
a
Shortcut

Place
formatted
string
data
using
the
Sheet
SetClip
('SetClip
Method'
in
the
on-line
documentation)
method.

Example

This
example
code
adds
formatted
data
to
a
range
of
cells.

C#
// Add data to cells A1 through C3.
fpSpread1.Sheets[0].SetClip(0, 0, 2,
2,"Sunday\tMonday\tTuesday\r\nWednesday\tThursday\tFriday\r\nSaturday\tSunday\tMonday");

VB
' Add data to cells A1 through C3.
FpSpread1.Sheets(0).SetClip(0, 0, 2, 2, "Sunday" + vbTab + "Monday" + vbTab + "Tuesday"
+ vbCrLf + "Wednesday" + vbTab + "Thursday" + vbTab + "Friday" + vbCrLf + "Saturday" +
vbTab + "Sunday" + vbTab + "Monday")

Using
Code

Add
formatted
string
data
by
calling
the
SheetView
object
SetClip
('SetClip
Method'
in
the
on-line
documentation)
method.

Example

This
example
code
adds
formatted
data
to
a
range
of
cells.

C#
// Create a new SheetView object.
FarPoint.Web.Spread.SheetView newsheet=new FarPoint.Web.Spread.SheetView();
// Add data to cells A1 through C3.
newsheet.SetClip(0, 0, 2, 2, "Sunday\tMonday\tTuesday\r\nWednesday\tThursday\tFriday
\r\nSaturday\tSunday\tMonday");
// Assign the SheetView object to a sheet in the component.
fpSpread1.Sheets[0] = newsheet;

VB
' Create a new SheetView object.
Dim newsheet As New FarPoint.Web.Spread.SheetView()
' Add data to cells A1 through C3.
newsheet.SetClip(0, 0, 2, 2, "Sunday" + vbTab + "Monday" + vbTab + "Tuesday" + vbCrLf +

Spread for ASP.NET Developer’s Guide 313

Copyright © GrapeCity, Inc. All rights reserved.

"Wednesday" + vbTab + "Thursday" + vbTab + "Friday" + vbCrLf + "Saturday" + vbTab +
"Sunday" + vbTab + "Monday")
' Assign the SheetView object to a sheet in the component.
FpSpread1.Sheets(0) = newsheet

Handling Data Using Cell Properties

The
following
table
summarizes
the
ways
you
can
get
or
set
data
in
cells
using
the
properties
of
the
cell.

Data
Description Cell
Class
Property
As
a
string
with
formatting
(for
example
"$1,234.56") Text
('Text
Property'
in
the
on-line
documentation)

As
a
string
without
formatting
(for
example
"1234.45")

Value
('Value
Property'
in
the
on-line
documentation)

Using
Code

Set
the
Text
('Text
Property'
in
the
on-line
documentation)
property.

Example

This
example
code
sets
the
Text
('Text
Property'
in
the
on-line
documentation)
property
for
the
cell.

C#
FpSpread1.Sheets[0].Cells[0,0].Text = "test";

VB
FpSpread1.Sheets(0).Cells(0,0).Text = "test"

Server-Side Scripting

You
can
handle
server-side
scripting
by
performing
these
tasks:

Understanding
Effects
of
Client-Side
Validation
Understanding
Postback
and
Page
Load
Events
Understanding
the
Effect
of
Mode
on
Events

Understanding Effects of Client-Side Validation

To
enable
client-side
validation,
you
use
the
EnableClientScript
('EnableClientScript
Property'
in
the
on-line
documentation)
property.
But
setting
this
property
affects
many
aspects
of
the
FpSpread
component,
including
its
appearance
and
what
events
occur.
By
setting
the
EnableClientScript
('EnableClientScript
Property'
in
the
on-
line
documentation)
property
to
false,
the
component
produces
pages
that
are
similar
to
the
pages
the
component
produces
for
down-level
browsers.

The
following
table
describes
the
effect
the
setting
of
the
EnableClientScript
('EnableClientScript
Property'
in
the
on-line
documentation)
property
has
on
the
component.

Feature EnableClientScript
Property
Setting
and
Effect
Command
bar

When
it
is
set
to
false,
the
command
bar
buttons
change
to
display
an
Edit
button
and
the
Cut,
Copy,
and
Paste
buttons
are
not
displayed.

Spread for ASP.NET Developer’s Guide 314

Copyright © GrapeCity, Inc. All rights reserved.

buttons

Control
size

When
it
is
set
to
false,
the
component
automatically
sizes
to
the
size
of
the
page.
For
example,
if
the
sheet
has
only
two
columns
and
two
rows,
the
component
displays
only
those
two
columns
and
rows,
and
no
gray
area.

Events The
events
that
occur
for
the
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
class
are
affected
by
the
setting
of
this
property,
the
AutoPostBack
('AutoPostBack
Property'
in
the
on-line
documentation)
property,
and
the
SheetView
class’s
OperationMode
('OperationMode
Property'
in
the
on-line
documentation)
property
as
listed
in
the
table
in
Understanding
the
Effect
of
Mode
on
Events.

Message
row
display

If
it
is
set
to
true,
the
component
displays
error
messages
as
pop‑ups.
If
it
is
set
to
false,
the
component
adds
an
extra
row
below
the
row
with
the
error,
in
which
to
display
the
error
message.
The
additional
row
is
not
numbered.

Selection
display

If
it
is
set
to
true,
the
selection
text
color
is
not
displayed,
but
the
row
or
column
header
displays
the
selection
background
color.
If
it
is
set
to
false,
the
selection
text
color
is
displayed,
but
the
row
or
column
header
do
not
display
the
selection
background
color.

Styles
(and
cell
editor)

If
it
is
set
to
false
when
using
a
custom
style
(a
NamedStyle
('NamedStyle
Class'
in
the
on-line
documentation)
object),
you
should
set
the
Parent
('Parent
Property'
in
the
on-line
documentation)
property
of
the
NamedStyle
('NamedStyle
Class'
in
the
on-line
documentation)
to
DataAreaDefault
because
the
style
has
no
editor
and
so
no
cells
are
editable.
Set
the
Parent
('Parent
Property'
in
the
on-line
documentation)
property
to
use
DataAreaDefault
as
the
parent
style
so
that
the
GeneralCellType
editor
is
inherited
from
the
DataAreaDefault
and
the
cells
are
thus
editable.

The
following
image
displays
the
control
with
the
EnableClientScript
('EnableClientScript
Property'
in
the
on-
line
documentation)
property
set
to
false.

Understanding Postback and Page Load Events

When
you
run
an
ASP.NET
application,
the
FpSpread
component
on
the
server
outputs
its
data
and
settings
in
HTML,
which
is
sent
to
the
client
along
with
scripting
if
the
EnableClientScript
('EnableClientScript
Property'
in
the
on-line
documentation)
property
is
set
to
true
and
the
client’s
browser
can
handle
or
is
set
to
allow
scripting.

Code
you
have
added
to
the
PageLoad
event
in
your
application
occurs
at
the
time
the
HTML
page
is
sent
from
the
server,
and
every
time
the
page
is
sent
from
the
server.
Therefore,
it
is
important
to
understand
that
every
action
that
you
provide
or
that
users
perform
that
initiates
a
postback
to
the
server
loads
a
new
page
into
the
browser.
Any
code
you
have
in
the
PageLoad
event
is
re-executed
at
the
time
the
new
page
is
sent.

For
example,
if
you
set
data
in
a
cell
in
the
PageLoad
event,
such
as
setting
cell
A1
to
the
value
100,
then
the
user
changes
the
value
in
the
cell,
then
clicks
a
button,
the
page
posts
back
to
the
server,
and
the
PageLoad
event
resets
the
value
of
the
cell
to
100.
The
user’s
data
is
lost.

To
deal
with
this
chain
of
events
in
the
page
loads,
you
should
add
code
to
the
PageLoad
event
that
checks
if
the
page
is
a
postback
or
the
initial
load
of
the
page.

Use
a
single
line
in
the
PageLoad
event.

Example

Spread for ASP.NET Developer’s Guide 315

Copyright © GrapeCity, Inc. All rights reserved.

Use
the
following
code
in
the
PageLoad
event
to
prevent
inadvertent
changes
to
pages
due
to
post
backs:

C#
if (this.IsPostBack) return;

VB
If (IsPostBack) Then
 Return
End If

Understanding the Effect of Mode on Events

The
setting
of
the
EnableClientScript
('EnableClientScript
Property'
in
the
on-line
documentation)
property
affects
many
aspects
of
the
FpSpread
component,
including
its
appearance
and
what
events
occur,
depending
on
the
operation
mode.

Events
that
are
not
listed
in
the
following
table
are
not
affected
by
the
operation
mode.

The
events
that
occur
for
the
FpSpread
class
are
affected
by
the
EnableClientScript
('EnableClientScript
Property'
in
the
on-line
documentation)
setting
and
the
SheetView
class
OperationMode
('OperationMode
Property'
in
the
on-line
documentation)
property
as
listed
in
the
following
table.

Event Normal ReadOnly RowMode SingleSelect
ActiveRowChanged
('ActiveRowChanged
Event'
in
the
on-line
documentation)

Occurs
if
EnableClient-
Script
is
false

Does
not
occur

Occurs
if
EnableClient-
Script
is
false

Occurs
if
EnableClient-
Script
is
false

ActiveSheetChanged
('ActiveSheetChanged
Event'
in
the
on-
line
documentation)

Occurs Occurs Occurs Occurs

ButtonCommand
('ButtonCommand
Event'
in
the
on-line
documentation)

Occurs Occurs Occurs Occurs

CancelCommand
('CancelCommand
Event'
in
the
on-line
documentation)

Occurs Does
not
occur

Occurs Does
not
occur

CellClick
('CellClick
Event'
in
the
on-line
documentation)

Occurs
if
AutoPostBack
is
true

Occurs
if
AutoPostBack
is
true

Occurs
if
AutoPostBack
is
true

Occurs
if
AutoPostBack
is
true

ChildViewCreated
('ChildViewCreated
Event'
in
the
on-line
documentation)

Occurs Occurs Occurs Occurs

ColumnHeaderClick
('ColumnHeaderClick
Event'
in
the
on-
line
documentation)

Occurs
if
AutoPostBack
is
true

Occurs
if
AutoPostBack
is
true

Occurs
if
AutoPostBack
is
true

Occurs
if
AutoPostBack
is
true

CreateButton
('CreateButton
Event'
in
the
on-line
documentation)

Occurs Occurs Occurs Occurs

DeleteCommand
('DeleteCommand
Event'
in
the
on-line
documentation)
(AllowDelete
set
to
true)

Occurs Does
not
occur

Occurs Does
not
occur

EditCommand
('EditCommand
Event'
in
the
on-line
documentation)

Occurs
if
EnableClient-
Script
is
false

Does
not
occur

Occurs
if
EnableClient-
Script
is
false

Does
not
occur

Spread for ASP.NET Developer’s Guide 316

Copyright © GrapeCity, Inc. All rights reserved.

ErrorCommand
('ErrorCommand
Event'
in
the
on-line
documentation)

Occurs
if
EnableClient-
Script
is
false

Does
not
occur

Occurs
if
EnableClient-
Script
is
false

Does
not
occur

InsertCommand
('InsertCommand
Event'
in
the
on-line
documentation)
(AllowInsert
set
to
true)

Occurs Does
not
occur

Occurs Does
not
occur

RowHeaderClick
('RowHeaderClick
Event'
in
the
on-line
documentation)

Occurs
if
AutoPostBack
is
true

Occurs
if
AutoPostBack
is
true

Occurs
if
AutoPostBack
is
true

Occurs
if
AutoPostBack
is
true

SaveOrLoadSheetState
('SaveOrLoadSheetState
Event'
in
the
on-
line
documentation)

Occurs Occurs Occurs Occurs

SortColumnCommand
('SortColumnCommand
Event'
in
the
on-
line
documentation)
(AllowSort
set
to
true)

Occurs Occurs Occurs Occurs

TopRowChanged
('TopRowChanged
Event'
in
the
on-line
documentation)
(does
not
occur
if
scroll
bar
is
used
to
change
the
top
row)

Occurs Occurs Occurs Occurs

UpdateCommand
('UpdateCommand
Event'
in
the
on-line
documentation)

Occurs Does
not
occur

Occurs Does
not
occur

Spread for ASP.NET Developer’s Guide 317

Copyright © GrapeCity, Inc. All rights reserved.

Managing Formulas

The
following
topics
provide
information
about
creating
and
using
formulas.

Placing
a
Formula
in
Cells
Specifying
a
Cell
Reference
Style
in
a
Formula
Using
a
Circular
Reference
in
a
Formula
Nesting
Functions
in
a
Formula
Finding
a
Value
with
Goal
Seeking
Recalculating
and
Updating
Formulas
Automatically
Creating
a
Custom
Function
Creating
a
Custom
Name
Using
the
Formula
Extender
Control
(on-line
documentation)

For
more
information
about
formulas,
refer
to
the
Formula
Reference.

Placing a Formula in Cells

You
can
add
a
formula
to
a
cell
or
range
of
cells.
You
can
also
add
a
formula
to
all
the
cells
in
a
row
or
column.
The
formula
is
a
string
with
the
expression
of
the
formula,
typically
containing
a
combination
of
functions,
operators,
and
constants.
The
formula
can
use
cell
and
cross-sheet
references.

When
assigning
a
formula
to
the
Row
('Row
Class'
in
the
on-line
documentation)
class
or
Column
('Column
Class'
in
the
on-line
documentation)
class,
you
are
assigning
a
default
formula
for
that
row
or
column.
In
other
words,
the
formula
is
used
for
every
cell
in
the
row
or
column
(assuming
that
the
formula
is
not
overridden
at
the
cell
level).
For
a
formula
in
a
row
or
column,
Spread
uses
the
first
cell
in
the
row
or
column
as
the
base
location.
The
formula
evaluates
to
a
different
result
for
each
cell
in
column
A
if
you
use
relative
addressing.
If
you
want
each
cell
in
column
A
to
evaluate
to
the
sum
of
the
values
in
C2
and
D2
(and
not
the
value
in
the
C
and
D
columns
for
each
row)
then
you
would
need
to
use
the
formula
C2+D2,
which
uses
absolute
addressing.
For
examples
of
formulas
that
use
cell
references,
refer
to
Specifying
a
Cell
Reference
Style
in
a
Formula.

You
can
add
a
formula
by
specifying
the
Formula
('Formula
Property'
in
the
on-line
documentation)
property
for
the
object
or
by
entering
it
in
the
Spread
Designer.
The
procedures
for
using
code
are
given
below.
For
instructions
on
using
Spread
Designer
to
enter
a
formula,
refer
to
Adding
Formulas
to
Cells.

Be
careful
of
the
type
of
cell
in
which
the
data
is
found,
and
whether
you
use
the
Text
('Text
Property'
in
the
on-line
documentation)
or
Value
('Value
Property'
in
the
on-line
documentation)
property
when
assigning
data
that
is
used
in
a
formula.
When
you
assign
cell
data
using
the
Text
property,
the
spreadsheet
uses
the
cell
type
to
parse
an
assigned
string
into
the
needed
data
type.
For
example,
a
NumberCellType
parses
a
string
into
a
double
data
type.
When
you
assign
the
cell
data
using
the
Value
('Value
Property'
in
the
on-line
documentation)
property,
the
spreadsheet
accepts
the
assigned
object
as
is
and
no
parsing
occurs,
so
if
you
set
it
with
a
string,
it
remains
a
string.
Some
numeric
functions
(for
example,
SUM)
ignore
non-numeric
values
in
a
cell
range.
For
example,
if
the
cell
range
A1:A3
contains
the
values
{1,
"2",
3},
then
the
formula
SUM(A1:A3)
evaluates
to
4
because
the
SUM
function
ignores
the
string
"2".
Be
sure
that
you
set
the
value
correctly
for
any
cells
used
in
the
calculation
of
a
formula
and
that
you
set
them
with
the
correct
data
type.

If
the
AllowUserFormulas
('AllowUserFormulas
Property'
in
the
on-line
documentation)
property
is
true,
the
user
can
copy
formulas
to
other
cells
(type
=
and
select
the
formula
and
use
Control-C
to
copy
it).

For
more
information
about
formulas,
refer
to
the
Formula
Reference.

Using
a
Shortcut

Add
a
formula
to
a
cell,
row,
or
column
by
specifying
the
Formula
('Formula
Property'
in
the
on-line
documentation)
property
for
that
cell,
row,
or
column.

Spread for ASP.NET Developer’s Guide 318

Copyright © GrapeCity, Inc. All rights reserved.

http://sphelp.grapecity.com/WebHelp/SpreadNet10/FR/webframe.html#FormulaCover.html
http://sphelp.grapecity.com/WebHelp/SpreadNet10/FR/webframe.html#FormulaCover.html

Example

This
example
shows
how
to
specify
a
formula
that
finds
the
product
of
five
times
the
value
in
the
first
cell,
and
puts
the
result
in
another
cell.
Then
it
finds
the
sum
of
a
range
of
cells
(A1
through
A4)
and
puts
the
result
in
every
cell
of
the
third
column.

C#
FpSpread2.ActiveSheetView.Cells[2, 0].Formula = "PRODUCT(A1,5)";
FpSpread2.ActiveSheetView.Columns[3].Formula = "SUM(A1:A4)";

VB
FpSpread2.ActiveSheetView.Cells(2, 0).Formula = "PRODUCT(A1,5)"
FpSpread2.ActiveSheetView.Columns(3).Formula = "SUM(A1:A4)"

Using
Code

1.
 Specify
the
cell,
row,
or
column.
2.
 Add
a
formula
to
the
cell,
row,
or
column.

Example

This
example
shows
how
to
specify
a
formula
that
puts
the
sum
of
two
cells
in
a
third
cell.

C#
FarPoint.Web.Spread.Cell mycell;
mycell = FpSpread1.Cells[2, 0];
mycell.Formula = "SUM(A1:A2)";

VB
Dim mycell as FarPoint.Web.Spread.Cell
mycell = FpSpread1.Cells(2, 0)
mycell.Formula = "SUM(A1:A2)"

Example

This
example
shows
how
to
use
a
cross-sheet
reference
in
a
formula.

C#
FpSpread1.Sheets.Count = 3;
FpSpread1.Sheets[0].Cells[0, 0].Formula = "sheet1!A2+sheet2!A1";

VB
FpSpread1.Sheets.Count = 3
FpSpread1.Sheets(0).Cells(0, 0).Formula = "sheet1!A2+sheet2!A1"

Specifying a Cell Reference Style in a Formula

Besides
values,
operators,
and
functions,
a
formula
can
contain
references
to
values
in
other
cells
or
sheets.
For
example,
to
find
the
sum
of
the
values
in
two
cells,
the
formula
can
refer
to
the
cell
coordinates
by
row
and
column.
You
can
use
an
absolute
cell
reference
(with
the
actual
coordinates
of
the
row
and
column)
or
a
relative
cell
reference
(with
the

Spread for ASP.NET Developer’s Guide 319

Copyright © GrapeCity, Inc. All rights reserved.

coordinates
relative
to
the
current
cell).
You
choose
the
type
of
cell
reference
for
the
sheet
by
using
the
ReferenceStyle
('ReferenceStyle
Property'
in
the
on-line
documentation)
property.
Spread
does
not
support
range
references
where
the
start
row
and
end
row
consist
of
different
reference
types
(for
example,
one
absolute
coordinate
and
one
relative
coordinate).
For
details
on
the
way
to
specify
the
reference
style,
refer
to
the
ReferenceStyle
('ReferenceStyle
Enumeration'
in
the
on-line
documentation)
enumeration
and
the
SheetView
('SheetView
Class'
in
the
on-line
documentation)
ReferenceStyle
('ReferenceStyle
Property'
in
the
on-line
documentation)
property
in
the
Assembly
Reference
(on-line
documentation).

If
you
have
changed
the
cell
reference
style
to
a
style
that
cannot
represent
the
formula,
the
component
provides
the
formula
with
question
marks
as
placeholders
for
cell
references
that
cannot
be
represented.

The
following
table
contains
examples
of
valid
formulas
using
references:

Function Description
SUM(A2:A10) Sums
rows
2
through
10
in
the
first
column

PI(
)*C6 Pi
times
the
value
in
cell
C6

(A3
+
B3)
*
C3 Adds
the
values
in
the
first
two
cells
of
row
3
and
multiplies
the
result
by
the
value
in
the
third
cell

IF(A4>5,
A4*2,
A4*3)

If
the
contents
of
cell
A4
are
greater
than
5,
then
multiply
the
contents
of
cell
A4
by
2,
or
else
multiply
the
contents
of
cell
A4
by
3

If
you
have
defined
relative
cell
references
used
in
a
formula
in
cell
B1
as
RC[‑1]+R[‑1]C,
the
formula
is
interpreted
as
add
the
value
in
the
cell
to
the
left
(A1)
to
the
value
in
the
cell
above
(B0).
The
component
treats
the
value
in
the
cell
B0
as
an
empty
cell.
If
you
change
the
cell
reference
style
to
the
A1
style,
the
formula
becomes
A1+B?,
because
the
A1
style
cannot
represent
cell
B0.
However,
the
component
still
evaluates
the
formula
as
it
would
using
the
R1C1
reference
style.

Note:
Remember
that
although
most
of
Spread
uses
zero-based
references
to
rows
and
columns,
in
the
creation
of
formulas
you
must
use
one-based
references.
The
column
and
row
numbers
start
at
one
(1),
not
zero
(0).

For
more
information
on
cell
reference
styles,
refer
to
the
Formula
Reference,
and
the
topic
Cell
References
in
a
Formula.

Using
Code

Specify
the
reference
style
by
setting
the
ReferenceStyle
('ReferenceStyle
Property'
in
the
on-line
documentation)
property
or
use
the
default
ReferenceStyle
value.

Example

This
example
sets
the
reference
style.

C#
FpSpread1.Sheets[0].ReferenceStyle = FarPoint.Web.Spread.Model.ReferenceStyle.A1;

VB
FpSpread1.Sheets(0).ReferenceStyle = FarPoint.Web.Spread.Model.ReferenceStyle.A1

Using
the
Spread
Designer

1.
 Select
the
Settings
menu.
2.
 Select
the
Calculation
icon
under
the
Sheet
Settings
section.
3.
 Set
the
various
formula
related
properties.
4.
 Select
OK
to
close
the
dialog.
5.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Spread for ASP.NET Developer’s Guide 320

Copyright © GrapeCity, Inc. All rights reserved.

http://sphelp.grapecity.com/WebHelp/SpreadNet10/FR/webframe.html#FormulaCover.html
http://sphelp.grapecity.com/WebHelp/SpreadNet10/FR/webframe.html#formulas-cellrefs.html
http://sphelp.grapecity.com/WebHelp/SpreadNet10/FR/webframe.html#formulas-cellrefs.html

Using a Circular Reference in a Formula

You
can
refer
to
a
formula
in
the
cell
that
contains
that
formula.
This
is
a
circular
reference.
This
is
done
typically
to
recursively
perform
a
function
to
approach
an
optimum
value.
You
can
select
how
many
times
a
function
iterates
on
itself
(recurses)
by
setting
the
MaximumIterations
('MaximumIterations
Property'
in
the
on-line
documentation)
property.
You
can
also
set
the
maximum
amount
of
change.
If
the
amount
of
change
(difference
between
the
current
and
previous
formula
result)
is
greater
than
the
maximum
change
value,
the
formula
continues
until
it
reaches
the
maximum
number
of
iterations
or
the
formula
result
change
is
less
than
the
maximum
change
value.

By
default,
if
the
formula
"=COLUMNS(A1:C5)"
is
in
cell
C4,
no
result
is
returned.
In
other
words,
if
both
the
last
column
and
row
index
of
the
array
are
greater
than
the
column
and
row
index
of
the
cell
in
which
the
formula
resides,
the
formula
cannot
be
calculated.
In
this
case,
the
cell
C4
is
in
the
range
A1:C5.
This
a
circular
reference
in
a
formula
and
so
Spread
does
not
evaluate
the
formula
unless
iterations
are
turned
on.

For
more
information
about
formulas,
refer
to
the
Formula
Reference.

Using
Code

1.
 Set
the
Iteration
('Iteration
Property'
in
the
on-line
documentation)
property
to
true
to
calculate
the
circular
reference.

2.
 Set
the
cell
types
for
the
formula.
3.
 Set
the
recalculation
iteration
count
with
the
MaximumIterations
('MaximumIterations
Property'
in
the
on-line
documentation)
property
for
the
sheet.

4.
 Set
the
reference
style
for
the
sheet.
5.
 Use
the
circular
reference
in
a
formula
in
a
cell.

Example

This
example
uses
a
circular
reference
in
a
cell
and
sets
the
iterations.

C#
FpSpread1.ActiveSheetView.Iteration = true;
FpSpread1.ActiveSheetView.SetValue(0, 1, 20);
FpSpread1.ActiveSheetView.MaximumChange = 5;
FpSpread1.ActiveSheetView.MaximumIterations = 5;
FpSpread1.ActiveSheetView.SetFormula(0, 0, "B1+C1");
FpSpread1.ActiveSheetView.SetFormula(0, 2, "A1*3");

VB
FpSpread1.ActiveSheetView.Iteration = True
FpSpread1.ActiveSheetView.SetValue(0, 1, 20)
FpSpread1.ActiveSheetView.MaximumChange = 5
FpSpread1.ActiveSheetView.MaximumIterations = 5
FpSpread1.ActiveSheetView.SetFormula(0, 0, "B1+C1")
FpSpread1.ActiveSheetView.SetFormula(0, 2, "A1*3")

Using
the
Spread
Designer

1.
 Select
the
Settings
menu.
2.
 Select
the
Calculation
icon
under
the
Sheet
Settings
section.
3.
 Check
the
Iteration
check
box.
4.
 Set
Maximum
Change
and
Maximum
Iterations.
5.
 Select
OK
to
close
the
dialog.

Spread for ASP.NET Developer’s Guide 321

Copyright © GrapeCity, Inc. All rights reserved.

http://sphelp.grapecity.com/WebHelp/SpreadNet10/FR/webframe.html#FormulaCover.html

6.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Nesting Functions in a Formula

You
can
nest
a
function
within
another
function
in
a
formula.

For
more
information
about
formulas,
refer
to
the
Formula
Reference.

Using
Code

1.
 Specify
the
cell
type.
2.
 Use
a
function
within
another
function
in
a
formula

Example

In
this
example
the
sum
of
the
value
in
two
cells
(found
by
using
the
SUM
function)
is
embedded
in
a
PRODUCT
formula.
First
the
cell
types
are
set
and
the
values
of
the
cells
are
set.

C#
FarPoint.Web.Spread.DoubleCellType ncell = new FarPoint.Web.Spread.DoubleCellType();
FpSpread1.Sheets[0].Cells[0, 0, 2, 0].CellType = ncell;
FpSpread1.Sheets[0].Cells[0, 0, 2, 0].Value = 2;
FpSpread1.Sheets[0].Cells[3, 1].Formula = "PRODUCT(A1, SUM(A2,A3))";

VB
Dim ncell As New FarPoint.Web.Spread.DoubleCellType
FpSpread1.Sheets(0).Cells(0, 0, 2, 0).CellType = ncell
FpSpread1.Sheets(0).Cells(0, 0, 2, 0).Value = 2
FpSpread1.Sheets(0).Cells(3, 1).Formula = "PRODUCT(A1, SUM(A2,A3))"

Finding a Value with Goal Seeking

You
can
find
the
closest
value
for
a
cell
that
produces
a
desired
formula
result
in
another
cell
using
the
goal
seeking
capability.

Use
the
GoalSeek
('GoalSeek
Method'
in
the
on-line
documentation)
method
in
the
FpSpread
('FpSpread
Class'
in
the
on-line
documentation)
class
to
find
an
input
value
that
produces
the
desired
formula
result.

For
more
information
about
formulas,
refer
to
the
Formula
Reference.

Using
Code

Use
the
GoalSeek
('GoalSeek
Method'
in
the
on-line
documentation)
method
to
get
the
required
value.

Example

In
this
example
the
formula
is
in
cell
(1,1).
The
result
that
you
want
to
see
in
the
formula
cell
is
32.
The
value
in
C1
is
what
is
required
to
get
a
result
of
32.

C#
FpSpread1.Sheets[0].Cells[1, 1].Formula = "C1+D1";
FpSpread1.Sheets[0].Cells[0, 3].Value = 2;
FpSpread1.GoalSeek(0, 0, 2, 0, 1, 1, 32);

Spread for ASP.NET Developer’s Guide 322

Copyright © GrapeCity, Inc. All rights reserved.

http://sphelp.grapecity.com/WebHelp/SpreadNet10/FR/webframe.html#FormulaCover.html
http://sphelp.grapecity.com/WebHelp/SpreadNet10/FR/webframe.html#FormulaCover.html

VB
FpSpread1.Sheets(0).Cells(1, 1).Formula = "C1+D1"
FpSpread1.Sheets(0).Cells(0, 3).Value = 2
FpSpread1.GoalSeek(0, 0, 2, 0, 1, 1, 32)

Recalculating and Updating Formulas Automatically

By
default,
the
spreadsheet
recalculates
formulas
in
the
spreadsheet
when
the
contents
of
dependent
cells
change.
You
can
turn
this
recalculation
off.

Also
by
default,
the
spreadsheet
updates
formulas
when
you
insert
or
delete
columns
or
rows
or
when
you
move
or
swap
blocks
of
cells.
You
can
turn
off
these
automatic
formula
updates.
However,
generally,
you
probably
want
the
spreadsheet
to
update
formulas
when
you
insert
or
delete
columns
or
rows
or
when
you
move
or
swap
blocks
of
cells.
Keep
in
mind
how
turning
off
automatic
formula
updating
might
impact
the
spreadsheet
if
the
user
moves
data,
adds
rows
or
columns,
or
performs
other
actions
that
affect
the
location
of
data.

When
automatic
formula
updating
is
on,
the
spreadsheet
updates
absolute
and
relative
cell
references,
as
follows:

When
the
spreadsheet
is
updating
formulas,
it
updates
absolute
cell
references
when
the
cell
referenced
by
the
formula
is
part
of
the
block
that
has
changed.
For
example,
if
you
have
a
formula
in
cell
C3
that
references
cell
A1,
which
uses
an
absolute
reference,
and
then
add
a
row
to
the
top
of
the
spreadsheet,
you
now
want
the
formula
to
reference
cell
A2,
because
cell
A1
is
empty.
If
the
spreadsheet
did
not
update
the
formula,
your
formula
would
be
referencing
different
data.

When
the
spreadsheet
is
updating
formulas,
it
updates
relative
cell
references
when
the
cell
referenced
by
the
formula
is
not
part
of
the
block
that
has
changed.
For
example,
if
you
have
a
formula
in
cell
C3
that
references
cell
C1
as
a
relative
reference,
it
references
cell
C1
as
the
cell
that
is
two
cells
above
it.
If
you
add
a
row
between
row
2
and
row
3,
cell
C3
is
now
C4,
and
the
relative
address
references
cell
C2,
the
cell
two
cells
above
it.
Therefore,
to
use
the
same
data
in
the
formula,
the
spreadsheet
updates
the
cell
reference
to
the
cell
three
cells
above
it,
C1.

Use
the
AutoCalculation
('AutoCalculation
Property'
in
the
on-line
documentation)
property
to
turn
on
or
off
the
automatic
recalculation
of
formulas.
Use
the
Recalculate
('Recalculate
Method'
in
the
on-line
documentation)
and
RecalculateAll
('RecalculateAll
Method'
in
the
on-line
documentation)
methods
for
recalculating
formulas.

The
ClientAutoCalculation
('ClientAutoCalculation
Property'
in
the
on-line
documentation)
property
is
used
for
automatic
calculation
of
client-side
data.
The
formula
updates
when
the
cell
goes
out
of
edit
mode
instead
of
waiting
until
the
user
clicks
on
the
save
changes
icon.
ClientAutoCalculation
('ClientAutoCalculation
Property'
in
the
on-line
documentation)
will
have
no
effect
on
a
hierarchy.
You
can
set
either
AutoCalculation
('AutoCalculation
Property'
in
the
on-line
documentation)
or
ClientAutoCalculation
('ClientAutoCalculation
Property'
in
the
on-line
documentation)
or
both
properties
at
the
same
time.

For
more
information
about
formulas,
refer
to
the
Formula
Reference.

Using
a
Shortcut

Set
the
AutoCalculation
('AutoCalculation
Property'
in
the
on-line
documentation)
property
and
the
ClientAutoCalculation
('ClientAutoCalculation
Property'
in
the
on-line
documentation)
property.

Example

This
example
sets
the
AutoCalculation
('AutoCalculation
Property'
in
the
on-line
documentation)
and
ClientAutoCalculation
('ClientAutoCalculation
Property'
in
the
on-line
documentation)
properties.

C#
FpSpread1.Sheets[0].AutoCalculation = true;

Spread for ASP.NET Developer’s Guide 323

Copyright © GrapeCity, Inc. All rights reserved.

http://sphelp.grapecity.com/WebHelp/SpreadNet10/FR/webframe.html#FormulaCover.html

FpSpread1.ClientAutoCalculation = true;

VB
FpSpread1.Sheets(0).AutoCalculation = True
FpSpread1.ClientAutoCalculation = True

Using
the
Spread
Designer

1.
 Select
the
Settings
menu.
2.
 Select
the
Calculation
icon
under
the
Sheet
Settings
section.
3.
 Check
the
Automatic
Calculation
check
box.
4.
 Select
the
Edit
icon
under
Spread
Settings
to
set
Client
Auto
Calculation.
5.
 Select
OK
to
close
the
dialog.
6.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Creating a Custom Function

If
you
have
functions
that
you
use
on
a
regular
basis
that
are
not
in
the
built-in
functions
or
if
you
wish
to
combine
some
of
the
built-in
functions
into
a
single
function,
you
can
do
so
by
defining
your
own
custom
functions.
They
can
be
called
as
you
would
call
any
of
the
built-in
functions.

A
custom
function
can
have
the
same
name
as
a
built-in
function.
The
custom
function
takes
priority
over
the
built-in
function.
Custom
functions
are
dynamically
linked
at
evaluation
time.
Thus,
the
application
can
redefine
an
existing
custom
function.

For
more
information
about
formulas,
refer
to
the
Formula
Reference.

Using
Code

1.
 Define
the
custom
function(s).
2.
 Register
the
function(s)
in
the
sheet
using
the
AddCustomFunction
('AddCustomFunction
Method'
in
the
on-line
documentation)
method.

3.
 Use
the
custom
function(s).

Example:
Creating,
Registering,
and
Using
Three
Custom
Functions

The
first
step
is
to
create
the
custom
functions.
In
this
example,
we
create
three
functions:
a
cube
mathematical
function,
an
XOR
logical
function,
and
a
null
string
function.
The
following
code
implements
the
custom
functions.

The
CUBE
custom
function
raises
a
number
to
the
third
power.
That
is,
CUBE(x)
is
equivalent
to
POWER(x,3).

C#
public class CubeFunctionInfo : FunctionInfo
{
public override string Name { get { return "CUBE"; } }
public override int MinArgs { get { return 1; } }
public override int MaxArgs { get { return 1; } }
public override object Evaluate (object[] args)
{
double num = CalcConvert.ToDouble(args[0]);
return num * num * num;
}
}

Spread for ASP.NET Developer’s Guide 324

Copyright © GrapeCity, Inc. All rights reserved.

http://sphelp.grapecity.com/WebHelp/SpreadNet10/FR/webframe.html#FormulaCover.html

The
XOR
custom
function
performs
an
exclusive
OR
operation
on
two
boolean
values.
This
is
similar
to
the
"^"operator
in
C
or
the
XOR
operator
in
VB.

C#
public class XorFunctionInfo : FunctionInfo
{
public override string Name { get { return "XOR"; } }
public override int MinArgs { get { return 2; } }
public override int MaxArgs { get { return 2; } }
public override object Evaluate (object[] args)
{
bool arg0 = CalcConvert.ToBool(args[0]);
bool arg1 = CalcConvert.ToBool(args[1]);
return (arg0 || arg1) && (arg0 != arg1);
}
}

The
NULL
function
returns
the
constant
value
null
[i.e.
similar
to
how
FALSE()
function
returns
the
constant
value
false].

C#
public class NullFunctionInfo : FunctionInfo
{
public override string Name { get { return "NULL"; } }
public override int MinArgs { get { return 0; } }
public override int MaxArgs { get { return 0; } }
public override object Evaluate (object[] args)
{
return null;
}
}

The
second
step
is
to
register
the
custom
functions
as
this
code
does.

C#
DefaultSheetDataModel dataModel = FpSpread1.ActiveSheetView.DataModel as
FarPoint.Web.Spread.Model.DefaultSheetDataModel;
if(dataModel != null) {
 dataModel.AddCustomFunction(new CubeFunctionInfo());
 dataModel.AddCustomFunction(new XorFunctionInfo());
 dataModel.AddCustomFunction(new NullFunctionInfo());
}

The
third
step
is
to
use
the
custom
functions
in
formulas,
as
shown
in
this
code.

C#
FpSpread1.ActiveSheetView.SetFormula(0, 0, "CUBE(5)");
FpSpread1.ActiveSheetView.SetFormula(1, 0, "XOR(FALSE,FALSE)");
FpSpread1.ActiveSheetView.SetFormula(1, 1, "XOR(TRUE,FALSE)");
FpSpread1.ActiveSheetView.SetFormula(1, 2, "XOR(FALSE,TRUE)");
FpSpread1.ActiveSheetView.SetFormula(1, 3, "XOR(TRUE,TRUE)");
FpSpread1.ActiveSheetView.SetFormula(2, 0, "CHOOSE(1,100,NULL(),300)");
FpSpread1.ActiveSheetView.SetFormula(2, 1, "CHOOSE(2,100,NULL(),300)");
FpSpread1.ActiveSheetView.SetFormula(2, 2, "CHOOSE(3,100,NULL(),300)");

Spread for ASP.NET Developer’s Guide 325

Copyright © GrapeCity, Inc. All rights reserved.

Creating a Custom Name

Custom,
user-defined
names
are
identifiers
to
represent
information
in
the
spreadsheet,
used
mostly
in
formulas.
A
custom
name
can
refer
to
a
cell,
a
range
of
cells,
a
computed
value,
or
a
formula.
You
can
define
a
custom
name
and
then
use
the
name
in
formulas.
When
the
formula
is
evaluated,
the
custom
name's
value
is
referenced
and
evaluated.

For
more
information
about
formulas,
refer
to
the
Formula
Reference.

Using
Code

Define
the
custom
name
using
the
AddCustomName
('AddCustomName
Method'
in
the
on-line
documentation)
method.

Example

To
add
a
custom
name,
use
the
AddCustomName
('AddCustomName
Method'
in
the
on-line
documentation)
method
as
shown
in
this
code:

C#
FarPoint.Web.Spread.Model.DefaultSheetDataModel d = new
FarPoint.Web.Spread.Model.DefaultSheetDataModel();
d.AddCustomName("test", "B1", 0, 0);

VB
Dim d FarPoint.Web.Spread.Model.DefaultSheetDataModel = New
FarPoint.Web.Spread.Model.DefaultSheetDataModel()
d.AddCustomName("test", "B1", 0, 0)

Example

To
add
a
custom
name
for
a
value,
use
the
AddCustomName
('AddCustomName
Method'
in
the
on-line
documentation)
method
as
shown
in
this
code:

C#
FarPoint.Web.Spread.Model.DefaultSheetDataModel d;
d = (FarPoint.Web.Spread.Model.DefaultSheetDataModel)FpSpread1.Sheets[0].DataModel;
d.AddCustomName("alpha", "101", 0, 0);

VB
Dim d As New FarPoint.Web.Spread.Model.DefaultSheetDataModel
d = (FarPoint.Web.Spread.Model.DefaultSheetDataModel)FpSpread1.Sheets(0).DataModel
d.AddCustomName("alpha", "101", 0, 0)

Spread for ASP.NET Developer’s Guide 326

Copyright © GrapeCity, Inc. All rights reserved.

http://sphelp.grapecity.com/WebHelp/SpreadNet10/FR/webframe.html#FormulaCover.html

Managing File Operations

You
can
save
data
from
Spread
into
several
different
file
types
and
open
data
files
from
several
different
file
types
into
Spread.
At
design
time,
you
can
use
the
Spread
Designer
to
save
the
Spread
to
any
of
various
file
types
or
open
previously
saved
files.
With
code,
you
can
save
the
whole
component,
a
particular
sheet,
or
data
from
a
particular
range
of
cells
to
several
different
file
types
or
streams.
Similarly,
you
can
allow
your
users
to
handle
file
operations
for
a
range
of
file
types.

The
procedures
for
managing
file
operations
include:

Saving
Data
to
a
File
Opening
Existing
Files

For
information
on
saving
skins,
which
can
be
saved
as
files,
refer
to
Creating
a
Skin
for
Sheets.

Saving Data to a File

You
can
save
the
data,
and
for
some
types
of
files
both
the
data
and
formatting,
in
the
component
to
a
file
or
stream.
Spread
provides
methods
for
saving
from
a
Spread
file
to
several
industry
accepted
file
types
including
Microsoft
Excel
and
plain
text
files.

Consult
the
following
sections
for
instructions
and
more
information
regarding
saving
to
a
file:

Saving
to
a
Spread
XML
File
Saving
to
an
Excel
File
Saving
to
a
Text
File
Saving
to
an
HTML
File
Saving
to
a
PDF
File

Saving to a Spread XML File

You
can
save
the
data
or
the
data
and
formatting
in
an
FpSpread
component
to
a
Spread
XML
file
or
to
a
stream.
When
you
save,
all
sheets
in
the
component
are
saved
to
the
file
or
stream
or
a
specific
sheet
can
be
saved.
If
you
choose
to
save
the
formatting,
the
data
saved
includes
formatting
characters,
such
as
currency
symbols,
and
other
information
such
as
cell
types
are
also
saved.

You
can
also
save
a
file
from
inside
Spread
Designer.

Refer
to
the
SheetView
class
Save
('Save
Method'
in
the
on-line
documentation)
methods.

For
instructions
for
opening
Spread-compatible
XML
files,
see
Opening
a
Spread
XML
File.

Using
Code

Use
the
FpSpread
component’s
Save
('Save
Method'
in
the
on-line
documentation)
method,
specifying
the
path
and
file
name
of
the
Spread
XML
file
to
save
or
the
Stream
object
to
save,
and
whether
to
save
data
only
or
data
and
formatting.

Example

This
example
code
saves
the
data
and
formatting
in
a
component
to
an
XML
file.

C#
// Save the data and formatting to an XML file.
FpSpread1.Save("C:\\savefile.xml", False);

Spread for ASP.NET Developer’s Guide 327

Copyright © GrapeCity, Inc. All rights reserved.

VB
' Save the data and formatting to an XML file.
FpSpread1.Save("C:\savefile.xml", False)

Using
the
Spread
Designer

1.
 Select
the
File
menu.
2.
 Choose
the
Save
option.

The
Save
As
dialog
appears.

3.
 For
the
Save
As
type,
select
Spread
files
(*.xml).
4.
 Specify
the
path
and
file
name
to
which
to
save
the
file,
and
then
click
Save.

If
the
file
is
saved
successfully,
a
message
appears
stating
the
file
has
been
saved.

5.
 Click
OK
to
close
the
Spread
Designer.

Saving to an Excel File

You
can
save
data
to
an
Excel-formatted
(BIFF8
format
or
XLSX)
file
or
stream.
There
are
multiple
SaveExcel
('SaveExcel
Method'
in
the
on-line
documentation)
methods
each
with
several
options.
For
instance,
you
can
specify
whether
headers
are
saved
with
the
data
using
the
setting
of
the
IncludeHeaders
('IncludeHeaders
Enumeration'
in
the
on-line
documentation)
enumeration.
Use
the
ExcelSaveFlags.UseOOXMLFormat
with
the
ExcelSaveFlags
enumeration
to
save
to
an
XLSX
format.

The
document
caching
option
in
the
ExcelOpenFlags
or
ExcelSaveFlags
enumeration
allows
users
to
open,
edit,
and
save
without
the
loss
of
advanced
document
content
and
formatting.
Advanced
content
includes
items
such
as
macros,
ActiveX
controls,
data
connections,
and
so
on.
Consider
the
following
when
using
the
document
caching
option:

Advanced
document
content
is
preserved
(lossless)
only
if
the
opening
file
format
is
similar
to
the
saving
file
format.

If
the
advanced
document
content
uses
files
besides
the
xls(x)
file,
then
the
additional
files
need
to
be
in
the
same
folder
with
the
xls(x)
file.

To
keep
any
document
caching
settings
(changes
would
be
lost
during
a
postback),
open
the
original
file
with
the
document
caching
only
setting
and
then
save
the
file
using
the
document
caching
setting.

You
can
also
save
a
file
from
inside
Spread
Designer.

The
SaveExcel
button
on
the
CommandBar
allows
users
to
export
a
spreadsheet
into
an
Excel
file.
To
display
this
button
on
the
CommandBar,
users
need
to
set
the
ShowExcelButton
('ShowExcelButton
Property'
in
the
on-line
documentation)
property
in
the
CommandBarInfo
('CommandBarInfo
Class'
in
the
on-line
documentation)
class
to
true.

For
more
information
on
exporting
spreadsheets
to
excel
files,
see
Working
with
the
SaveExcel
button
on
the
CommandBar
(on-line
documentation).

For
instructions
for
opening
Excel-compatible
files,
see
Opening
an
Excel-Formatted
File.

For
more
information
about
how
the
data
and
formatting
is
exported
to
the
Excel
file
format,
see
the
Import
and
Export
Reference
(on-line
documentation).

Using
Code

Use
the
FpSpread
object’s
SaveExcel
('SaveExcel
Method'
in
the
on-line
documentation)
method,
providing
the
path
and
file
name
for
the
file
to
save,
or
providing
additional
information
using
one
of
the
overloaded
methods.

Example

Spread for ASP.NET Developer’s Guide 328

Copyright © GrapeCity, Inc. All rights reserved.

The
first
example
saves
the
data
in
a
FpSpread
component
to
an
Excel-formatted
file
and
specifies
that
both
row
and
column
headers
are
included
in
the
output.
The
second
example
saves
to
a
stream.

C#
// Save data to Excel-formatted file, including headers.
FpSpread1.SaveExcel("C:\\excelfile.xls",
FarPoint.Web.Spread.Model.IncludeHeaders.BothCustomOnly);
// Save data to memory stream and then load in second component.
System.IO.MemoryStream s = new System.IO.MemoryStream();
FpSpread1.SaveExcel(s);
s.Position = 0;
FpSpread2.OpenExcel(s);
s.Close();

VB
' Save data to an Excel-formatted file, including headers.
FpSpread1.SaveExcel("C:\excelfile.xls",
FarPoint.Web.Spread.Model.IncludeHeaders.BothCustomOnly)
' Save data to memory stream and then load in second component.
Dim s As New System.IO.MemoryStream()
FpSpread1.SaveExcel(s)
s.Position = 0
FpSpread2.OpenExcel(s)
s.Close()

Using
the
Spread
Designer

1.
 Select
the
File
menu.
2.
 Choose
the
Save
option.

The
Save
As
dialog
appears.

3.
 For
the
Save
As
type,
select
Excel
files
(.xls
or
.xlsx).
4.
 Specify
the
path
and
file
name
to
which
to
save
the
file,
and
then
click
Save.
5.
 Click
OK
to
close
the
Spread
Designer.

Saving to a Text File

You
can
save
the
data
or
the
data
and
formatting
in
a
sheet
to
a
text
file,
using
either
default
tab
delimiters
or
custom
delimiters.

Saving
to
a
text
file
is
done
for
individual
sheets.
If
you
want
to
save
all
the
sheets
in
the
component,
you
must
save
each
sheet
to
a
text
file.

There
are
multiple
SaveTextFile
('SaveTextFile
Method'
in
the
on-line
documentation)
methods
each
with
several
options.
For
instance,
you
can
specify
whether
headers
are
saved
with
the
data
using
the
setting
of
the
IncludeHeaders
('IncludeHeaders
Enumeration'
in
the
on-line
documentation)
enumeration.

Tab-delimited
files
saved
from
the
component
contain
data
separated
by
tabs
and
carriage
returns.
Tab-delimited
files
can
be
opened,
modified,
and
saved
using
any
standard
text
editor.
Delimited
files
contain
data
separated
by
user-
defined
delimiters,
such
as
commas,
quotation
marks,
or
other
delimiters.

You
can
save
the
entire
spreadsheet
or
a
portion
of
the
spreadsheet
data
from
the
component
to
tab-delimited
and
delimited
files.

You
can
also
save
a
file
from
inside
Spread
Designer.
The
Spread
Designer
saves
the
current
sheet.

Spread for ASP.NET Developer’s Guide 329

Copyright © GrapeCity, Inc. All rights reserved.

For
instructions
for
opening
text
files,
see
Opening
a
Text
File.

Using
a
Shortcut

1.
 To
save
the
entire
sheet,
call
one
of
the
SheetView
object
SaveTextFile
('SaveTextFile
Method'
in
the
on-
line
documentation)
methods,
specifying
the
path
and
file
name
or
stream,
whether
data
or
data
and
formatting
is
saved,
whether
headers
are
saved,
and
the
custom
delimiters,
depending
on
the
particular
method
you
choose.

2.
 To
save
a
portion
of
a
sheet,
call
one
of
the
SheetView
object
SaveTextFileRange
('SaveTextFileRange
Method'
in
the
on-line
documentation)
methods,
specifying
the
starting
row
and
column,
the
number
of
rows
and
columns
to
save,
the
path
and
file
name
or
stream,
whether
data
or
data
and
formatting
is
saved,
whether
headers
are
saved,
and
the
custom
delimiters,
depending
on
the
particular
method
you
choose.

Example

This
example
code
saves
a
range
of
data
and
formatting
to
a
text
file,
including
headers
and
using
custom
delimiters.

C#
// Save a range of data and formatting to a text file.
FpSpread1.Sheets[0].SaveTextFileRange(1, 1, 1, 2, "C:\\filerange.txt", false,
FarPoint.Web.Spread.Model.IncludeHeaders.BothCustomOnly, "#", "%", "^");

VB
' Save a range of data and formatting to a text file.
FpSpread1.Sheets(0).SaveTextFileRange(1, 1, 1, 2, "C:\filerange.txt", False,
FarPoint.Web.Spread.Model.IncludeHeaders.BothCustomOnly, "#", "%", "^")

Using
the
Spread
Designer

1.
 Select
the
File
menu.
2.
 Choose
the
Save
option.

The
Save
As
dialog
appears.

3.
 For
the
Save
As
type,
select
Text
files
(.txt).
4.
 Specify
the
path
and
file
name
to
which
to
save
the
file,
and
then
click
Save.
5.
 Click
OK
to
close
the
Spread
Designer.

Saving to an HTML File

You
can
save
the
data
in
a
sheet
to
an
HTML
file
or
stream.

Using
Code

Use
the
SheetView's
SaveHtml
('SaveHtml
Method'
in
the
on-line
documentation)
method,
specifying
the
path
and
file
name
of
the
file
to
save
or
the
Stream
object
to
save.

Example

This
example
code
saves
the
data
to
an
HTML
file.

C#
FpSpread1.Sheets[0].Cells[0, 0].Value = 1;
FpSpread1.Sheets[0].SaveHtml("C:\\SpreadASP\\samples\\test.html");

Spread for ASP.NET Developer’s Guide 330

Copyright © GrapeCity, Inc. All rights reserved.

VB
FpSpread1.Sheets(0).Cells(0,0).Value = 1
FpSpread1.Sheets(0).SaveHtml("C:\SpreadASP\samples\test.html")

Saving to a PDF File

You
can
save
the
spreadsheet
to
a
Portable
Document
File
(PDF,
version
1.4)
file.
Each
sheet
is
saved
to
a
new
page
in
the
PDF
file.

The
following
topics
contain
more
information
about
saving
to
PDF.

Saving
to
PDF
Methods
Setting
PDF
Security
Options
(on-line
documentation)
Setting
PrintInfo
Class
Properties
Setting
Smart
Print
Options
Setting
Headers
and
Footers

Saving to PDF Methods

You
can
use
one
of
the
SavePdf
('SavePdf
Method'
in
the
on-line
documentation)
methods
or
one
of
the
SavePdfToResponse
('SavePdfToResponse
Method'
in
the
on-line
documentation)
methods
to
save
to
a
PDF
file.
The
former
saves
the
Spread
control
to
the
specified
PDF
file.
The
latter
saves
Spread
to
the
specified
response
object
in
PDF
format.

You
can
customize
the
appearance
of
the
PDF
file
using
the
PrintInfo
('PrintInfo
Class'
in
the
on-line
documentation)
class
settings
for
the
component,
including
whether
the
pages
in
the
PDF
file
are
portrait
or
landscape.
The
PrintInfo
('PrintInfo
Class'
in
the
on-line
documentation)
class
is
only
used
when
saving
to
a
PDF
file.

You
can
also
save
a
file
from
inside
Spread
Designer
(File
menu,
Print,
SaveToPDF).

You
can
specify
page
breaks
with
the
column
PageBreak
('PageBreak
Property'
in
the
on-line
documentation)
property
or
the
row
PageBreak
('PageBreak
Property'
in
the
on-line
documentation)
property.

Using
Code

Use
the
SavePdf
('SavePdf
Method'
in
the
on-line
documentation)
method.

Example

This
example
saves
to
PDF
with
the
SavePdf
('SavePdf
Method'
in
the
on-line
documentation)
method.

C#
FpSpread1.SavePdf("c:\\test.pdf");

VB
FpSpread1.SavePdf("c:\test.pdf")

Using
the
Spread
Designer

1.
 Select
the
File
menu.
2.
 Choose
the
Print
option.

Spread for ASP.NET Developer’s Guide 331

Copyright © GrapeCity, Inc. All rights reserved.

3.
 Choose
the
SaveToPDF
option.
4.
 For
the
Save
As
type,
select
PDF
files
(.PDF).
5.
 Specify
the
path
and
file
name
to
which
to
save
the
file,
and
then
click
Save.
6.
 Click
OK
to
close
the
Spread
Designer.

Setting PrintInfo Class Properties

You
can
set
properties
for
the
PrintInfo
('PrintInfo
Class'
in
the
on-line
documentation)
class
that
are
used
when
saving
to
a
PDF
file.
You
can
specify
titles,
headers,
footers,
and
many
other
options
with
the
PrintInfo
('PrintInfo
Class'
in
the
on-line
documentation)
class.

The
properties
in
this
class
are
only
available
when
saving
to
a
PDF
file.

The
ShowColumnHeader
and
ShowRowHeader
properties
in
the
PrintInfo
class
apply
when
printing
or
saving
to
PDF.

You
can
also
specify
smart
print
options.
See
Setting
Smart
Print
Options
for
more
information.

Using
Code

Set
the
PrintInfo
class
properties
and
then
use
the
SavePdf
('SavePdf
Method'
in
the
on-line
documentation)
method.

Example

This
example
code
sets
the
orientation
before
saving
to
PDF.

C#
FarPoint.Web.Spread.PrintInfo pi = new FarPoint.Web.Spread.PrintInfo();
pi.Orientation = FarPoint.Web.Spread.PrintOrientation.Landscape;
FpSpread1.Sheets[0].PrintInfo = pi;
FpSpread1.SavePdf("c:\\test.pdf");

VB
Dim pi As New FarPoint.Web.Spread.PrintInfo()
pi.Orientation = FarPoint.Web.Spread.PrintOrientation.Landscape
FpSpread1.Sheets(0).PrintInfo = pi
FpSpread1.SavePdf("c:\test.pdf")

Setting Smart Print Options

Spread
can
automatically
determine
the
best
way
to
print
your
sheet.
By
using
rules
that
you
can
choose,
it
can
decide,
for
example,
whether
it
is
best
to
print
your
sheet
on
landscape-
or
portrait-oriented
pages.

The
properties
that
you
use
to
configure
smart
printing
are
part
of
the
PrintInfo
('PrintInfo
Class'
in
the
on-line
documentation)
class.
These
properties
only
have
an
effect
when
content
is
saved
to
PDF.

The
printing
optimization
rules,
which
you
can
turn
on
or
off,
can
be
customized
by
setting
the
properties
of
these
rule
objects:

Rule
Object Description
LandscapeRule Determines
whether
to
print
the
sheet
in
landscape
or
portrait
orientation.

Spread for ASP.NET Developer’s Guide 332

Copyright © GrapeCity, Inc. All rights reserved.

('LandscapeRule
Class'
in
the
on-line
documentation)

ScaleRule
('ScaleRule
Class'
in
the
on-line
documentation)

Determines
the
best
scale
at
which
to
print
the
sheet,
starting
with
100%
(Start
Factor
=
1),
and
decreasing
at
set
intervals
to
a
minimum
size
(End
Factor).Default
settings
are
Start
Factor
=
1,
End
Factor
=
0.6,
and
Interval
=
0.1.

BestFitColumnRule
('BestFitColumnRule
Class'
in
the
on-line
documentation)

Determines
how
best
to
fit
the
columns
in
the
sheet
on
the
page

By
default,
optimizing
the
printing
of
the
sheet
uses
the
following
logic:

If
the
information
can
be
printed
without
making
any
changes
to
the
settings
that
you
have
defined
in
the
PrintInfo
('PrintInfo
Class'
in
the
on-line
documentation)
object,
the
sheet
prints
in
portrait
mode.
If
the
sheet
is
wider
than
a
portrait
page,
the
sheet
prints
in
landscape
mode.
If
the
information
does
not
fit
in
landscape
mode,
but
does
fit
in
landscape
mode
if
the
sheet
is
reduced
up
to
60%
of
its
original
size,
the
sheet
is
scaled
to
fit
within
the
page.
If
the
information
cannot
be
scaled
to
fit,
the
sheet
tries
to
reduce
column
widths
to
accommodate
the
widest
string
within
each
column.
If
all
attempts
to
make
the
sheet
print
within
a
page
fail,
printing
resumes
normally
in
the
current
printer
orientation
with
no
reductions.

You
can
customize
how
this
logic
is
applied
through
the
rule
objects.
If
you
customize
the
rule
object,
the
default
rules
are
ignored
and
only
the
custom
rules
are
used
for
printing.
You
can
set
up
a
collection
of
these
rules
with
the
SmartPrintRulesCollection
('SmartPrintRulesCollection
Class'
in
the
on-line
documentation)
object
and
set
whether
to
use
these
rules
with
the
UseSmartPrint
('UseSmartPrint
Property'
in
the
on-line
documentation)
property
and
SmartPrintRule
('SmartPrintRule
Class'
in
the
on-line
documentation)
object.

Using
Code

1.
 Create
a
PrintInfo
('PrintInfo
Class'
in
the
on-line
documentation)
object.
2.
 If
you
want
to
change
how
SmartPrint
determines
how
best
to
print
the
sheet,
create
a
new
SmartPrintRulesCollection
('SmartPrintRulesCollection
Class'
in
the
on-line
documentation)
object.

3.
 Set
the
UseSmartPrint
('UseSmartPrint
Property'
in
the
on-line
documentation)
property
to
true.
4.
 Set
the
SheetView
('SheetView
Class'
in
the
on-line
documentation)
object
PrintInfo
property
to
the
PrintInfo
('PrintInfo
Class'
in
the
on-line
documentation)
object
you
just
created.

Example

This
example
code
prints
using
customized
print
rules,
set
up
in
the
SmartPrintRulesCollection
('SmartPrintRulesCollection
Class'
in
the
on-line
documentation)
object.
In
this
example,
if
the
sheet
does
fit
on
a
page
by
shrinking
columns
to
the
longest
text
string,
it
prints
with
the
columns
shrunk.
If
it
does
not
fit
with
the
columns
shrunk,
it
keeps
them
shrunk
and
tries
to
print
in
landscape
orientation.
If
it
does
not
fit
with
the
columns
shrunk
and
in
landscape
orientation,
it
keeps
these
settings
and
tries
to
scale
the
sheet,
starting
at
100%,
then
decreasing
by
20%
intervals
down
to
40%.

C#
// Create the print rules.
FarPoint.Web.Spread.SmartPrintRulesCollection printrules = new
FarPoint.Web.Spread.SmartPrintRulesCollection();
printrules.Add(new
FarPoint.Web.Spread.BestFitColumnRule(FarPoint.Web.Spread.ResetOption.None));
printrules.Add(new

Spread for ASP.NET Developer’s Guide 333

Copyright © GrapeCity, Inc. All rights reserved.

FarPoint.Web.Spread.LandscapeRule(FarPoint.Web.Spread.ResetOption.None));
printrules.Add(new FarPoint.Web.Spread.ScaleRule(FarPoint.Web.Spread.ResetOption.All,
1.0f, .4f, .2f));
// Create a PrintInfo object and set the properties.
FarPoint.Web.Spread.PrintInfo printset = new FarPoint.Web.Spread.PrintInfo();
printset.SmartPrintRules = printrules;
printset.UseSmartPrint = true;
fpSpread1.Sheets[0].PrintInfo = printset;
// Print the sheet.
fpSpread1.SavePdf("c:\\test.pdf");

VB
' Create the print rules.
Dim printrules As New FarPoint.Web.Spread.SmartPrintRulesCollection()
printrules.Add(New
FarPoint.Web.Spread.BestFitColumnRule(FarPoint.Web.Spread.ResetOption.None))
printrules.Add(New
FarPoint.Web.Spread.LandscapeRule(FarPoint.Web.Spread.ResetOption.None))
printrules.Add(New FarPoint.Web.Spread.ScaleRule(FarPoint.Web.Spread.ResetOption.All,
1.0F, 0.4F, 0.2F))
' Create a PrintInfo object and set the properties.
Dim printset As New FarPoint.Web.Spread.PrintInfo()
printset.SmartPrintRules = printrules
printset.UseSmartPrint = True
FpSpread1.Sheets(0).PrintInfo = printset
' Print the sheet.
FpSpread1.SavePdf("C:\test.pdf")

Setting Headers and Footers

You
can
provide
headers
and
footers
that
appear
on
the
printed
pages
when
saving
to
a
PDF
file.
Using
the
Header
('Header
Property'
in
the
on-line
documentation)
property
and
Footer
('Footer
Property'
in
the
on-line
documentation)
property
of
the
PrintInfo
('PrintInfo
Class'
in
the
on-line
documentation)
class,
which
may
include
special
control
commands,
you
can
specify
text
and
variables,
such
as
page
numbers,
as
well
as
specify
the
font
settings.
The
font
related
commands
begin
with
"f".

These
settings
are
only
available
when
saving
to
a
PDF
file.

The
control
commands
that
can
be
inserted
in
headers
and
footers
are
listed
in
this
table:

Control
Character

Full
Command

Action
in
Printed
Page
Header
or
Footer

/ / Inserts
a
literal
forward
slash
character
(/)

/c /c Center
justifies
the
item

/cl /cl"n" Sets
the
font
color
for
text,
with
the
zero-based
index
of
the
color,
n,
in
quotes
(n
can
be
0
or
more)

/dl /dl Inserts
the
date,
using
the
long
form

/ds /ds Inserts
the
date,
using
the
short
form

/f /f"n" Recalls
the
previously
saved
font
settings
(see
/fs
in
this
table),
with
the
zero-
based
index,
n,
in
quotes
(n
can
be
0
or
more)

/fb /fb0 Turns
off
bold
font
type

Spread for ASP.NET Developer’s Guide 334

Copyright © GrapeCity, Inc. All rights reserved.

 /fb1 Turns
on
bold
font
type

/fi /fi0 Turns
off
italics
font
type

 /fi1 Turns
on
italics
font
type

/fk /fk0 Turns
off
strikethrough

 /fk1 Turns
on
strikethrough

/fn /fn"name" Sets
the
name
of
the
font
face,
with
the
name
of
the
font
in
quotes

/fs /fs"n" Saves
the
font
settings
for
re-use,
with
the
zero-based
index
of
the
font
settings,
n,
in
quotes
(see
/f
in
this
table)

/fu /fu0 Turns
off
underline

 /fu1 Turns
on
underline

/fz /fz"n" Sets
the
size
of
the
font

/g /g"n" Inserts
a
graphic
(image),
with
the
zero-based
index
of
the
image,
n,
in
quotes
(n
can
be
zero
or
more)

/l /l Left
justifies
the
item
(that
is
the
letter
l
or
L,
as
in
Left)

/n /n Inserts
a
new
line

/p /p Inserts
a
page
number

/pc /pc Inserts
a
page
count
(the
total
number
of
pages
in
the
print
job)

/r /r Right
justifies
the
item

/sn /sn Inserts
the
sheet
name

/tl /tl Inserts
the
time,
using
the
long
form

/ts /ts Inserts
the
time,
using
the
short
form

If
you
use
multiple
control
characters,
do
not
put
spaces
between
them.
The
letters
can
be
lower
or
upper
case;
all
commands
and
examples
are
shown
here
in
lower
case
for
simplicity.

Define
the
headers
and
footers
(set
the
Header
('Header
Property'
in
the
on-line
documentation)
and
Footer
('Footer
Property'
in
the
on-line
documentation)
properties)
before
saving
to
PDF.

The
following
list
provides
additional
information
about
headers
and
footers:

You
can
specify
a
color
for
the
text
from
a
list
of
colors
if
the
color
is
previously
defined
in
the
Colors
('Colors
Property'
in
the
on-line
documentation)
property.

You
can
specify
an
image
if
the
image
is
previously
defined
in
the
Images
('Images
Property'
in
the
on-
line
documentation)
property.

You
can
add
text
including
the
page
number
and
the
total
number
of
pages
printed.

You
can
save
the
font
settings
to
re-use
them
later
in
the
header
or
footer.

Using
a
Shortcut

1.
 Create
and
set
the
Header
('Header
Property'
in
the
on-line
documentation)
and
Footer
('Footer
Property'
in
the
on-line
documentation)
properties
for
a
PrintInfo
('PrintInfo
Class'
in
the
on-line
documentation)
object.

2.
 Set
the
Sheet
shortcut
object
PrintInfo
('PrintInfo
Class'
in
the
on-line
documentation)
property
to
the
PrintInfo
('PrintInfo
Class'
in
the
on-line
documentation)
object
you
just
created.

Example

Spread for ASP.NET Developer’s Guide 335

Copyright © GrapeCity, Inc. All rights reserved.

This
example
code
prints
the
sheet
with
the
specified
header
and
footer
text.

C#
// Create PrintInfo object and set properties.
FarPoint.Web.Spread.PrintInfo printset = new FarPoint.Web.Spread.PrintInfo();
printset.Colors = new Drawing.Color[] {Drawing.Color.Green, Drawing.Color.Yellow,
Drawing.Color.Gold, Drawing.Color.Indigo, Drawing.Color.Brown};
printset.Images = new System.Drawing.Image[]
{System.Drawing.Image.FromFile("C:\\images\\point.jpg"),
System.Drawing.Image.FromFile("C:\\images\\logo.gif"),
System.Drawing.Image.FromFile("C:\\images\\icon.jpg")};
printset.Header = ""/fn\"Book Antiqua\" /fz\"14\" Print job for GrapeCity Inc./n ";
printset.Footer = "/g\"1\"/r/cl\"4\"This is page /p of /pc";
// Set the PrintInfo property for the first sheet.
fpSpread1.Sheets[0].PrintInfo = printset;
// Print the sheet.
fpSpread1.SavePdf("c:\\test.pdf");

VB
' Create PrintInfo object and set properties.
Dim printset As New FarPoint.Web.Spread.PrintInfo()
printset.Colors = New Drawing.Color() {Drawing.Color.Green, Drawing.Color.Yellow,
Drawing.Color.Gold, Drawing.Color.Indigo, Drawing.Color.Brown}
printset.Images = New System.Drawing.Image()
{System.Drawing.Image.FromFile("D:\images\point.jpg"),
System.Drawing.Image.FromFile("D:\images\logo.gif"),
System.Drawing.Image.FromFile("C:\images\icon.jpg")}
printset.Header = "/fn""Book Antiqua"" /fz""14"" Print job for GrapeCity Inc./n "
printset.Footer = "/g""1""/r/cl""4""This is page /p of /pc"
' Set the PrintInfo property for the first sheet.
FpSpread1.Sheets(0).PrintInfo = printset
' Print the sheet.
FpSpread1.SavePdf("c:\test.pdf")

Using
Code

1.
 Create
and
set
the
Header
('Header
Property'
in
the
on-line
documentation)
and
Footer
('Footer
Property'
in
the
on-line
documentation)
properties
for
a
PrintInfo
('PrintInfo
Class'
in
the
on-line
documentation)
object.

2.
 Set
the
SheetView
object
PrintInfo
('PrintInfo
Class'
in
the
on-line
documentation)
property
to
the
PrintInfo
('PrintInfo
Class'
in
the
on-line
documentation)
object
you
just
created.

Example

This
example
code
prints
the
sheet
with
the
specified
header
and
footer
colors
and
images.

C#
// Create PrintInfo object and set properties.
FarPoint.Web.Spread.PrintInfo pi = new FarPoint.Web.Spread.PrintInfo();
pi.Footer = "This is Page /p/nof /pc Pages";
pi.Header = "Print Job For /nFPT Inc.";
pi.Colors = new Drawing.Color[] {Drawing.Color.Red, Drawing.Color.Blue};
pi.Images = new System.Drawing.Image[]
{System.Drawing.Image.FromFile("D:\Corporate.jpg"),
System.Drawing.Image.FromFile("D:\Building.jpg")};

Spread for ASP.NET Developer’s Guide 336

Copyright © GrapeCity, Inc. All rights reserved.

pi.RepeatColEnd = 25;
pi.RepeatColStart = 1;
pi.RepeatRowEnd = 25;
pi.RepeatRowStart = 1;
fpSpread1.Sheets[0].PrintInfo = pi;
fpSpread1.SavePdf("c:\\test.pdf");

VB
' Create PrintInfo object and set properties.
Dim pi As New FarPoint.Web.Spread.PrintInfo
pi.Footer = "This is Page /p/nof /pc Pages"
pi.Header = "Print Job For /nFPT Inc."
pi.Colors = New Drawing.Color() {Drawing.Color.Red, Drawing.Color.Blue}
pi.Images = New System.Drawing.Image()
{System.Drawing.Image.FromFile("D:\Corporate.jpg"),
System.Drawing.Image.FromFile("D:\Building.jpg")}
pi.RepeatColEnd = 25
pi.RepeatColStart = 1
pi.RepeatRowEnd = 25
pi.RepeatRowStart = 1
FpSpread1.Sheets(0).PrintInfo = pi
FpSpread1.SavePdf("c:\test.pdf")

Using
Code

1.
 Create
and
set
the
Header
('Header
Property'
in
the
on-line
documentation)
and
Footer
('Footer
Property'
in
the
on-line
documentation)
properties
for
a
PrintInfo
('PrintInfo
Class'
in
the
on-line
documentation)
object.

2.
 Set
the
SheetView
object
PrintInfo
('PrintInfo
Class'
in
the
on-line
documentation)
property
to
the
PrintInfo
('PrintInfo
Class'
in
the
on-line
documentation)
object
you
just
created.

Example

This
example
code
prints
the
sheet
with
the
specified
header
and
footer
text.

C#
// Create PrintInfo object and set properties.
FarPoint.Web.Spread.PrintInfo printset = new FarPoint.Web.Spread.PrintInfo();
printset.Header = "/lJobName";
printset.Footer = "/r/p of /pc";
// Create SheetView object and assign it to the first sheet.
FarPoint.Web.Spread.SheetView SheetToPrint = new FarPoint.Web.Spread.SheetView();
SheetToPrint.PrintInfo = printset;
// Set the PrintInfo property for the first sheet.
fpSpread1.Sheets[0] = SheetToPrint;
// Print the sheet.
fpSpread1.SavePdf("c:\\test.pdf");

VB
' Create PrintInfo object and set properties.
Dim printset As New FarPoint.Web.Spread.PrintInfo()
printset.Header = "/lJobName"
printset.Footer = "/r/p of /pc"
' Create SheetView object and assign it to the first sheet.

Spread for ASP.NET Developer’s Guide 337

Copyright © GrapeCity, Inc. All rights reserved.

Dim SheetToPrint As New FarPoint.Web.Spread.SheetView()
SheetToPrint.PrintInfo = printset
FpSpread1.Sheets(0) = SheetToPrint
' Set the PrintInfo property for the first sheet.
FpSpread1.Sheets(0).PrintInfo = printset
' Print the sheet.
FpSpread1.SavePdf("c:\test.pdf")

Opening Existing Files

Spread
can
open
XML
files
or
Stream
objects
that
were
created
by
Spread,
as
well
as
text
and
Excel
files.
Text
files
must
use
delimiters
that
Spread
can
process
to
place
data
into
the
appropriate
cells.
You
can
open
a
specific
sheet
in
an
Excel
file
and
load
it
to
a
specific
sheet
in
Spread.

If
you
open
or
load
a
file
or
Stream
object
that
contains
more
columns
or
rows
than
the
sheet
or
sheets
into
which
you
are
opening
the
file
or
stream,
the
component
adds
columns
or
rows
as
needed
to
the
sheet
or
sheets.
If
you
open
or
load
a
file
or
Stream
object
with
fewer
columns
or
rows
than
the
sheet
or
sheets
into
which
you
are
opening
the
file
or
stream,
the
component
opens
the
file
and
loads
the
data,
and
does
not
delete
the
additional
columns
or
rows
in
the
sheet
or
sheets.

Opening
existing
files
using
Spread
Designer
places
the
data
from
the
file
into
the
design
string
used
to
create
the
component.
Longer
design
strings
negatively
impact
responsiveness,
including
making
page
loads
slower
and
increasing
response
time
to
editing.
Keep
this
in
mind
when
using
Spread
Designer
to
open
and
load
files.

Read
the
following
sections
for
more
information
and
instructions:

Opening
a
Spread
XML
File
Opening
an
Excel-Formatted
File
Opening
a
Text
File

Opening a Spread XML File

Spread
can
save
data
or
data
and
formatting
to
an
XML
file
or
a
stream,
which
you
can
then
open
back
into
the
FpSpread
component.
You
can
open
a
Spread
XML
file
or
stream
of
an
entire
component
or
a
specific
sheet.

You
can
also
open
a
file
from
inside
Spread
Designer.

Refer
to
the
SheetView
class
Open
('Open
Method'
in
the
on-line
documentation)
method
to
open
a
specific
sheet.
Use
the
FpSpread
Open
('Open
Method'
in
the
on-line
documentation)
method
to
open
the
entire
control.

For
instructions
for
saving
Spread
XML
files,
see
Saving
to
a
Spread
XML
File.

Using
Code

Use
the
FpSpread
component’s
Open
('Open
Method'
in
the
on-line
documentation)
method,
specifying
the
path
and
file
name
of
the
Spread
XML
file
to
open
or
the
Stream
object
to
open.

Example

This
example
code
opens
an
existing
Spread-compatible
XML
file.

C#
// Open a Spread-compatible XML file.
FpSpread1.Open("c:\spreadfile");

VB

Spread for ASP.NET Developer’s Guide 338

Copyright © GrapeCity, Inc. All rights reserved.

' Open a Spread-compatible XML file.
FpSpread1.Open("c:\spreadfile")

Using
the
Spread
Designer

1.
 Select
the
File
menu.
2.
 Choose
the
Open
option.
3.
 The
Open
dialog
appears.
4.
 Change
the
Files
of
type
box
to
Spread
files
(*.XML).
5.
 Specify
the
path
and
file
name
of
the
file
to
open,
and
then
click
Open.
6.
 Click
OK
to
close
the
Spread
Designer.

Opening an Excel-Formatted File

You
can
open
an
existing
Excel-formatted
(BIFF8
format
or
XLSX)
file
or
stream.
With
the
SheetView
object,
you
can
open
a
specific
Excel
sheet
to
a
specific
sheet,
the
currently
active
sheet,
in
Spread.
You
can
specify
which
sheet
in
Excel
to
open,
either
by
the
sheet
index
or
by
the
sheet
name.
There
are
multiple
OpenExcel
('OpenExcel
Method'
in
the
on-line
documentation)
methods
each
with
several
options.

The
document
caching
option
in
the
ExcelOpenFlags
('ExcelOpenFlags
Enumeration'
in
the
on-line
documentation)
or
ExcelSaveFlags
('ExcelSaveFlags
Enumeration'
in
the
on-line
documentation)
enumeration
allows
users
to
open,
edit,
and
save
without
the
loss
of
advanced
document
content
and
formatting.
The
content
can
be
lossless
only
if
the
opening
file
format
is
similar
to
the
saving
file
format.
If
the
advanced
document
content
uses
files
besides
the
xls(x)
file,
then
the
additional
files
need
to
be
in
the
same
folder
with
the
xls(x)
file.
Advanced
content
could
be
macros,
ActiveX
controls,
data
connections,
etc.
In
order
to
keep
any
document
caching
settings
(changes
would
be
lost
during
a
postback),
open
the
original
file
with
the
document
caching
only
setting
and
then
save
the
file
using
the
document
caching
setting.

You
can
also
open
a
file
from
inside
Spread
Designer.

For
more
information
about
how
the
data
is
imported
from
the
Excel
format,
see
the
Import
and
Export
Reference
(on-line
documentation).

Using
Code

Use
the
FpSpread
object’s
OpenExcel
('OpenExcel
Method'
in
the
on-line
documentation)
method,
providing
the
path
and
file
name
for
the
file
to
open,
or
providing
additional
information
using
one
of
the
overloaded
methods.

Example

This
example
code
opens
an
Excel-formatted
file,
loads
the
data
from
the
specified
Excel
sheet
into
this
sheet,
and
sets
the
number
of
rows
displayed
on
a
single
page
to
match
the
number
of
rows
in
the
Excel
file.

C#
FpSpread1.OpenExcel("c:\\excelfile.xls", 2);
FpSpread1.ActiveSheetView.PageSize = FpSpread1.Rows.Count;

VB
FpSpread1.OpenExcel("c:\excelfile.xls", 2)
FpSpread1.ActiveSheetView.PageSize = FpSpread1.Rows.Count

Using
the
Spread
Designer

Spread for ASP.NET Developer’s Guide 339

Copyright © GrapeCity, Inc. All rights reserved.

1.
 Select
the
File
menu.
2.
 Choose
the
Open
option.
3.
 The
Open
dialog
appears.
4.
 Change
the
Files
of
type
box
to
Excel
files
(*.XLS).
5.
 Specify
the
path
and
file
name
of
the
file
to
open,
and
then
click
Open.
6.
 Set
the
PageSize
property
to
the
total
number
of
rows
if
you
wish
to
see
all
the
rows
on
one
page.
Use
the
Property
Grid
to
set
the
PageSize
property.

7.
 Click
OK
to
close
the
Spread
Designer.

Opening a Text File

You
can
open
existing
text
files
that
are
delimited,
either
files
saved
from
Spread
or
delimited
text
files
from
other
sources.
The
data
from
the
file
you
open
is
placed
in
the
sheet
you
specify.
There
are
multiple
LoadTextFile
('LoadTextFile
Method'
in
the
on-line
documentation)
methods
each
with
several
options.

If
the
file
uses
custom
delimiters,
you
must
specify
the
delimiters
so
the
component
can
correctly
place
the
data
within
the
sheet.
If
your
file
uses
standard
tab-delimited
format,
you
need
not
use
a
method
that
lets
you
specify
delimiters.

You
can
also
open
a
file
from
inside
Spread
Designer.

For
instructions
for
saving
to
text
files,
see
Saving
to
a
Text
File.

Using
a
Shortcut

Use
one
of
the
SheetView
object’s
LoadTextFile
('LoadTextFile
Method'
in
the
on-line
documentation)
methods,
specifying
the
path
and
file
name
or
stream,
whether
data
or
data
and
formatting
was
saved,
whether
headers
are
included,
and
the
custom
delimiters,
depending
on
the
particular
method
you
choose.

Example

This
example
code
loads
a
text
file
that
contains
formatted
data,
headers,
and
custom
delimiters.

C#
// Load a text file with headers and custom delimiters.
FpSpread1.Sheets[0].LoadTextFile("c:\textfile.txt", False,
FarPoint.Web.Spread.Model.IncludeHeaders.BothCustomOnly, "#", "%", "^");

VB
' Load a text file with headers and custom delimiters.
FpSpread1.Sheets(0).LoadTextFile("c:\textfile.txt", False,
FarPoint.Web.Spread.Model.IncludeHeaders.BothCustomOnly, "#", "%", "^")

Using
the
Spread
Designer

1.
 Select
the
File
menu.
2.
 Choose
the
Open
option.
3.
 The
Open
dialog
appears.
4.
 Change
the
Files
of
type
box
to
Text
files
(*.txt).
5.
 Specify
the
path
and
file
name
of
the
file
to
open,
and
then
click
Open.
6.
 Click
OK
to
close
the
Spread
Designer.

Spread for ASP.NET Developer’s Guide 340

Copyright © GrapeCity, Inc. All rights reserved.

Using Sheet Models

You
can
use
models
to
customize
the
user
experience
with
the
spreadsheet
and
extend
the
functionality
for
your
particular
application.
As
a
set,
the
sheet
models
correspond
to
the
basis
of
all
the
objects
and
settings
of
a
particular
sheet.
Each
sheet
has
its
own
set
of
models.
If
you
have
multiple
sheets
in
your
FpSpread
component,
then
each
sheet
has
its
own
set
of
models.

You
can
do
many
tasks
without
ever
using
the
models.
Through
the
Spread
Designer
or
through
properties
of
the
shortcut
objects
(such
as
Cells,
Columns,
and
Rows),
you
can
affect
many
of
the
changes
that
define
your
spreadsheet.
But
to
understand
fully
how
Spread
works
and
to
make
use
of
many
of
the
features
and
the
customizations
available
to
you
as
a
developer,
you
might
want
to
understand
how
to
use
the
underlying
models.

The
sheet
models
are
the
basis
for
all
the
shortcut
objects,
so
using
models
is
generally
faster
than
using
shortcut
objects
(less
processing
time
is
required).

For
example,
in
code
using
the
shortcut
object
to
set
a
value:

VB
FpSpread1.Sheets(0).Cells(0,0).Value = "Test"

would
be
equivalent
to
using
the
underlying
data
model
method:

VB
FpSpread1.Sheets(0).DataModel.SetValue(FpSpread1.Sheets(0).GetModelRowFromViewRow(0),
FpSpread1.Sheets(0).GetModelColumnFromViewColumn(0), "Test")

Overview

As
described
in
the
Product
Overview,
several
aspects
of
the
sheet
in
the
component
are
governed
by
underlying
models.

Each
quadrant
of
the
sheet
(corner,
column
header,
row
header,
or
data
area)
has
its
own
set
of
models.
The
models
are
shown
conceptually
in
this
diagram.

These
topics
can
help
you
customize
the
component
using
models:

Understanding
How
the
Models
Work

Spread for ASP.NET Developer’s Guide 341

Copyright © GrapeCity, Inc. All rights reserved.

Customizing
Models
Understanding
the
Optional
Interfaces
Creating
a
Custom
Sheet
Model

Interfaces

There
are
many
interfaces
involved
in
the
models.
Each
model
class
implements
a
number
of
interfaces,
and
each
model
has
one
"model"
interface
which
must
be
implemented
to
make
it
a
valid
implementation
for
that
particular
model.

All
references
to
the
model
classes
are
through
the
interfaces,
and
no
assumptions
are
made
as
to
what
interfaces
are
implemented
on
each
model
(except
for
the
"model"
interface
which
must
be
present).
If
the
model
class
does
not
implement
a
particular
interface,
then
that
functionality
is
simply
disabled
in
the
sheet
(that
is,
if
IDataSourceSupport
is
not
implement
by
SheetView.Models.Data,
then
the
DataSource
and
DataMember
properties
are
not
functional).

These
topics
provide
an
introduction
to
the
use
of
sheet
models.
For
complete
lists
of
these
interfaces,
look
at
the
overview
for
the
default
model
classes
in
the
Assembly
Reference
(on-line
documentation).
You
can
find
a
list
of
the
models,
their
classes
and
interfaces,
and
links
to
the
Assembly
Reference
in
Understanding
How
the
Models
Work.

Understanding the Models

The
component
provides
models
that
provide
a
basis
for
much
of
the
customization
that
is
possible
with
the
component.
The
following
topics
provide
more
information
about
models
and
for
each
of
the
models
of
a
sheet.

Understanding
How
the
Models
Work
Customizing
Models
Understanding
the
Axis
Model
Understanding
the
Data
Model
Understanding
the
Selection
Model
Understanding
the
Span
Model
Understanding
the
Style
Model

Understanding How the Models Work

To
understand
how
models
work,
think
of
the
sheet
(SheetView
object)
as
a
composite
of
the
five
underlying
models:

Axis
-
The
Axis
model
handles
everything
to
do
with
the
columns
and
rows
(for
example,
the
column
width,
row
height,
and
whether
a
row
or
column
is
visible).
Data
-
The
Data
model
handles
everything
to
do
with
the
data
(for
example,
the
value,
the
formula,
and
any
optional
notes
or
tags
in
a
cell)
and
contains
the
data
in
the
sheet.
Selection
-
The
Selection
model
handles
any
cell
range
selections
that
are
made.
Span
-
The
Span
model
handles
any
spanned
cells.
Style
-
The
Style
model
handles
the
appearance
settings
for
the
cells
(for
example,
the
background
color,
the
font,
and
the
cell
type).

Sheet
Model

Classes
and
Interface Description

Axis
model

BaseSheetAxisModel
('BaseSheetAxisModel
Class'
in
the
on-
line
documentation)

DefaultSheetAxisModel
('DefaultSheetAxisModel
Class'
in
the

Basis
for
how
the
sheet’s
rows
and
columns
are
structured.
For
more
information,
see
Understanding
the
Axis
Model.

Spread for ASP.NET Developer’s Guide 342

Copyright © GrapeCity, Inc. All rights reserved.

on-line
documentation)

ISheetAxisModel
('ISheetAxisModel
Interface'
in
the
on-line
documentation)

Data
model

BaseSheetDataModel
('BaseSheetDataModel
Class'
in
the
on-
line
documentation)

DefaultSheetDataModel
('DefaultSheetDataModel
Class'
in
the
on-line
documentation)

ISheetDataModel
('ISheetDataModel
Interface'
in
the
on-line
documentation)

Basis
for
the
data
in
the
cells
in
the
sheet.
For
more
information,
see
Understanding
the
Data
Model.

Selection
model

BaseSheetSelectionModel
('BaseSheetSelectionModel
Class'
in
the
on-line
documentation)

DefaultSheetSelectionModel
('DefaultSheetSelectionModel
Class'
in
the
on-line
documentation)

ISheetSelectionModel
('ISheetSelectionModel
Interface'
in
the
on-line
documentation)

Basis
for
the
behavior
of
and
interaction
of
selected
cells
in
the
sheet.
For
more
information,
see
Understanding
the
Selection
Model.

Span
model

BaseSheetSpanModel
('BaseSheetSpanModel
Class'
in
the
on-
line
documentation)

DefaultSheetSpanModel
('DefaultSheetSpanModel
Class'
in
the
on-line
documentation)

ISheetSpanModel
('ISheetSpanModel
Interface'
in
the
on-line
documentation)

Basis
for
how
cells
in
the
sheet
are
spanned.
For
more
information,
see
Understanding
the
Span
Model.

Style
model

BaseSheetStyleModel
('BaseSheetStyleModel
Class'
in
the
on-
line
documentation)

DefaultSheetStyleModel
('DefaultSheetStyleModel
Class'
in
the
on-line
documentation)

ISheetStyleModel
('ISheetStyleModel
Interface'
in
the
on-line
documentation)

Basis
for
the
appearance
of
the
cells
in
the
sheet.
For
more
information,
see
Understanding
the
Style
Model.

Everything
you
do
to
the
model
is
automatically
updated
in
the
sheet
and
most
of
the
aspects
of
the
sheet
that
you
can
modify
are
updated
in
the
model.
This
is
also
true
for
Cell,
Row,
and
Column
object
settings.
Most
of
the
aspects
changed
with
these
objects
automatically
change
the
setting
in
the
corresponding
sheet
model
and
vice
versa;
for
example,
if
you
add
columns
to
the
data
model,
then
they
are
added
to
the
sheet.
This
is
true
even
for
the
parameters;
for
example,
the
row
and
column
arguments
in
the
GetValue
and
SetValue
methods
for
the
data
model
are
the
same
indexes
as
that
of
the
rows
and
columns
in
the
sheet
as
long
as
the
sheet
is
not
sorted.

Spread for ASP.NET Developer’s Guide 343

Copyright © GrapeCity, Inc. All rights reserved.

As
shown
in
the
figure
in
Using
Sheet
Models,
the
component
is
considered
to
have
four
quadrants.
The
data
area
of
the
spreadsheet
is
considered
one
sheet
with
its
own
set
of
models,
and
the
row
headers,
column
headers,
and
corner
are
considered
as
separate
sheets,
each
with
their
own
models.

Not
everything
in
the
Spread
namespace
is
in
the
models.
For
example,
there
are
aspects
of
the
overall
component,
such
as
the
sheet
tabs,
the
sheet
background
color,
and
the
grid
lines,
that
are
not
in
the
models.
But
the
relevant
information
about
a
given
cell,
both
about
the
data
in
the
cells
and
about
the
appearance
of
the
cells,
is
in
the
models.

Customizing Models

Each
model
has
a
base
model
class
and
a
default
model
class
and
an
interface.
The
default
model
is
given
as
the
model
with
which
you
will
most
likely
develop;
this
provides
the
default
features
that
the
component
offers
and
is
used
for
small
customizations
to
the
models.
The
base
model
is
the
base
on
which
the
default
model
is
created
and
is
for
creating
custom
models
from
scratch.
The
base
model
has
the
fewest
built-in
features,
and
the
default
model
extends
the
base
model.

If
you
want
to
provide
different
features
or
customize
the
behavior
or
appearance
of
your
application,
you
can
extend
the
base
models
to
create
new
classes.
For
example,
you
can
do
this
to
create
a
template
component
for
all
the
developers
in
your
organization.
By
creating
your
own
class
based
on
one
of
the
base
models,
you
can
create
the
customized
class
and
provide
it
to
all
the
developers
to
use.

Typically,
if
you
are
editing
the
models,
use
the
default
model
classes.
But
if
you
want
to
create
a
custom
model
(from
scratch),
use
the
base
model
classes.

Each
default
model
class
contains
the
implementation
of
the
interface
for
that
model
type
as
well
as
additional
optional
interfaces.
Most
of
the
functionality
(that
is,
formulas,
data
binding,
XML
serialization,
and
so
on)
is
optional
in
the
model
class,
and
is
implemented
in
separate
interfaces
from
the
main
model
interfaces
(such
as
ISheetDataModel)
so
if
you
want
to
implement
your
own
model
class,
you
can
pick
and
choose
which
pieces
of
functionality
you
have
in
your
model.

For
more
information
on
creating
a
custom
model
for
a
sheet,
refer
to
Creating
a
Custom
Sheet
Model.

Understanding the Axis Model

The
axis
model
includes
the
methods
that
manage
row-
and
column-related
settings
of
the
spreadsheet,
that
is,
how
the
rows
and
columns
of
cells
are
oriented
on
the
sheet.

Overview

Many
of
the
axis-related
settings
are
included
in
the
following
shortcut
objects:

Column,
Columns
Row,
Rows
AlternatingRow,
AlternatingRows

These
settings
include:

row
height
column
width
row
visible
column
visible

To
use
the
underlying
axis
model,
use
the
methods
of
the
axis
model.
These
include
the
SetSize
('SetSize
Method'
in
the
on-line
documentation)
method,
for
setting
the
row
height
or
column
width,
and
the
SetVisible
('SetVisible
Method'
in
the
on-line
documentation)
method
for
setting
the
row
or
column
visible
properties.
There
are
other
methods,
too,
such
as
SetMergePolicy
('SetMergePolicy
Method'
in
the
on-line
documentation),
which
set
specific
properties
of
the
row
or
column,
in
this
case
whether
cells
can
be
automatically
merged
when
their
content
is
identical.
Refer
to
the
Assembly
Reference
(on-line
documentation)
for
more
information
on
the
axis
model
in

Spread for ASP.NET Developer’s Guide 344

Copyright © GrapeCity, Inc. All rights reserved.

general
and
to
the
DefaultSheetAxisModel
('DefaultSheetAxisModel
Class'
in
the
on-line
documentation)
methods
in
particular.

As
an
example
of
how
you
could
use
the
axis
model
to
improve
performance
of
a
spreadsheet,
consider
a
spreadsheet
with
a
very
large
number
of
rows.
If
you
are
resizing
the
rows
based
on
the
data,
then
you
might
want
to
create
a
custom
axis
model
for
SheetView.Models.RowAxis
to
return
this
value.
To
do
so,

Create
a
class
derived
from
DefaultSheetAxisModel
('DefaultSheetAxisModel
Class'
in
the
on-line
documentation)
that
takes
a
reference
to
the
SheetView
in
its
constructor
and
stores
it
in
a
field.

Override
the
GetSize
('GetSize
Method'
in
the
on-line
documentation)
method
for
the
row
index.

Optionally,
you
can
override
the
GetResizable
('GetResizable
Method'
in
the
on-line
documentation)
method
to
prevent
the
user
from
trying
to
change
the
row
heights
manually,
which
will
not
work
since
GetSize
('GetSize
Method'
in
the
on-line
documentation)
is
always
returning
the
preferred
height.

Example

The
following
example
code
makes
each
row
three
times
taller
than
the
default
height.

C#
public class MyRowAxisModel : FarPoint.Web.Spread.Model.DefaultSheetAxisModel
{
 public overrides int GetSize(int index)
 {
 if (index % 2 == 1)
 return 60;
 else
 return 20; }
}

VB
Public Class MyRowAxisModel
 Inherits FarPoint.Web.Spread.Model.DefaultSheetAxisModel
 Public Overrides Function GetSize(index As Integer) As Integer
 If index \ 2 = 1 Then
 Return 60
 Else
 Return 20
 End If
 End Function
End Class

Understanding the Data Model

The
data
model
includes
the
contents
of
the
cells,
which
could
be
the
value
or
the
formula
in
a
cell,
or
the
cell
notes
or
cell
tags.
This
includes
the
unformatted
data
for
cells
in
the
data
area
of
the
spreadsheet,
the
database
properties
for
data-bound
spreadsheets,
and
anything
having
to
do
with
the
contents
in
the
cells.

Overview

The
data
model
is
usually
the
model
most
users
who
create
a
custom
model
will
want
to
replace.
The
data
model
implements
more
interfaces,
and
more
optional
functionality
through
them,
than
any
of
the
other
models.

Spread for ASP.NET Developer’s Guide 345

Copyright © GrapeCity, Inc. All rights reserved.

Users
who
want
to
implement
the
equivalent
to
the
unbound
virtual
model
feature
of
the
ActiveX
Spread
control
must
create
a
custom
data
model.

The
data
model
is
an
object
that
supplies
the
cell
values
being
displayed
in
the
sheet.
In
most
cases,
you
can
simply
use
the
default
data
model
that
is
created
when
the
sheet
is
created.
The
default
data
model
can
be
used
in
unbound
or
bound
modes.
In
unbound
mode,
the
data
model
acts
much
like
a
two-dimensional
array
of
cell
values.
In
bound
mode,
the
data
model
wraps
the
supplied
DataSource
and
if
needed
can
supply
additional
settings
not
available
from
the
DataSource,
for
example,
cell
formulas,
and
unbound
rows
or
columns.

The
DefaultSheetDataModel
('DefaultSheetDataModel
Class'
in
the
on-line
documentation)
creates
objects
to
store
notes,
formulas,
tags,
and
values,
and
those
objects
are
designed
to
balance
memory
usage
versus
speed
based
on
how
big
the
model
is
and
how
sparse
the
data
in
the
model
is.
If
you
are
not
using
notes,
formulas,
and
tags,
then
not
much
memory
is
used
since
the
sparsity
of
the
data
is
high.
In
fact,
those
objects
do
not
allocate
any
memory
for
data
until
it
is
actually
needed.
As
long
as
there
are
no
notes,
formulas,
or
tags
set
into
the
model,
memory
usage
remains
low.
For
more
information,
see
the
Performance
section
below.

If
you
add
columns
to
the
model,
then
they
are
added
to
the
sheet.
The
row
and
column
in
the
GetValue
('GetValue
Method'
in
the
on-line
documentation)
and
SetValue
('SetValue
Method'
in
the
on-line
documentation)
methods
of
the
data
model
have
the
same
indexes
as
that
of
the
columns
in
the
sheet
as
long
as
the
sheet
is
not
sorted.
If
the
sheet's
rows
or
columns
are
sorted,
then
the
view
coordinates
must
be
mapped
to
the
model
coordinates
with
the
SheetView.GetModelRowFromViewRow
('GetModelRowFromViewRow
Method'
in
the
on-line
documentation)
and
SheetView.GetModelColumnFromViewColumn
('GetModelColumnFromViewColumn
Method'
in
the
on-line
documentation)
methods.

The
SetModelDataColumn
('SetModelDataColumn
Method'
in
the
on-line
documentation)
is
different
from
AddColumn
('AddColumn
Method'
in
the
on-line
documentation)
in
that
you
can
specify
which
data
field
you
want
bound
to
which
column
in
the
data
model.

Setting
Unformatted
Data

The
SheetView.GetValue
('GetValue
Method'
in
the
on-line
documentation)
and
SheetView.SetValue
('SetValue
Method'
in
the
on-line
documentation)
methods
always
get
and
set
the
data
in
the
data
model
(using
these
methods
is
the
same
as
calling
SheetView.Models.Data.GetValue
and
SheetView.Models.Data.SetValue).

The
Cell.Value
('Value
Property'
in
the
on-line
documentation)
property
returns
the
value
of
the
cell
in
the
editor
control
if
the
cell
is
currently
in
edit
mode
in
a
SheetView.
That
value
is
not
updated
to
the
data
model
until
the
cell
leaves
edit
mode.
But
you
can
manually
update
the
value
to
the
data
model
from
your
code,
as
shown
in
the
following
example.

C#
SheetView.SetValue(row, column, SheetView.Cells(row, column).Value);

VB
SheetView.SetValue(row, column, SheetView.Cells(row, column).Value)

Data
Binding

When
the
data
model
implements
IDataSourceSupport
and
it
is
bound
to
a
data
source,
the
bound
parts
of
the
data
model
get
and
set
data
directly
from
the
data
source.
Some
columns
in
a
bound
data
model
can
be
unbound
if
columns
are
added
to
the
data
model
with
the
AddColumns
('AddColumns
Method'
in
the
on-line
documentation)
method
after
it
is
bound,
and
the
values
in
those
unbound
columns
are
stored
in
the
data
model
rather
than
the
data
source.

If
you
add
unbound
columns
using
the
AddColumns
method,
IDataSourceSupport.IsColumnBound
returns
false
for
those
model
column
indexes.

Spread for ASP.NET Developer’s Guide 346

Copyright © GrapeCity, Inc. All rights reserved.

If
the
data
model
also
implements
IUnboundRowSupport
('IUnboundRowSupport
Interface'
in
the
on-line
documentation),
then
some
rows
in
the
data
model
can
also
be
unbound,
and
those
values
are
also
stored
in
the
data
model
rather
than
the
data
source.
Such
rows
can
be
made
into
bound
rows
by
calling
IUnboundRowSupport
('IUnboundRowSupport
Interface'
in
the
on-line
documentation).AddRowToDataSource.
If
the
autoFill
parameter
is
specified
as
True,
then
the
data
in
the
bound
columns
in
that
unbound
row
will
be
added
to
the
data
source
in
a
new
record
or
element,
assuming
that
the
data
source
permits
it
(you
will
get
an
exception
if
it
does
not).
At
that
point,
the
unbound
row
becomes
a
bound
row.

Performance

If
you
derive
from
DefaultSheetDataModel
('DefaultSheetDataModel
Class'
in
the
on-line
documentation)
and
use
that
implementation
of
GetValue
and
SetValue
to
store
the
data,
then
it
will
use
the
Spread
component’s
implementation
of
sparse
arrays
and
matrices
to
balance
the
memory
usage
with
the
access
speed.
This
feature
is
designed
to
make
it
very
fast
to
create
a
very
large
model
(that
is,
2
billion
rows
by
2
billion
columns)
and
keep
it
reasonably
fast
to
get
and
set
values
into
it,
until
the
number
of
values
gets
very
large
(in
which
case
you
will
probably
start
to
run
out
of
memory).

In
cases
where
the
model
is
very
large
and/or
sparse
(that
is,
more
than
two
thirds
empty),
access
speed
is
slower
(a
binary
search
is
required)
and
memory
usage
is
lower.
In
cases
where
the
model
is
not
very
large
(less
than
32K
rows
and/or
columns)
and
not
sparse
(more
than
one
third
full),
then
the
access
speed
is
faster
(no
binary
search
required)
and
memory
usage
is
higher.
In
other
words,
putting
very
large
amounts
of
data
in
the
FpSpread
component
can
result
in
a
very
large
view
state
and
significant
delays
as
the
view
state
is
saved
and
loaded
during
the
page
life
cycle.
To
reduce
these
delays,
turn
off
the
SaveViewState
property
and
load
the
data
each
time
the
page
loads
from
the
Page_Load
event.

You
can
run
some
simple
tests
by
creating
a
test
project
with
a
Spread
on
a
form,
and
setting
the
ColumnCount
and
RowCount
for
the
sheet
to
very
large
numbers,
and
you
should
not
see
any
delay
at
all
because
the
memory
allocated
is
based
on
the
actual
number
of
data
items.
If
you
start
to
fill
the
sheet
with
a
lot
of
data,
then
you
will
notice
delays
after
a
while,
especially
when
memory
gets
low
and
the
system
starts
using
the
page
file
to
swap
virtual
memory
(it
will
take
a
significant
amount
of
data
for
that
to
happen).

Summary

The
default
data
model
class,
DefaultSheetDataModel,
implements
all
of
the
interfaces
discussed
in
this
topic,
plus
many
others
related
to
calculation,
hierarchy,
and
serialization.
For
more
detail,
refer
to
the
topics
for
the
classes
in
the
data
model
provided
in
the
Assembly
Reference
(on-line
documentation).

To
see
the
difference
between
the
default
data
model
and
the
objects
on
the
sheet,
look
at
these
code
snippets.
These
code
snippets
bind
the
sheet
to
a
data
source
called
MyData.

C#
FpSpread1.Sheets[0].DataSource = MyData.Tables(0);

VB
FpSpread1.Sheets(0).DataSource = MyData.Tables(0)

and

C#
FarPoint.Web.Spread.Model.DefaultSheetDataModel model = new
FarPoint.Web.Spread.Model.DefaultSheetDataModel(MyData, strTable);
FpSpread1.Sheets[0].DataModel = model;

VB
Dim model As FarPoint.Web.Spread.Model.DefaultSheetDataModel = New
FarPoint.Web.Spread.Model.DefaultSheetDataModel(MyData, strTable)
FpSpread1.Sheets(0).DataModel = model

Spread for ASP.NET Developer’s Guide 347

Copyright © GrapeCity, Inc. All rights reserved.

In
the
first
code
snippet,
the
existing
data
model
is
used
and
resized
to
the
data
source;
in
the
second
snippet,
the
data
model
is
replaced
with
a
new
one
and
the
old
one
discarded.
The
outcome
is
the
same
for
both
code
snippets,
but
the
first
example
results
in
the
old
data
model
being
garbage
collected.
Generally
you
may
not
want
to
replace
the
data
model
unless
you
are
creating
your
own
data
model
class.
There
is
generally
no
need
to
replace
the
data
model
with
another
DefaultSheetDataModel
since
there
is
already
one
there
to
use.

Understanding the Selection Model

The
selection
model
includes
any
of
the
settings
related
to
ranges
of
selected
cells.
This
may
include
methods
such
as
counting
the
number
of
selected
ranges,
adding
and
removing
selections,
clearing
selections,
and
finding
whether
a
cell
is
selected.

To
use
the
underlying
selection
model,
use
the
methods
of
the
selection
model.
These
include
the
SetSelection
method,
for
setting
cells
as
selected,
and
the
AddSelection,
ClearSelection,
and
RemoveSelection
methods
for
adding,
clearing,
and
removing
selected
ranges
from
the
sheet.
Refer
to
the
Assembly
Reference
(on-line
documentation)
for
more
information
on
the
selection
model
in
general
and
to
the
DefaultSheetSelectionModel
('DefaultSheetSelectionModel
Class'
in
the
on-line
documentation)
methods
in
particular.

The
default
implementation
of
the
selection
model
(DefaultSheetSelectionModel
('DefaultSheetSelectionModel
Class'
in
the
on-line
documentation))
handles
the
selection
of
cells
and
ranges
in
the
sheet,
and
stores
the
actual
cell
and
range
coordinates
for
each
selection.
The
selection
model
handles
the
selection
data,
including
computing
the
range
being
selected
based
on
the
cell
clicked
(the
anchor
cell)
and
the
cell
under
the
pointer.

Some
events
cause
the
anchor
cell
in
the
selection
model
to
get
set
(for
example,
left
mouse
button
down
on
a
cell)
so
the
selection
model
has
the
active
cell
as
a
selection.
If
you
enter
edit
mode
then
cancel
it
by
pressing
the
Esc
key,
or
if
you
use
the
keyboard
to
move
the
active
cell
instead
of
the
mouse,
then
the
component
might
clear
the
selection
model.

The
selection
model
is
saved
to
the
view
state
only
if
it
contains
at
least
one
selection.

Understanding the Span Model

The
span
model
includes
the
objects
needed
to
handle
cell
spans
and
automatic
merging
of
cells.
Refer
to
the
Cell
class,
ColumnSpan
('ColumnSpan
Property'
in
the
on-line
documentation)
and
RowSpan
('RowSpan
Property'
in
the
on-line
documentation)
properties.

To
use
the
underlying
span
model,
use
the
Add
('Add
Method'
in
the
on-line
documentation),
Clear
('Clear
Method'
in
the
on-line
documentation),
and
Remove
('Remove
Method'
in
the
on-line
documentation)
methods
of
the
span
model.
Refer
to
the
Assembly
Reference
(on-line
documentation)
for
more
information
on
the
span
model
in
general
and
to
the
DefaultSheetSpanModel
('DefaultSheetSpanModel
Class'
in
the
on-line
documentation)
methods
in
particular.

The
default
implementation
of
the
span
model
(DefaultSheetSpanModel
('DefaultSheetSpanModel
Class'
in
the
on-line
documentation))
uses
an
array
to
store
the
cell
spans.
If
there
are
a
modest
number
of
spans
in
the
sheet
(for
example,
a
thousand
or
less)
then
the
default
implementation
is
responsive.
If
there
are
a
very
large
number
of
spans
in
the
sheet
(for
example,
a
hundred
thousand
or
more)
then
the
default
implementation
slows
dramatically.

In
scenarios
where
you
have
a
very
large
number
of
spans
that
repeat
on
a
regular
interval,
you
should
consider
writing
a
custom
span
model.
By
writing
a
custom
span
model,
you
can
significantly
increase
the
speed
and
decrease
the
memory
usage.

Understanding the Style Model

The
style
model
includes
appearance
settings,
whether
determined
in
the
Spread
Designer,
or
set
as
properties
in
the
Properties
List
or
as
inherited
by
a
custom
skin
for
a
whole
sheet
or
by
a
custom
style
for
individual
cells.
For
more
information
on
appearance
settings
for
a
sheet,
refer
to
Creating
a
Skin
for
Sheets
and
Applying
a
Skin
to
a
Sheet.
For
more
information
on
appearance
settings
for
a
cell,
refer
to
Creating
and
Applying
a
Custom
Style
for

Spread for ASP.NET Developer’s Guide 348

Copyright © GrapeCity, Inc. All rights reserved.

Cells.

Overview

The
appearance
settings
may
be
set
from
any
of
the
following
classes
in
the
Spread
namespace
that
represent
shortcut
objects:

Cell
('Cell
Class'
in
the
on-line
documentation)
Column
('Column
Class'
in
the
on-line
documentation)
Row
('Row
Class'
in
the
on-line
documentation)
AlternatingRow
('AlternatingRow
Class'
in
the
on-line
documentation)

They
also
may
be
set
from
any
of
these
classes
in
the
Spread
namespace
that
affect
style:

Appearance
('Appearance
Class'
in
the
on-line
documentation)
Border
('Border
Class'
in
the
on-line
documentation)
DefaultSkins
('DefaultSkins
Class'
in
the
on-line
documentation)
NamedStyle
('NamedStyle
Class'
in
the
on-line
documentation)
SheetSkin
('SheetSkin
Class'
in
the
on-line
documentation)

The
order
of
inheritance
is
described
in
Object
Parentage.
Here
is
a
list
of
the
style
properties
that
are
included
in
the
style
model,
which
are
basically
the
members
of
the
StyleInfo
('StyleInfo
Class'
in
the
on-line
documentation)
class,
and
affect
the
appearance
or
style
of
a
cell:

BackColor
Border
CellType
Editor
Font
ForeColor
Formatter
HorizontalAlignment
Locked
Renderer
VerticalAlignment

The
style
model
includes
the
cell
types
as
well.
The
various
cell
types
determine
the
appearance
of
a
cell
in
several
ways.
For
more
information
about
the
various
cell
types,
refer
to
Customizing
with
Cell
Types.

To
use
the
underlying
style
model,
use
the
methods
of
the
style
model
for
that
sheet,
specifically
the
GetDirectInfo
('GetDirectInfo
Method'
in
the
on-line
documentation)
method
and
SetDirectInfo
('SetDirectInfo
Method'
in
the
on-line
documentation)
method,
and
the
settings
in
the
StyleInfo
('StyleInfo
Class'
in
the
on-
line
documentation)
object.
Refer
to
the
Assembly
Reference
(on-line
documentation)
for
more
information
on
the
style
model
in
general
and
to
the
DefaultSheetStyleModel
('DefaultSheetStyleModel
Class'
in
the
on-
line
documentation)
methods
in
particular.

Direct
Versus
Composite

“Direct”
in
the
style
model
means
“not
composite”
or
“not
inherited.”
SetDirectInfo
('SetDirectInfo
Method'
in
the
on-line
documentation)
sets
the
style
properties
that
have
been
set
for
the
specified
cell,
column,
or
row
directly
and
does
not
return
any
settings
that
are
set
for
higher
levels
(such
as
the
entire
model),
while
GetCompositeInfo
('GetCompositeInfo
Method'
in
the
on-line
documentation)
gives
the
style
properties
"composed"
or
"merged"
into
one
StyleInfo
('StyleInfo
Class'
in
the
on-line
documentation)
object
that
contains
all
the
settings
that
are
used
to
paint
and
edit
the
cell,
column,
or
row,
including
any
inherited
settings.

Styles

Spread for ASP.NET Developer’s Guide 349

Copyright © GrapeCity, Inc. All rights reserved.

Properties
that
correspond
to
StyleInfo
('StyleInfo
Class'
in
the
on-line
documentation)
properties
are
stored
in
the
style
model
through
the
ISheetStyleModel
('ISheetStyleModel
Interface'
in
the
on-line
documentation)
interface.
Style
properties
can
be
set
for
a
cell,
row
(column
index
set
to
-1),
column
(row
index
set
to
-1),
or
the
entire
model
(column
and
row
index
set
to
-1).
Properties
that
are
not
set
in
a
cell
are
inherited
from
the
row
setting,
or
the
column
setting
if
the
row
has
no
setting,
or
the
model
default
if
the
column
also
has
no
setting.
The
default
is
exposed
through
the
DefaultStyle
property
(SheetView.DefaultStyle
('DefaultStyle
Property'
in
the
on-line
documentation),
ColumnHeader.DefaultStyle
('DefaultStyle
Property'
in
the
on-line
documentation),
and
RowHeader.DefaultStyle
('DefaultStyle
Property'
in
the
on-line
documentation)).

If
you
set
or
get
a
style
property
using
Rows.Default
or
Rows[-1]
or
Columns.Default
or
Columns[-1],
then
you
will
actually
be
setting
or
getting
the
DefaultStyle
property.
This
is
because
Column
and
Row
always
use
a
row
index
of
-1
and
a
column
index
of
-1
when
accessing
the
style
model,
respectively,
and
so
using
a
column
index
or
a
row
index
of
-1
will
be
setting
or
getting
the
model
default.

Setting
StyleName
replaces
the
style
in
the
style
model
with
the
NamedStyle
('NamedStyle
Class'
in
the
on-line
documentation)
having
the
specified
name.
This
has
the
effect
of
changing
the
settings
of
all
of
the
style-related
properties,
including
ParentStyleName
(which
wraps
StyleInfo.Parent).
Any
previous
setting
for
style-related
properties
like
BackColor,
Font,
Border,
or
ParentStyleName
are
overwritten
when
you
set
StyleName.
The
component
expects
that
the
named
style
is
set
up
with
all
the
properties
as
you
want
them
to
be
set.
If
this
includes
the
named
style
having
a
parent
NamedStyle,
then
you
should
have
that
parent
set
already
when
you
assign
it
with
StyleName,
or
you
should
assign
it
separately
using
a
reference
to
the
NamedStyle
object
(this
has
the
same
effect
as
setting
ParentStyleName
after
setting
StyleName).
Keep
in
mind
that
after
you
have
set
StyleName,
all
cells
where
you
have
used
that
name
are
sharing
the
same
NamedStyle
object,
and
any
changes
that
you
make
to
one
of
those
cells
will
also
be
changing
all
of
the
other
cells
sharing
the
same
named
style.

Example

The
style
properties
for
a
cell
can
be
composited
or
merged
from
the
Cell,
Row,
Column,
Sheet,
and
parent
NamedStyle
objects.
This
code
snippet
illustrates
the
order
of
inheritance
of
a
composited
style:

CS
NamedStyle test_parent = new NamedStyle("test_parent");
NamedStyle test = new NamedStyle("test", "test parent");
test_parent.BackColor = Color.Red;
test.ForeColor = Color.White;
FpSpread1.NamedStyles.AddRange(new NamedStyle[] {test_parent, test});
FpSpread1.Sheets(0).Columns(0).BackColor = Color.Blue;
FpSpread1.Sheets(0).Rows(0).CellType = new NumberCellType();
FpSpread1.Sheets(0).Cells(0,0).StyleName = "test";
FpSpread1.Sheets(0).Cells(1,0).StyleName = "test";

This
code
creates
two
NamedStyle
objects
with
a
parent-child
relationship,
then
sets
some
properties
on
the
styles
and
adds
them
to
the
NamedStyleCollection
in
the
FpSpread
component.
Then
the
background
color
for
the
first
column
is
set
to
blue
and
the
cell
type
for
the
first
row
is
set
to
Number,
and
the
first
cells
in
the
first
two
rows
are
both
set
to
use
the
NamedStyle
named
“test.”
The
result
is
that
the
cells
in
the
first
column
are
blue,
except
for
the
cells
in
the
first
two
rows,
which
are
red
because
the
“test”
style
inherits
the
red
background
color
from
its
parent
NamedStyle.
The
parent
style
overrides
the
inherited
setting
for
the
column.

The
cell
type
for
the
first
cell
is
Number,
since
there
is
no
cell
type
set
in
either
NamedStyle
object.
There
is
a
cell
type
set
in
the
first
row
which
is
inherited
by
all
cells
in
the
row.
The
cell
type
for
the
second
cell
is
General
since
there
is
no
cell
type
setting
for
the
cell,
row,
or
column.
The
default
cell
type
for
the
sheet
is
General.
For
more
information
on
inheritance
of
style
settings,
refer
to
Object
Parentage.

Formatting
Information

The
FormatInfo
strings
in
a
saved
XML
file
are
DateTimeFormatInfo
or
NumberFormatInfo
objects
that
store
the
format
of
the
data.
These
are
created
in
the
style
model
when
a
General
cell
is
edited,
if
the
style
model
implements

Spread for ASP.NET Developer’s Guide 350

Copyright © GrapeCity, Inc. All rights reserved.

IParseFormatSupport.
These
format
objects
allow
the
cells
to
display
the
data
in
the
same
format
that
was
used
to
enter
it.
The
General
cell
type
parses
the
string
into
a
number
or
DateTime,
and
generates
the
IFormatProvider
and
format
string
necessary
to
render
the
data
as
it
was
entered.
If
you
use
TextCellType
instead
of
GeneralCellType,
then
it
works
the
same
as
the
edit
cells
did
in
the
ActiveX
Spread,
and
no
FormatInfo
is
stored
in
the
style
model,
but
the
data
entered
into
the
cells
is
always
treated
as
text.

Understanding the Optional Interfaces

Besides
the
interfaces
that
are
dedicated
to
each
of
the
specific
models,
there
are
also
optional
interfaces
that
provide
additional
support
and
may
be
used
when
making
custom
models.
These
optional
interfaces
and
the
customizations
they
allow
are
summarized
in
this
table:

Optional
Interface Customizations
Allowed
IArraySupport
('IArraySupport
Interface'
in
the
on-line
documentation)

Allows
customization
of
support
for
getting
and
setting
arrays
of
values
in
a
range
of
cells.

IDataKeySupport
('IDataKeySupport
Interface'
in
the
on-line
documentation),
IDataSourceSupport
('IDataSourceSupport
Interface'
in
the
on-line
documentation)

Allow
customization
of
data
binding
on
a
sheet;
used
in
conjunction
with
each
other.

IChildModelSupport
('IChildModelSupport
Interface'
in
the
on-line
documentation)

Allows
customization
of
hierarchical
data
models
for
hierarchies
on
a
sheet;
used
in
conjunction
with
IDataSourceSupport
('IDataSourceSupport
Interface'
in
the
on-line
documentation).

ICalculationSupport
('ICalculationSupport
Interface'
in
the
on-line
documentation),
ICustomFunctionSupport
('ICustomFunctionSupport
Interface'
in
the
on-
line
documentation),
ICustomNameSupport
('ICustomNameSupport
Interface'
in
the
on-line
documentation),
IExpressionSupport
('IExpressionSupport
Interface'
in
the
on-line
documentation),
IIterationSupport
('IIterationSupport
Interface'
in
the
on-line
documentation)

Allow
customization
of
formulas
on
a
sheet.
ICustomFunctionSupport
('ICustomFunctionSupport
Interface'
in
the
on-
line
documentation),
ICustomNameSupport
('ICustomNameSupport
Interface'
in
the
on-line
documentation),
and
IIterationSupport
('IIterationSupport
Interface'
in
the
on-line
documentation)
are
not
useful
without
IExpressionSupport
('IExpressionSupport
Interface'
in
the
on-line
documentation).

INonEmptyCells
('INonEmptyCells
Interface'
in
the
on-line
documentation)

Allows
customization
of
non-empty
counts
to
find
out
which
rows
or
columns
have
data
in
the
cells
of
that
row
or
column
on
a
sheet.

IOptimizedEnumerationSupport
('IOptimizedEnumerationSupport
Interface'
in
the
on-line
documentation)

Allows
customization
of
optimized
enumeration
for
iterating
to
the
next
non-empty
row
or
column
on
a
sheet.

IMovable
('IMovable
Interface'
in
the
on-line
documentation),
IRangeSupport
('IRangeSupport
Interface'
in
the
on-line
documentation)

Allow
customization
of
moving,
inserting,
and
deleting
rows
and
columns
support
for
a
range
of
cells
on
a
sheet;
also
covers
clear,
copy,
move,
and
swap
support.

ISerializeSupport
('ISerializeSupport
Interface'
in
the
on-line
documentation)

Allows
customization
of
XML
serialization
for
the
contents
of
a
sheet.

IUnboundRowSupport
('IUnboundRowSupport
Interface'
in
the
on-line
documentation)

Allows
customization
of
unbound
rows
with
data
binding
on
a
sheet;
used
in
conjunction
with
IDataSourceSupport
('IDataSourceSupport
Interface'
in
the
on-line
documentation).

None
of
these
optional
interfaces
are
required
for
saving
Excel
or
text
files,
or
for
printing.
For
more
detailed
information
on
these
interfaces,
refer
to
the
Assembly
Reference
(on-line
documentation).

Spread for ASP.NET Developer’s Guide 351

Copyright © GrapeCity, Inc. All rights reserved.

Creating a Custom Sheet Model

You
can
use
a
sheet
model
as
a
template
for
a
new
custom
model.
For
example,
you
might
want
to
make
a
custom
data
model.
Using
a
custom
data
model
requires
creating
a
class
which
implements
ISheetDataModel
('ISheetDataModel
Interface'
in
the
on-line
documentation),
then
setting
an
instance
of
the
class
into
the
SheetView.Models.Data
property.

ISheetDataModel
('ISheetDataModel
Interface'
in
the
on-line
documentation)
is
the
only
interface
required,
assuming
that
you
do
not
need
any
of
the
optional
interfaces.
For
more
information
on
the
optional
interfaces,
refer
to
Understanding
the
Optional
Interfaces.

All
of
the
optional
interfaces
are
implemented
by
DefaultSheetDataModel
('DefaultSheetDataModel
Class'
in
the
on-line
documentation),
so
if
you
want
any
of
them
implemented
on
your
data
model,
it
may
be
easier
to
simply
subclass
DefaultSheetDataModel
('DefaultSheetDataModel
Class'
in
the
on-line
documentation).

In
BaseSheetDataModel
('BaseSheetDataModel
Class'
in
the
on-line
documentation),
the
Changed
('Changed
Event'
in
the
on-line
documentation)
event
is
also
implemented
for
you,
along
with
the
overloaded
FireChanged
method,
so
you
do
not
need
to
provide
an
implementation
of
that
event
either.
The
event
itself
is
the
only
thing
in
BaseSheetDataModel
('BaseSheetDataModel
Class'
in
the
on-line
documentation)
that
is
not
virtual.

The
FireChanged
and
OnChanged
methods
are
protected
members
of
BaseSheetDataModel
('BaseSheetDataModel
Class'
in
the
on-line
documentation)
and
are
not
part
of
any
interface.
They
are
virtual
helper
methods
for
the
Changed
event.
The
only
difference
between
the
FireChanged
and
OnChanged
method
is
that
OnChanged
takes
the
EventArgs
argument,
and
FireChanged
takes
the
arguments
used
to
create
the
EventArgs.
The
FireChanged
method
will
not
create
the
EventArgs
object
unless
there
is
actually
a
handler
attached
to
the
delegate,
so
it
is
better
to
use
that
in
subclasses
for
firing
the
event.

In
a
few
cases,
you
may
need
to
create
your
own
custom
data
model
for
performance
reasons.
For
example,
suppose
you
want
to
display
a
large
table
of
computed
values
(such
as
an
addition
or
multiplication
table)
that
consists
of
a
million
rows
by
ten
columns.
If
you
used
the
default
sheet
data
model,
you
would
need
to
compute
and
store
all
ten
million
values
which
would
consume
a
lot
of
time
and
memory.
Here
is
example
code
that
creates
a
custom
data
model
that
enhances
performance.

Example

This
example
creates
a
custom
data
model.

C#
for (r = 0; r < 1000000; r++)
for (c = 0; c < 10; c++)
spread.Sheets[0].Cells[r,c].Value = r + c;

class ComputedDataModel : BaseSheetDataModel
{
 public override int RowCount
 {
 get { return 1000000; }
 }
 public override int ColumnCount
 {
 get { return 10; }
 }
 public override object GetValue(int row, int column)
 {
 return row + column;
 }
}

Spread for ASP.NET Developer’s Guide 352

Copyright © GrapeCity, Inc. All rights reserved.

Spread for ASP.NET Developer’s Guide 353

Copyright © GrapeCity, Inc. All rights reserved.

Maintaining State

To
provide
a
seamless
and
coherent
user
experience,
Web-based
applications
must
include
a
way
of
maintaining
state.
ASP.NET
pages
and
Web
Forms
components
can
automatically
maintain
state
and
some
Web
Forms
components
offer
properties
and
methods
that
let
you
manage
this.
Take
into
account
the
various
advantages
and
disadvantages
of
each
solution
when
choosing
the
method
of
maintaining
state
that
will
optimize
the
performance
of
your
application.

As
an
ASP.NET
developer,
you
can
optimize
the
way
your
application
maintains
state
by
understanding
the
impact
of
several
factors.
You
will
want
to
handle
state
management
differently
depending
on
the
amount
of
data,
availability
of
the
server,
and
the
resources
for
implementation.
You
can
have
your
application
save
data
locally
on
the
client
(either
to
the
View
State,
in
a
cookie,
or
in
hidden
form
fields),
or
on
the
server
(either
to
the
Session
State
or
Application
State
or
to
an
SQL
database).
Depending
on
the
amount
of
data,
some
approaches
to
saving
state
have
more
impact
on
the
performance
of
the
server
and
some
have
more
on
the
client
side.

The
following
table
provides
an
overview
of
the
state
management
options
and
features
specific
to
each
option.

 Less
Coding

Large
Data
Sets

Server
Performance

Client
Performance

Data
Durability

Scalability Security Data
Integrity

Data
Accessible
by
other
software

Configuration
options

View
State

X

Session
State

 X
 X X X

SQL
Database

 X X
 X X X X X X

Page
Request

 X X

If
you
are
unfamiliar
with
state
management,
first
read
the
overview
in
State
Overview.

In
Spread
for
ASP.NET,
you
can
manage
state
in
different
ways,
including
the
following
options:

Saving
Data
to
the
View
State,
which
is
client
based
Saving
Data
to
the
Session
State,
which
is
server
based
Saving
Data
to
an
SQL
Database,
which
is
server
based
Loading
Data
for
Each
Page
Request

These
topics
discuss
the
advantages
and
disadvantages
of
these
options.
Review
this
information
to
determine
the
best
approach
for
your
application.

State Overview

The
HTML
page
state
is
a
snapshot
of
the
state
of
all
the
page’s
data
and
property
settings.
This
information
needs
to
round-trip
from
the
server
to
the
client
to
maintain
a
seamless
and
coherent
user
experience.
The
state
maintains
the
information
in
the
HTML
page
when
the
page
is
refreshed.
As
an
ASP.NET
developer,
you
can
and
should
maintain
the
state
when
the
page
is
refreshed,
so
that
user
data
remains
in
the
page.
You
have
probably
experienced
pages
that
do
not
maintain
state;
when
the
page
is
refreshed,
such
as
to
remind
you
to
complete
part
of
a
form,
your
information
is
lost,
and
you
must
complete
the
entire
page
again.
Understandably,
users
prefer
pages
that
maintain
the
state.

State
management
can
be
done
in
many
ways.
The
method
you
choose
can
affect
performance;
therefore,
you
should
understand
the
various
ways
you
can
manage
state
and
choose
the
appropriate
option
for
your
application.
You
need
to
set
up
your
application’s
state
management
to
optimize
performance
while
maintaining
the
state.

ASP.NET
pages
and
Web
Forms
components,
including
Spread
for
ASP.NET,
automatically
maintain
state.
In
addition,
the
Spread
component
offers
properties
and
methods
that
let
you
manage
the
state,
including:

FarPoint.Web.Spread.FpSpread.EnableViewState
property
FarPoint.Web.Spread.SheetView.IsTrackingViewState
property
FarPoint.Web.Spread.SheetView.LoadViewState
method
FarPoint.Web.Spread.SheetView.SaveViewState
method

Saving Data to the View State

View
state
management
provides
client-based
state
management,
where
data
is
written
into
pages
in
hidden
fields.

To
save
the
data
to
the
view
state,
set
the
IsTrackingViewState
('IsTrackingViewState
Property'
in
the
on-line
documentation)
property
for
the
active
sheet
to
true,
which
is
the
default
setting.

Spread for ASP.NET Developer’s Guide 354

Copyright © GrapeCity, Inc. All rights reserved.

Advantages
and
Disadvantages

The
advantages
of
using
the
view
state
are:

No
server
resources
are
required.
It
requires
less
coding.
It
requires
less
database
access.
Spread
manages
all
its
data.
The
user
changes
are
saved
automatically
to
the
component's
data
model.

The
default
control
settings
use
the
view
state
to
save
data.
This
default
setting
is
best
for
small
data
models.
If
you
are
using
larger
data
sets,
you
will
probably
want
to
use
one
of
the
other
state
management
options

The
disadvantage
of
using
view
state
is
the
impact
on
performance.
Because
the
view
state
is
stored
in
the
page
itself,
storing
large
values
can
cause
the
page
to
slow
down
when
users
display
it
and
when
they
post
it.

Using
Code

Use
the
view
state
to
save
data.

Example

The
following
sample
illustrates
using
the
view
state
to
save
data.

C#
protected void Page_Load(object sender, System.EventArgs e)
{
if (this.IsPostBack) return;
// Connect to NWIND MS Access example with OLE DB.
OleDbConnection thisConnection = new OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;
Data Source=D:\\NWIND.MDB");
// Open connection.
thisConnection.Open();
// Create DataSet to contain related data tables, rows, and columns.
DataSet thisDataSet = new DataSet();
OleDbDataAdapter orderAdapter = new OleDbDataAdapter("SELECT EmployeeID, LastName,
FirstName, Title FROM Employees", thisConnection);
orderAdapter.Fill(thisDataSet, "Employees");
FpSpread1.ActiveSheetView.IsTrackingViewState = true;
FpSpread1.ActiveSheetView.DataSource = thisDataSet;
FpSpread1.ActiveSheetView.DataMember = "Employees";
thisConnection.Close();
thisConnection.Dispose();
}

VB
 Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
 If (Me.IsPostBack) Then Return

 ' Connect to NWIND MS Access example with OLE DB.
 Dim thisConnection As New OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0; Data
Source=D:\NWIND.MDB")
 ' Open connection.
 thisConnection.Open()
 ' Create DataSet to contain related data tables, rows, and columns.
 Dim thisDataSet As New DataSet()

Spread for ASP.NET Developer’s Guide 355

Copyright © GrapeCity, Inc. All rights reserved.

 Dim orderAdapter As New OleDbDataAdapter("SELECT EmployeeID, LastName, FirstName,
Title FROM Employees", thisConnection)

 orderAdapter.Fill(thisDataSet, "Employees")

 FpSpread1.ActiveSheetView.IsTrackingViewState = True
 FpSpread1.ActiveSheetView.DataSource = thisDataSet
 FpSpread1.ActiveSheetView.DataMember = "Employees"

 thisConnection.Close()
 thisConnection.Dispose()
 End Sub

Saving Data to the Session State

Session
state
management
provides
server-based
state
management,
where
data
is
saved
to
separate
browser
sessions
for
each
user.

To
save
the
data
to
the
session
state,
set
the
IsTrackingViewState
('IsTrackingViewState
Property'
in
the
on-
line
documentation)
property
for
the
active
sheet
to
True,
as
with
saving
data
to
the
view
state.
Then
handle
the
session
state
in
the
SaveOrLoadSheetState
('SaveOrLoadSheetState
Event'
in
the
on-line
documentation)
event.

Advantages
and
Disadvantages

The
advantages
of
using
the
session
state
are:

It
offers
easier
implementation.
It
requires
less
database
access.
It
can
handle
larger
data
models.
Because
the
view
state
is
small,
pages
load
quickly.
It
enhances
data
durability.
Data
placed
in
session-state
variables
can
survive
Internet
Information
Services
(IIS)
restarts
and
worker-process
restarts
without
losing
session
data
because
the
data
is
stored
in
another
process
space.
It
provides
platform
scalability.
Session
state
can
be
used
in
both
multiple-computer
and
multiple-process
configurations.

Using
the
session
state
is
best
if
the
data
is
too
big
to
save
to
the
view
state.

The
disadvantage
of
using
the
session
state
is
the
impact
on
performance.
Session
state
variables
stay
in
server
memory
until
they
are
either
removed
or
replaced,
and
therefore
can
degrade
server
performance.
Session
state
variables
containing
blocks
of
information
like
large
data
sets
can
adversely
affect
Web
server
performance
as
server
load
increases.

Using
Code

Use
the
session
state
to
save
data.

Example

The
following
sample
illustrates
using
the
session
state
to
save
data.

C#

Spread for ASP.NET Developer’s Guide 356

Copyright © GrapeCity, Inc. All rights reserved.

protected void Page_Load(object sender, System.EventArgs e)
{
if (this.IsPostBack) return;
// Connect to NWIND MS Access example with OLE DB.
OleDbConnection thisConnection = new OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;
Data Source=D:\\NWIND.MDB");
// Open connection.
thisConnection.Open();
// Create DataSet to contain related data tables, rows, and columns.
DataSet thisDataSet = new DataSet();
OleDbDataAdapter orderAdapter = new OleDbDataAdapter("SELECT * FROM Orders",
thisConnection);
orderAdapter.Fill(thisDataSet, "Orders");
FpSpread1.ActiveSheetView.IsTrackingViewState = true;
FpSpread1.ActiveSheetView.DataSource = thisDataSet;
FpSpread1.ActiveSheetView.DataMember = "Orders";
}

protected void FpSpread1_SaveOrLoadSheetState(object sender,
FarPoint.Web.Spread.SheetViewStateEventArgs e)
{
if (e.IsSave)
{
Session[e.SheetView.SheetName] = e.SheetView.SaveViewState();
}
else
{
e.SheetView.LoadViewState(Session[e.SheetView.SheetName]);
}
e.Handled = true;
}

VB
Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
 If (Me.IsPostBack) Then Return
 ' Connect to NWIND MS Access example with OLE DB.
 Dim thisConnection As New OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=D:\NWIND.MDB")
 ' Open connection.
 thisConnection.Open()
 ' Create DataSet to contain related data tables, rows, and columns.
 Dim thisDataSet As New DataSet()
 Dim orderAdapter As New OleDbDataAdapter("SELECT * FROM Orders", thisConnection)
 orderAdapter.Fill(thisDataSet, "Orders")
 FpSpread1.ActiveSheetView.DataSource = thisDataSet
 FpSpread1.ActiveSheetView.DataMember = "Orders"
 FpSpread1.ActiveSheetView.IsTrackingViewState = True
End Sub

Private Sub FpSpread1_SaveOrLoadSheetState(ByVal sender As Object, ByVal e As
FarPoint.Web.Spread.SheetViewStateEventArgs) Handles FpSpread1.SaveOrLoadSheetState
 If (e.IsSave) Then Session(e.SheetView.SheetName) = e.SheetView.SaveViewState()
 Else
 e.SheetView.LoadViewState(Session(e.SheetView.SheetName))
 End If

Spread for ASP.NET Developer’s Guide 357

Copyright © GrapeCity, Inc. All rights reserved.

 e.Handled = True
 End Sub

Saving Data to an SQL Database

Database
state
management
saves
data
to
a
specified
database.
Using
an
SQL
database
for
state
management
is
best
if
you
are
working
with
large
amounts
of
data,
particularly
data
that
needs
to
be
secure
and
maintain
integrity.

To
save
data
to
an
SQL
database,
you
must
install
SQL
State
Management,
as
explained
in
the
example.

Advantages
and
Disadvantages

The
advantages
of
using
a
database
to
maintain
state
are:

Databases
are
typically
very
secure,
requiring
rigorous
authentication
and
authorization.
Databases
offer
large
capacity.
Database
information
can
be
stored
as
long
as
you
like,
and
it
is
not
subject
to
the
availability
of
the
Web
server.
Databases
include
various
facilities
for
maintaining
data
integrity.
Data
stored
in
your
database
is
accessible
to
a
wide
variety
of
information-processing
tools.
There
are
numerous
database
tools
available,
offering
wide
support
and
custom
configurations.

The
disadvantages
of
using
a
database
to
maintain
state
are:

Using
a
database
to
support
state
management
requires
more
complex
hardware
and
software
configurations.
Using
a
database
can
affect
performance,
for
example
due
to
poor
construction
of
the
relational
data
model.
Also,
large
numbers
of
queries
to
the
database
can
adversely
affect
server
performance.

Using
Code

This
example
describes
how
to
install
SQL
state
management.
To
install
SQL
State
Management
complete
the
following
instructions.

1.
 Do
one
of
the
following:
If
you
are
using
the
MSDE
version
of
SQL
Server
that
ships
with
Visual
Studio.NET
you
need
to
open
a
command
prompt
window
and
navigate
to
the
Windows\Microsoft.Net\Framework\(Version)
directory.
Once
there,
issue
the
following
command
to
run
the
InstallSqlState.sql
script:
OSQL –S localhost –U sa –P <InstallSqlState.sql

OSQL.exe
is
a
tool
that
ships
with
MSDE
and
SQL
Server.
It
allows
you
to
apply
a
T-SQL
script
to
a
SQL
Server.
If
you
are
using
SQL
Server
7
or
SQL
Server
2000
you
can
follow
the
directions
above
or
you
can
open
the
Enterprise
Manager,
open
the
InstallSqlState.sql
script
from
the
Windows\Microsoft.Net\
(Framework
Version)
directory,
and
execute
the
script
from
there.
Whichever
method
you
choose,
the
script
will
set
up
an
ASPState
database
in
your
SQL
Server
Group
Databases.

2.
 After
you
have
run
the
script
to
set
up
SQL
state
management,
you
need
to
make
a
change
to
your
project’s
web.config
file.
Under
the
session
State
section,
change
the
Mode
setting
from
its
current
setting
(most
likely
InProc)
to
SQL
Server.

3.
 Then
configure
the
sqlConnectionString
to
point
to
the
SQL
Server
where
you
installed
the
T-SQL
script
InstallSqlState.sql
as
follows:
sqlConnectionString="data source=127.0.0.1;user id=sa;password=;"

Loading Data for Each Page Request

Spread for ASP.NET Developer’s Guide 358

Copyright © GrapeCity, Inc. All rights reserved.

When
you
load
data
for
each
page
request,
you
are
not
maintaining
state,
rather,
you
are
re-creating
each
page
as
it
is
requested.
Load
data
for
every
page
request
when
there
is
a
large
data
set
and
you
must
minimize
the
use
of
server
resources.

To
load
data
for
every
page
request,
set
the
IsTrackingViewState
('IsTrackingViewState
Property'
in
the
on-
line
documentation)
property
for
the
active
sheet
to
False.

Advantages
and
Disadvantages

The
advantages
of
loading
data
for
every
page
request
are:

No
server
resources
are
required.
Because
the
view
state
is
small,
pages
load
quickly.

The
disadvantages
of
loading
data
for
every
page
request
are:

The
programmers
must
code
more
to
handle
the
UpdateCommand
('UpdateCommand
Event'
in
the
on-line
documentation),
InsertCommand
('InsertCommand
Event'
in
the
on-line
documentation),
and
DeleteCommand
('DeleteCommand
Event'
in
the
on-line
documentation)
events
to
update
the
database.
In
addition,
the
programmers
might
need
to
set
up
row,
column,
or
cell
styles
for
each
page
request.
This
method
requires
more
database
access
if
the
FpSpread
component
is
bound.

Using
Code

Load
data
each
time
the
page
is
loaded.

Example
1

The
following
sample
code
illustrates
loading
data
for
every
page
request.

VB
Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
 ' Put user code to initialize the page here.
 OleDbDataAdapter1.Fill(DataSet11, "Orders")
 FpSpread1.ActiveSheetView.DataKeyField = "OrderID"
 FpSpread1.ActiveSheetView.IsTrackingViewState = False
 Me.DataBind()
End Sub

Private Sub FpSpread1_UpdateCommand(ByVal sender As Object, ByVal e As
FarPoint.Web.Spread.SpreadCommandEventArgs) Handles FpSpread1.UpdateCommand
 Dim conn As New OleDb.OleDbConnection()
 conn.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Password="""";User
ID=Admin;Data Source=C:\test\NW" & _
 "ind.mdb;Mode=Share Deny None;Extended Properties="""";Jet OLEDB:System
database=""""" & _
 ";Jet OLEDB:Registry Path="""";Jet OLEDB:Database Password="""";Jet OLEDB:Engine
Type" & _
 "=4;Jet OLEDB:Database Locking Mode=0;Jet OLEDB:Global Partial Bulk Ops=2;Jet OLE" &
_
 "DB:Global Bulk Transactions=1;Jet OLEDB:New Database Password="""";Jet OLEDB:Creat"
& _
 "e System Database=False;Jet OLEDB:Encrypt Database=False;Jet OLEDB:Don't Copy Lo" &
_
 "cale on Compact=False;Jet OLEDB:Compact Without Replica Repair=False;Jet OLEDB:S" &
_

Spread for ASP.NET Developer’s Guide 359

Copyright © GrapeCity, Inc. All rights reserved.

 "FP=False"
 Dim cmdText As String = "UPDATE Orders SET CustomerID = ?, EmployeeID = ?, Freight =
?, OrderDate = ?, Req" & _
"uiredDate = ?, ShipAddress = ?, ShipCity = ?, ShipCountry = ?, ShipName = ?, Shi" & _
"ppedDate = ?, ShipPostalCode = ?, ShipRegion = ?, ShipVia = ? WHERE (OrderID = ?)"
 Dim updateCmd As OleDb.OleDbCommand = New OleDb.OleDbCommand(cmdText, conn)
 updateCmd.Parameters.Add(New System.Data.OleDb.OleDbParameter("CustomerID",
System.Data.OleDb.OleDbType.VarWChar, 5, "CustomerID"))
 updateCmd.Parameters.Add(New System.Data.OleDb.OleDbParameter("EmployeeID",
System.Data.OleDb.OleDbType.Integer, 0, System.Data.ParameterDirection.Input, False,
CType(10, Byte), CType(0, Byte), "EmployeeID", System.Data.DataRowVersion.Current,
Nothing))
 updateCmd.Parameters.Add(New System.Data.OleDb.OleDbParameter("Freight",
System.Data.OleDb.OleDbType.Currency, 0, System.Data.ParameterDirection.Input, False,
CType(19, Byte), CType(0, Byte), "Freight", System.Data.DataRowVersion.Current,
Nothing))
 updateCmd.Parameters.Add(New System.Data.OleDb.OleDbParameter("OrderDate",
System.Data.OleDb.OleDbType.DBDate, 0, "OrderDate"))
 updateCmd.Parameters.Add(New System.Data.OleDb.OleDbParameter("RequiredDate",
System.Data.OleDb.OleDbType.DBDate, 0, "RequiredDate"))
 updateCmd.Parameters.Add(New System.Data.OleDb.OleDbParameter("ShipAddress",
System.Data.OleDb.OleDbType.VarWChar, 60, "ShipAddress"))
 updateCmd.Parameters.Add(New System.Data.OleDb.OleDbParameter("ShipCity",
System.Data.OleDb.OleDbType.VarWChar, 15, "ShipCity"))
 updateCmd.Parameters.Add(New System.Data.OleDb.OleDbParameter("ShipCountry",
System.Data.OleDb.OleDbType.VarWChar, 15, "ShipCountry"))
 updateCmd.Parameters.Add(New System.Data.OleDb.OleDbParameter("ShipName",
System.Data.OleDb.OleDbType.VarWChar, 40, "ShipName"))
 updateCmd.Parameters.Add(New System.Data.OleDb.OleDbParameter("ShippedDate",
System.Data.OleDb.OleDbType.DBDate, 0, "ShippedDate"))
 updateCmd.Parameters.Add(New System.Data.OleDb.OleDbParameter("ShipPostalCode",
System.Data.OleDb.OleDbType.VarWChar, 10, "ShipPostalCode"))
 updateCmd.Parameters.Add(New System.Data.OleDb.OleDbParameter("ShipRegion",
System.Data.OleDb.OleDbType.VarWChar, 15, "ShipRegion"))
 updateCmd.Parameters.Add(New System.Data.OleDb.OleDbParameter("ShipVia",
System.Data.OleDb.OleDbType.Integer, 0, System.Data.ParameterDirection.Input, False,
CType(10, Byte), CType(0, Byte), "ShipVia", System.Data.DataRowVersion.Current,
Nothing))
 updateCmd.Parameters.Add(New System.Data.OleDb.OleDbParameter("OrderID",
System.Data.OleDb.OleDbType.Integer, 0, System.Data.ParameterDirection.Input, False,
CType(10, Byte), CType(0, Byte), "OrderID", System.Data.DataRowVersion.Original,
Nothing))
 Dim sv As FarPoint.Web.Spread.SheetView = e.SheetView
 Dim keyValue As String = sv.GetDataKey(e.CommandArgument)
 ' Find the row.
 Dim rowFlag As Boolean = False
 Dim keyCol As Integer = 4 ' order id
 Dim r As Integer
 For r = 0 To sv.RowCount - 1
 Dim tmp As String = sv.GetValue(r, 4)
 If (tmp = keyValue) Then
 rowFlag = True
 Exit For
 End If
 Next
 If Not rowFlag Then
 Return

Spread for ASP.NET Developer’s Guide 360

Copyright © GrapeCity, Inc. All rights reserved.

 End If

Dim i As Integer
For i = 0 To sv.ColumnCount - 1
 Dim colName As String = sv.GetColumnLabel(0, i)
 If (Not e.EditValues.Item(i) Is FarPoint.Web.Spread.FpSpread.Unchanged) Then
 updateCmd.Parameters(colName).Value = e.EditValues.Item(i) ElseIf
(OleDbUpdateCommand1.Parameters.Contains(colName)) Then
 updateCmd.Parameters(colName).Value = sv.GetValue(r, i)
 End If
Next

Try
 conn.Open()
 i = updateCmd.ExecuteNonQuery()
 conn.Close()
 conn.Dispose()
Catch ex As Exception
 ' Update database failed.
 conn.Close()
 conn.Dispose()
End Try
End Sub

Example
2

The
following
sample
code
illustrates
loading
data
for
every
page
request.
This
example
requires
more
coding,
but
provides
a
more
efficient
application.
To
further
speed
up
page
loading,
you
can
use
the
"where"
clause
in
the
SQL
statements
to
retrieve
one
page
of
records
so
that
database
server
does
not
have
to
return
a
large
data
set.

VB
Private topRow As Integer
Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
 topRow = FpSpread1.Sheets(0).TopRow
 SetDataModel(topRow, topRow)
End Sub

Private Sub FpSpread1_TopRowChanged(ByVal sender As Object, ByVal e As
FarPoint.Web.Spread.SpreadCommandEventArgs) Handles FpSpread1.TopRowChanged
 SetDataModel(topRow, e.SheetView.TopRow)
End Sub

Public Sub SetDataModel(ByVal oldTopRow As Integer, ByVal newTopRow As Integer)
 Dim firstOrderID As Integer = -1
 Dim lastOrderID As Integer = -1
 If Not ViewState("lastOrderID") Is Nothing Then
 lastOrderID = ViewState("lastOrderID")
 End If
 If Not ViewState("firstOrderID") Is Nothing Then
 firstOrderID = ViewState("firstOrderID")
 End If
 Dim ps As Integer = FpSpread1.Sheets(0).PageSize
 If newTopRow > oldTopRow Then
 Me.OleDbSelectCommand1.CommandText = "SELECT Top " & ps & " CustomerID, EmployeeID,
Freight, OrderDate, OrderID, RequiredDate, ShipAdd" & _

Spread for ASP.NET Developer’s Guide 361

Copyright © GrapeCity, Inc. All rights reserved.

"ress, ShipCity, ShipCountry, ShipName, ShippedDate, ShipPostalCode, ShipRegion, " & _
"ShipVia FROM Orders" & " Where OrderID >" & lastOrderID & " Order by OrderID"
 ElseIf newTopRow = oldTopRow Then
 Me.OleDbSelectCommand1.CommandText = "SELECT Top " & ps & " CustomerID, EmployeeID,
Freight, OrderDate, OrderID, RequiredDate, ShipAdd" & _
"ress, ShipCity, ShipCountry, ShipName, ShippedDate, ShipPostalCode, ShipRegion, " & _
"ShipVia FROM Orders" & " Where OrderID >=" & firstOrderID & " Order by OrderID"
 Else
 Me.OleDbSelectCommand1.CommandText = "SELECT Top " & ps & " CustomerID, EmployeeID,
Freight, OrderDate, OrderID, RequiredDate, ShipAdd" & _
"ress, ShipCity, ShipCountry, ShipName, ShippedDate, ShipPostalCode, ShipRegion, " & _
"ShipVia FROM Orders" & " Where OrderID <" & firstOrderID & " Order by OrderID DESC"
 End If
FpSpread1.Sheets(0).IsTrackingViewState = False
DataSet31.Tables(0).Clear()

If newTopRow < oldTopRow Then
 ' Reverse the order.
 Dim tmpTable As Data.DataTable = DataSet31.Tables(0).Clone()
 OleDbDataAdapter1.Fill(tmpTable)

 Dim dr As Data.DataRow
 Dim i As Integer
 For i = 0 To tmpTable.Rows.Count - 1
 dr = tmpTable.Rows(tmpTable.Rows.Count - 1 - i)
 DataSet31.Tables(0).ImportRow(dr)
 Next
Else
 OleDbDataAdapter1.Fill(DataSet31)
End If

Dim model As MyModel = New MyModel(DataSet31, String.Empty)
model.TopRow = newTopRow

Dim dbCmd As Data.OleDb.OleDbCommand = New Data.OleDb.OleDbCommand("select count(*)
from orders", OleDbConnection1)
OleDbConnection1.Open()
model.RowCount = CType(dbCmd.ExecuteScalar(), Integer)
OleDbConnection1.Close()

FpSpread1.Sheets(0).DataModel = model
ViewState("firstOrderID") = DataSet31.Tables(0).Rows(0).Item("OrderID")
Dim dtcount As Integer = DataSet31.Tables(0).Rows.Count
ViewState("lastOrderID") = DataSet31.Tables(0).Rows(dtcount - 1).Item("OrderID")
End Sub
'PageLoad

Example
3

The
following
sample
code
illustrates
loading
data
for
every
page
request.
This
example
requires
more
coding,
but
provides
a
more
efficient
application.
To
further
speed
up
page
loading,
you
can
use
the
"where"
clause
in
the
SQL
statements
to
retrieve
one
page
of
records
so
that
database
server
does
not
have
to
return
a
large
data
set.

VB
Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load

Spread for ASP.NET Developer’s Guide 362

Copyright © GrapeCity, Inc. All rights reserved.

 'Put user code to initialize the page here.
 Dim topRow As Integer = FpSpread1.Sheets(0).TopRow
 SetDataModel(topRow)
End Sub

Public Sub SetDataModel(ByVal topRow As Integer)
 Dim ps As Integer = FpSpread1.Sheets(0).PageSize

 Me.OleDbSelectCommand1.CommandText = "SELECT CategoryID, Discontinued, ProductID,
ProductName, QuantityPerUnit, Reorder" & _
"Level, SupplierID, UnitPrice, UnitsInStock, UnitsOnOrder FROM Products" & " Where
ProductID >=" & topRow & " and ProductID <= " & (topRow + ps) & " Order by ProductID"

FpSpread1.Sheets(0).IsTrackingViewState = False
DataSet41.Tables(0).Clear()
OleDbDataAdapter1.Fill(DataSet41)

Dim model As MyModel = New MyModel(DataSet41, String.Empty)
model.TopRow = topRow
Dim dbCmd As Data.OleDb.OleDbCommand = New Data.OleDb.OleDbCommand("select count(*)
from Products", OleDbConnection1)
OleDbConnection1.Open()
model.RowCount = CType(dbCmd.ExecuteScalar(), Integer)
OleDbConnection1.Close()
FpSpread1.Sheets(0).DataModel = model
End Sub

Private Sub FpSpread1_TopRowChanged(ByVal sender As Object, ByVal e As
FarPoint.Web.Spread.SpreadCommandEventArgs) Handles FpSpread1.TopRowChanged
SetDataModel(e.SheetView.TopRow)
End Sub

Public Class MyModel
Inherits FarPoint.Web.Spread.Model.BaseSheetDataModel

Private dataset As Data.DataSet = Nothing
Private datamember As String = String.Empty
Private trow As Integer = 0
Private rCount As Integer = 0

Public Sub New(ByVal ds As Data.DataSet, ByVal dm As String)
 dataset = ds
 datamember = dm
End Sub

Public Overrides Function GetValue(ByVal row As Integer, ByVal col As Integer) As
Object
Dim dt As Data.DataTable = Me.GetDataTable()
If dt Is Nothing Then
 Return Nothing
Else
If row < TopRow Or row >= TopRow + dt.Rows.Count Then
 Return Nothing
Else
 Dim r As Integer = row - TopRow
 Return dt.Rows(r).Item(col)
End If

Spread for ASP.NET Developer’s Guide 363

Copyright © GrapeCity, Inc. All rights reserved.

End If
End Function

Public Overrides Function IsEditable(ByVal row As Integer, ByVal col As Integer) As
Boolean
Return True
End Function

Public Function GetDataTable() As Data.DataTable
If dataset Is Nothing Then
 Return Nothing
Else
If datamember Is Nothing Or datamember = String.Empty Then
 Return dataset.Tables(0)
Else
 Return dataset.Tables(datamember)
End If
End If
End Function

Public Property TopRow() As Integer
Get
 Return trow
End Get
Set(ByVal Value As Integer)
 trow = Value
End Set
End Property

Public Overrides Property RowCount() As Integer
Get
 Return rCount
End Get
Set(ByVal Value As Integer)
 rCount = Value
End Set
End Property

Public Overrides Property ColumnCount() As Integer
Get
Dim dt As Data.DataTable = GetDataTable()

If (dt Is Nothing) Then
 Return 0
Else
 Return dt.Columns.Count
End If
End Get
Set(ByVal Value As Integer)
End Set
End Property

End Class

Spread for ASP.NET Developer’s Guide 364

Copyright © GrapeCity, Inc. All rights reserved.

Working with the Chart Control

The
Chart
control
can
be
used
with
the
Spread
control
to
display
your
data
in
professional
looking
charts.
The
Chart
control
can
be
added
using
the
Spread
designer
and
Spread
properties.
You
can
also
use
Chart
classes
to
create
a
Chart
control.
The
following
topics
explain
general
features
of
the
control
as
well
as
how
to
use
the
control.

The
following
topics
include:

Understanding
and
Customizing
Charts
Creating
Charts

Understanding and Customizing Charts

You
can
create
different
plot
types
and
customize
charts
with
borders,
labels,
legends,
and
other
effects.
Consult
the
following
sections
for
more
information
about
formatting
charts:

Chart
User
Interface
Elements
Chart
Types
and
Views
Plot
Types
Series
Walls
Axis
and
Other
Lines
Fill
Effects
Elevation
and
Rotation
Lighting,
Shapes,
and
Borders
Size
-
Height,
Width,
and
Depth
Labels
Legends

Chart User Interface Elements

There
are
several
visual
elements
to
a
chart
such
as
the
plot,
legend,
and
label
areas,
the
axis,
and
the
series.
The
label
area
contains
additional
information
about
the
chart.
The
legend
can
be
used
to
help
end
users
identify
different
chart
elements
such
as
the
series.
The
axis
displays
the
scale
for
a
single
dimension
of
a
plot
area.
Each
series
is
a
collection
of
data
points.
The
plot
area
is
the
area
in
which
data
points
are
drawn.

Spread for ASP.NET Developer’s Guide 365

Copyright © GrapeCity, Inc. All rights reserved.

For
more
information
about
the
chart
elements,
refer
to
the
following
topics:

Plot
Types
Series
Axis
and
Other
Lines
Labels
Legends

Chart Types and Views

The
Chart
control
has
several
chart
types
and
each
type
has
additional
views.

The
following
is
a
list
of
the
chart
types:

Area
Bar
Box
Whisker
Bubble
Column
Doughnut
Funnel
Histogram
Line
Pareto
Pie
Polar
Radar
Stock
Sunburst
Treemap

Spread for ASP.NET Developer’s Guide 366

Copyright © GrapeCity, Inc. All rights reserved.

Waterfall
XY
XYZ

The
column
type
has
the
following
types
of
views
-
Clustered
Column,
Stacked
Column,
100%
Stacked
Column,
High
Low
Column,
3D
Clustered
Column,
3D
Stacked
Column,
100%
3D
Stacked
Column,
3D
Column,
3D
High
Low
Column,
Clustered
Cylinder,
Stacked
Cylinder,
100%
Stacked
Cylinder,
3D
Cylinder,
High
Low
Column
Cylinder,
Clustered
Full
Cone,
Stacked
Full
Cone,
100%
Stacked
Full
Cone,
3D
Full
Cone,
High
Low
Column
Full
Cone,
Clustered
Full
Pyramid,
Stacked
Full
Pyramid,
100%
Stacked
Full
Pyramid,
3D
Pyramid,
and
High
Low
Column
Pyramid.

The
line
type
has
the
following
types
of
views
-
Line,
Stacked
Line,
100%
Stacked
Line,
Line
with
Markers,
Stacked
Line
with
Markers,
100%
Stacked
Line
with
Markers,
and
3D
Line.

The
pie
type
has
the
following
types
of
views
-
2D
Pie,
3D
Pie,
2D
Exploded
Pie,
and
3D
Exploded
Pie.

The
bar
type
has
the
following
types
of
views
-
Clustered
Bar,
Stacked
Bar,
100%
Stacked
Bar,
High
Low
Bar,
3D
Clustered
Bar
,
3D
Stacked
Bar,
100%
3D
Stacked
Bar,
3D
High
Low
Bar,
Clustered
Horizontal
Cylinder,
Stacked
Horizontal
Cylinder,
100%
Stacked
Horizontal
Cylinder,
High
Low
Bar
Cylinder,
Clustered
Horizontal
Full
Cone,
Stacked
Horizontal
Full
Cone,
100%
Stacked
Horizontal,
High
Low
Bar
Full
Cone,
Clustered
Horizontal
Full
Pyramid,
Stacked
Horizontal
Full
Pyramid,
100%
Stacked
Horizontal,
and
High
Low
Bar
Pyramid.

The
area
type
has
the
following
types
of
views
-
Area,
Stacked
Area,
100%
Stacked
Area,
High
Low
Area,
3D
Area,
3D
Stacked
Area,
100%
3D
Stacked
Area,
and
3D
High
Low
Area.

The
XY
type
has
the
following
types
of
views
-
XY
Point,
XY
Line,
and
XY
Line
with
Marker.

The
bubble
type
has
the
following
types
of
views
-
2D
Bubble
and
3D
Bubble.

The
stock
type
has
the
following
types
of
views
-
High
Low
Close,
Open
High
Low
Close,
and
Candle
Stick.

The
XYZ
type
has
the
following
types
of
views
-
XYZ
Line,
XYZ
Line
with
Marker,
XYZ
Point,
and
Surface.

The
doughnut
type
has
the
following
types
of
views
-
Doughnut
and
Exploded
Doughnut.

The
radar
type
has
the
following
types
of
views
-
Radar
Line,
Radar
Line
with
Marker,
Radar
Point,
and
Radar
Area.

The
polar
type
has
the
following
types
of
views
-
Polar
Line,
Polar
Line
with
Marker,
Polar
Point,
and
Polar
Area.

Plot Types

A
plot
area
is
the
area
in
which
data
points
(bars,
points,
lines,
and
so
on)
are
drawn.
A
plot
area
contains
a
collection
of
series.
Each
series
is
a
collection
of
data
points.
A
plot
area
may
also
contain
an
axis(s)
and
wall(s).
The
axis(s)
and
wall(s)
enhance
the
visual
appearance
of
the
plot
area
and
are
usually
painted
just
outside
the
plot
area.

A
plot
area
can
be
assigned
an
anchor
view
location
and
a
view
size.
The
anchor
view
location
is
specified
in
normalized
units
((0,0)
=
left
upper
corner
of
chart
view,
(1,1)
=
right
lower
corner
of
chart
view).
The
view
size
of
the
plot
area
is
specified
in
normalized
units
((0,0)
=
zero
size,
(1,1)
=
full
size
of
chart
view).
The
left
top
corner
of
the
plot
area
is
aligned
with
the
anchor
location.

A
plot
area
can
be
assigned
a
model
size
using
width,
height,
and
depth
properties.
The
properties
use
model
units.

There
are
several
plot
types:

Y
Plot
Types
XY
Plot
Types
XYZ
Plot
Types
Pie
Plot
Types
Polar
Plot
Types
Radar
Plot
Types
Data
Plot
Types

Each
plot
type
has
different
chart
types
associated
with
it,
as
explained
in
the
plot
type
topics.

Spread for ASP.NET Developer’s Guide 367

Copyright © GrapeCity, Inc. All rights reserved.

Y Plot Types

The
Y
plot
area
contains
series
that
have
values
in
one
dimension.

When
visualized
in
two
dimensions,
a
Y
plot
area
takes
the
form
of
a
rectangle
with
the
x-axis
representing
categories
and
the
y-axis
representing
values.

When
visualized
in
three
dimensions,
a
Y
plot
area
takes
the
form
of
a
cube
with
the
x-axis
representing
categories,
the
y-axis
representing
values,
and
the
z-axis
(depth)
representing
series.

A
Y
plot
area
can
be
oriented
vertically
or
horizontally.
When
oriented
vertically,
the
x-axis
is
horizontal
and
the
y-axis
is
vertical.
When
oriented
horizontally,
the
x-axis
is
vertical
and
the
y-axis
is
horizontal.
The
following
image
shows
a
bar
chart:

You
can
have
any
of
these
types
of
Y
plots:

Area
Charts
Bar
Charts
Box
Whisker
Charts
(on-line
documentation)
Funnel
Charts
(on-line
documentation)
Histogram
Charts
(on-line
documentation)
Line
Charts
Market
Data
(High-Low)
Charts
Pareto
Charts
(on-line
documentation)
Point
Charts
Stripe
Charts
Waterfall
Charts
(on-line
documentation)

Area Charts

The
area
chart
can
be
a
basic
one-dimensional
Cartesian
plot
such
as
the
one
shown
in
this
figure.

Spread for ASP.NET Developer’s Guide 368

Copyright © GrapeCity, Inc. All rights reserved.

You
can
have
any
of
these
types
of
area
charts,
which
represent
different
ways
of
displaying
the
series
data.

Area
Stacked
Area
Stacked
100%
(normalized)
Area

Area
Charts

Each
point
in
an
area
series
contains
a
single
data
value.
The
data
value
is
visualized
as
a
point
on
an
area.

An
area
series
can
have
a
border,
fill
effect,
depth,
or
an
origin
for
the
area.
You
can
also
specify
whether
the
area
is
jagged
or
smooth,
and
whether
drop
lines
are
displayed.
Assigning
null
for
the
border
or
fill
effect
indicates
that
the
property
is
unset.
Depth
is
measured
relative
to
the
floor
grid
cell
(0
=
no
depth,
1
=
depth
of
floor
grid
cell).
The
origin
can
be
marked
for
auto
generation
by
the
chart
view,
in
which
case
the
assigned
origin
is
ignored.

Each
point
in
an
area
series
can
be
assigned
a
border
and
a
fill
effect
for
the
area.

Stacked
Area
Charts

The
stacked
area
chart
shows
the
points
vertically
stacked.

A
stacked
area
series
is
a
composite
series
that
groups
together
two
or
more
area
series.

A
stacked
area
series
can
be
assigned
a
border,
fill
effect,
or
depth
for
the
areas.
You
can
also
specify
whether
the
area
is
jagged
or
smooth
and
whether
drop
lines
are
displayed.
Assigning
null
for
a
border
or
fill
effect
indicates
that
the
property
is
unset.
Each
area
series
in
a
stacked
area
series
can
be
assigned
a
border
and
a
fill
effect
for
the
area.

Each
point
in
an
area
series
in
a
stacked
area
series
has
a
single
data
value.
The
data
value
is
visualized
as
a
point
on
an
area.
Each
point
in
an
area
series
in
a
stacked
area
series
can
be
assigned
a
border
and
a
fill
effect
for
the
area.

Stacked
100%
Area
Charts

Spread for ASP.NET Developer’s Guide 369

Copyright © GrapeCity, Inc. All rights reserved.

The
stacked
100%
area
chart
shows
the
points
vertically
stacked
and
spread
all
the
way
to
the
top
(100%)
but
spread
proportionately;
otherwise,
it
is
similar
to
a
stacked
area
chart.

For
more
information
on
the
area
series
object
in
the
API,
refer
to
the
AreaSeries
class.

Bar Charts

The
bar
chart
is
a
basic
one-dimensional
Cartesian
plot
such
as
the
one
shown
in
this
figure.

You
can
have
any
of
these
types
of
bar
charts,
which
represent
different
ways
of
displaying
the
series
data.

Bar
Multiple
Bar
Cluster
Bar
Stacked
Bar
Stacked
100%
(normalized)
Bar

Bar
Charts

Each
data
point
contains
a
single
value;
how
the
bar
for
that
point
is
displayed
can
be
customized.
Bar
borders
and
bar
fill
effects
can
be
assigned
for
the
series
or
for
a
point
in
the
series
with
null
(Nothing
in
VB)
indicating
unassigned.
Bar
width
and
bar
depth
are
measured
relative
to
the
floor
grid
cell
(with
a
range
of
0
to
1).
Bar
origin
can
be
automatically
generated
or
manually
assigned.

You
can
also
display
any
of
the
bar
charts
as
column
charts
by
setting
the
Vertical
property
in
the
YPlotArea
class
to
True.

Clustered
Bar
Charts

The
cluster
bar
shows
the
bars
alongside
each
other
horizontally,
clustered
by
series.

Spread for ASP.NET Developer’s Guide 370

Copyright © GrapeCity, Inc. All rights reserved.

A
cluster
bar
series
is
a
composite
series
that
groups
together
two
or
more
bar
series.
A
cluster
bar
series
can
be
assigned
a
border,
fill
effect,
width,
depth,
and
an
origin
for
the
bars
as
well
as
a
width
for
the
group.
Assigning
null
for
a
border
or
fill
effect
indicates
that
the
property
is
unset.
Group
width
is
measured
relative
to
the
floor
grid
cell
(0
=
no
width,
1
=
width
of
floor
grid
cell).
Bar
width
is
measured
relative
to
the
width
reserved
for
the
group
divided
by
the
number
of
series
in
the
group
(0
=
no
width,
1
=
width
reserved
for
the
group
divided
by
the
number
of
series
in
the
group).
Bar
depth
is
measured
relative
to
the
floor
grid
cell
(0
=
no
depth,
1
=
depth
of
floor
grid
cell).
The
origin
can
be
marked
for
auto
generation
by
the
chart
view,
in
which
case
the
assigned
origin
is
ignored.

Each
bar
series
in
the
cluster
bar
series
can
be
assigned
a
border
and
a
fill
effect
for
the
bars.

Each
point
in
a
bar
series
in
the
cluster
bar
series
has
a
single
data
value.
Each
point
is
visualized
as
a
bar.
All
the
bars
for
a
given
category
are
placed
side
by
side.
Each
point
in
a
bar
series
in
a
cluster
bar
series
can
have
a
border
and
a
fill
effect
for
the
bar.

Stacked
Bar
Charts

The
stacked
bar
shows
the
bars
vertically
stacked.

Spread for ASP.NET Developer’s Guide 371

Copyright © GrapeCity, Inc. All rights reserved.

A
stacked
bar
series
is
a
composite
series
that
groups
together
two
or
more
bar
series.
A
stacked
bar
series
can
be
assigned
a
border,
fill
effect,
width,
and
a
depth
for
the
bars.
You
can
also
specify
whether
the
group
should
be
displayed
100%
stacked.
Assigning
null
for
a
border
or
fill
effect
indicates
that
the
property
is
unset.
Width
and
depth
are
measured
relative
to
the
floor
grid
cell
(0
=
no
width
or
depth,
1
=
width
or
depth
of
floor
grid
cell).

Each
bar
series
in
the
stacked
bar
series
can
be
assigned
a
border
and
a
fill
effect
for
the
bars.

Each
point
in
a
bar
series
in
a
stacked
bar
series
has
a
single
data
value.
Each
point
is
visualized
as
a
bar.
All
the
bars
in
a
given
category
are
stacked
vertically.
Each
point
in
a
bar
series
in
a
stacked
bar
series
can
have
a
border
and
a
fill
effect
for
the
bar.

Stacked
100%
Bar
Charts

The
stacked
100%
bar
shows
the
bars
vertically
stacked
and
spread
all
the
way
to
the
top
(100%)
but
spread
proportionately;
otherwise,
they
are
similar
to
stacked
bar
charts.

Spread for ASP.NET Developer’s Guide 372

Copyright © GrapeCity, Inc. All rights reserved.

For
more
information
on
the
bar
series
object
in
the
API,
refer
to
the
BarSeries
class.

Line Charts

The
line
chart
can
be
a
basic
one-dimensional
Cartesian
plot
such
as
the
one
shown
in
this
figure.

You
can
have
any
of
these
types
of
line
charts,
which
represent
different
ways
of
displaying
the
series
data.

Line
Stacked
Line
Stacked
100%
(normalized)
Line

Line
Charts

Each
point
in
a
line
series
contains
a
single
data
value.
The
data
values
are
visualized
as
points
on
a
line.

A
line
series
can
be
assigned
a
border,
fill
effect,
or
depth
for
the
line.
The
line
can
also
be
jagged
or
smooth
or
display
drop
lines.
Assigning
null
for
the
border
or
fill
effect
indicates
that
the
property
is
unset.
Depth
is
measured
relative
to
the
floor
grid
cell
(0
=
no
depth,
1
=
depth
of
floor
grid
cell).

Each
point
in
a
line
series
can
have
a
border
or
a
fill
effect
for
the
line.

Spread for ASP.NET Developer’s Guide 373

Copyright © GrapeCity, Inc. All rights reserved.

Stacked
Line
Charts

The
stacked
line
chart
shows
the
points
vertically
stacked.

A
stacked
line
series
is
a
composite
series
that
groups
together
two
or
more
line
series.
A
stacked
line
series
can
have
a
border,
fill
effect,
or
depth
for
the
lines.
You
can
also
specify
whether
the
line
is
jagged
or
smooth
and
whether
drop
lines
are
displayed.
Assigning
null
for
a
border
or
fill
effect
indicates
that
the
property
is
unset.
Depth
is
measured
relative
to
the
floor
grid
cell
(0
=
no
depth,
1
=
depth
of
floor
grid
cell).

Each
line
series
in
a
stacked
line
series
can
be
assigned
a
border
and
a
fill
effect
for
the
line.

Each
point
in
a
line
series
in
a
stacked
line
series
has
a
single
data
value.
The
data
value
is
visualized
as
a
point
on
a
line.
Each
point
in
a
line
series
in
a
stacked
line
series
can
be
assigned
a
border
and
a
fill
effect
for
the
line.

Stacked
100%
Line
Charts

The
stacked
100%
line
chart
shows
the
points
vertically
stacked
and
spread
all
the
way
to
the
top
(100%)
but
spread
proportionately;
otherwise,
it
is
similar
to
a
stacked
line
chart.

For
more
information
on
the
line
series
object
in
the
API,
refer
to
the
LineSeries
class.

Market Data (High-Low) Charts

The
market
data
(high-low)
charts
are
another
version
of
the
one-dimensional
Cartesian
plot
(Y
plot)
specifically
designed
for
displaying
market
data
often
with
high
and
low
values
as
well
as
market
open
and
market
close
values.
For
example:

Spread for ASP.NET Developer’s Guide 374

Copyright © GrapeCity, Inc. All rights reserved.

The
normal
high-low
series
are
displayed
as
vertical
lines
with
the
high
value
being
the
vertically
highest
point
on
the
line
and
the
low
value
being
the
lowest
point
on
the
line.
The
opening
market
value
is
the
small
horizontal
tick
on
the
left
of
the
line
and
the
closing
value
is
the
small
horizontal
tick
on
the
right
side.

A
high-low
bar
series
can
have
a
border,
fill
effect,
width,
and
depth
for
the
bars.
Each
point
can
be
assigned
a
border
and
a
fill
effect
for
the
bar.

An
open-high-low-close
series
can
be
assigned
a
line
for
up
or
down
points,
and
a
width.
The
width
is
measured
relative
to
the
floor
grid
cell
(0
=
no
depth,
1
=
width
to
edge
of
grid
cell).

Each
point
in
an
open-high-low-close
series
contains
four
data
values:
open,
high,
low,
close.
Each
point
is
visualized
as
a
line
extending
from
the
low
value
to
the
high
value
with
smaller
markers
at
the
open
and
close
values.

Candlestick
Charts

The
candlestick
high-low
series
are
displayed
as
bars
with
the
high
value
being
the
vertically
highest
point
on
the
bar
and
the
low
value
being
the
lowest
point
on
the
bar.
If
it
is
solid,
then
the
opening
value
was
lower;
if
it
is
hollow,
the
opening
value
was
higher.

Spread for ASP.NET Developer’s Guide 375

Copyright © GrapeCity, Inc. All rights reserved.

A
candlestick
series
can
be
assigned
a
border
and
a
fill
effect
for
up
or
down
points.
You
can
also
set
the
width
and
depth
for
the
bars.

Each
point
in
a
candlestick
series
contains
four
values:
open,
high,
low,
and
close.
Each
point
is
visualized
as
a
line
extending
from
the
low
value
to
the
high
value
and
a
bar
extending
from
the
open
value
to
the
close
value.

Each
point
can
be
assigned
a
border
for
up
and
down
points.
You
can
also
set
a
fill
effect
for
up
and
down
points.

For
more
information
on
the
objects
in
the
API,
refer
to
these
classes:

HighLowAreaSeries
HighLowBarSeries
HighLowCloseSeries

Point Charts

The
point
chart
can
be
a
basic
one-dimensional
Cartesian
plot
such
as
the
one
shown
in
this
figure.

You
can
have
any
of
these
types
of
point
charts,
which
represent
different
ways
of
displaying
the
series
data.

Point
Stacked
Point
Stacked
100%
(normalized)
Point

Point
Charts

A
point
marker
is
used
to
visualize
each
data
value.
Each
point
in
a
point
series
contains
a
single
data
value.

A
point
series
can
be
assigned
a
border,
fill
effect,
shape,
size,
and
depth
for
the
point
markers.
Assigning
a
null
for
the

Spread for ASP.NET Developer’s Guide 376

Copyright © GrapeCity, Inc. All rights reserved.

border
or
fill
effect
indicates
that
the
property
is
unset.
Size
is
measured
in
model
units.
Depth
is
measured
relative
to
the
floor
of
the
grid
cell
(0
=
no
width,
1
=
width
of
floor
grid
cell).

Each
point
in
a
point
series
can
also
be
assigned
a
border
and
a
fill
effect
for
the
point
marker.

Stacked
Point
Charts

The
stacked
point
chart
shows
the
points
vertically
stacked.

A
stacked
point
series
is
a
composite
series
that
groups
together
two
or
more
point
series.

A
stacked
point
series
can
have
a
border,
fill
effect,
size,
or
depth
for
the
point
markers.
You
can
also
specify
whether
the
group
should
be
displayed
as
100%
stacked.
Assigning
null
for
a
border
or
fill
effect
indicates
that
the
property
is
unset.
Size
is
measured
in
model
units.
Depth
is
measured
relative
to
the
depth
of
floor
grid
cell
(0
=
no
depth,
1
=
depth
of
floor
grid
cell).

Each
point
series
in
a
stacked
point
series
can
be
assigned
a
border
and
fill
effect
for
point
makers.
Each
point
in
a
point
series
has
a
single
data
value.
The
data
value
is
visualized
as
a
point
marker.

Each
point
in
a
point
series
in
a
stacked
point
series
can
be
assigned
a
border
and
a
fill
effect
for
the
point
marker.

Stacked
100%
Point
Charts

The
stacked
100%
point
chart
shows
the
points
vertically
stacked
and
spread
all
the
way
to
the
top
(100%)
but
spread
proportionately;
otherwise,
the
stacked
100%
point
chart
is
similar
to
the
stacked
point
chart.

For
more
information
on
the
point
series
object
in
the
API,
refer
to
the
PointSeries
class.

Stripe Charts

Stripes
can
be
used
in
a
basic
one-dimensional
Cartesian
plot
such
as
the
one
shown
in
this
figure.

Spread for ASP.NET Developer’s Guide 377

Copyright © GrapeCity, Inc. All rights reserved.

You
can
specify
a
start
and
end
value
for
the
stripe
on
the
chart
axis.
You
can
also
specify
a
fill
type
and
color
for
the
stripe.
A
stripe
can
be
added
to
a
chart
with
the
axis
properties
in
the
appropriate
plot
area
class.

For
more
information
on
the
stripe
object
in
the
API,
refer
to
the
Stripe
class.

XY Plot Types

The
XY
plot
area
contains
series
that
have
values
in
two
dimensions.
When
visualized
in
two
dimensions,
an
XY
plot
area
takes
the
form
of
a
rectangle
with
a
horizontal
x-axis
representing
values
and
a
vertical
y-axis
representing
values.
When
visualized
in
three
dimensions,
the
XY
plot
area
takes
the
form
of
a
cube
with
a
horizontal
x-axis
representing
values,
a
vertical
y-axis
representing
values,
and
a
depth
z-axis
representing
series.

When
a
plot
area
has
multiple
x-axes
or
multiple
y-axes,
a
series
can
be
assigned
to
a
specific
axis
using
the
axis's
ID.

You
can
have
any
of
these
types
of
XY
plots:

Bubble
Charts
Line
Charts
Point
Charts
Stripe
Charts

Bubble Charts

The
bubble
chart
can
be
an
XY
plot
such
as
the
one
shown
in
this
figure.

Spread for ASP.NET Developer’s Guide 378

Copyright © GrapeCity, Inc. All rights reserved.

Each
point
contains
two
values:
value
and
size.

Bubble
borders
and
fill
effects
can
be
assigned
for
the
series
or
for
a
point
in
the
series.
Null
(Nothing
in
VB)
indicates
that
the
property
is
not
set.
Bubble
size
is
measured
relative
to
the
plot
area
width
(with
a
range
of
0
to
1).
Bubble
depth
is
measured
relative
to
the
floor
grid
(with
a
range
of
0
to
1).

For
more
information
on
the
bubble
series
object
in
the
API,
refer
to
the
XYBubbleSeries
class.

Line Charts

The
line
chart
can
be
an
XY
plot
such
as
the
one
shown
in
this
figure.

An
XY
line
series
can
have
a
border,
fill
effect,
and
depth
for
the
line.
You
can
also
specify
whether
the
line
is
jagged
or
smooth
and
whether
drop
lines
are
displayed.
Assigning
null
for
a
border
or
fill
effect
indicates
that
the
property
is
unset.
Depth
is
measured
relative
to
the
floor
grid
cell
(0
=
no
depth,
1
=
depth
of
floor
grid
cell).

For
more
information
on
the
line
series
object
in
the
API,
refer
to
the
XYLineSeries
class.

Point Charts

The
point
chart
can
be
an
XY
plot
such
as
the
one
shown
in
this
figure.

Spread for ASP.NET Developer’s Guide 379

Copyright © GrapeCity, Inc. All rights reserved.

Each
point
in
an
XY
point
series
contains
two
data
values:
x
and
y.
Each
point
is
visualized
as
a
point
marker.

The
point
markers
in
an
XY
point
series
or
the
series
can
have
a
border,
fill
effect,
shape,
size,
and
depth.
Settings
at
the
point
level
would
have
precedence.
Assigning
null
for
a
border
or
fill
effect
indicates
that
the
property
is
unset.
Size
is
measured
in
model
units.
Depth
is
measured
relative
to
the
floor
grid
cell
(0
=
no
width,
1
=
width
of
floor
grid
cell).

For
more
information
on
the
point
series
object
in
the
API,
refer
to
the
PointSeries
class.

Stripe Charts

The
stripe
chart
can
be
an
XY
plot
such
as
the
one
shown
in
this
figure.

You
can
specify
a
start
and
end
value
for
the
stripe
on
the
chart
axis.
You
can
also
specify
a
fill
type
and
color
for
the
stripe.
A
stripe
can
be
added
to
a
chart
with
the
axis
properties
in
the
appropriate
plot
area
class.

For
more
information
on
the
stripe
object
in
the
API,
refer
to
the
Stripe
class.

XYZ Plot Types

The
XYZ
plot
area
contains
series
that
have
values
in
three
dimensions.
When
visualized
in
two
dimensions,
the
XYZ
plot
area
takes
the
form
of
a
rectangle
with
a
horizontal
x-axis
representing
values
and
a
vertical
y-axis
representing
values.
When
visualized
in
three
dimensions,
the
XYZ
plot
area
takes
the
form
of
a
cube
with
a
horizontal
x-axis
representing
values,
a
vertical
y-axis
representing
values,
and
a
depth
z-axis
representing
values.

The
Elevation
and
Rotation
properties
in
the
plot
area
class
can
be
used
to
make
the
z-axis
visible.

If
an
XYZ
plot
area
has
multiple
x,
y,
or
z-axes
then
the
series
can
be
assigned
to
a
specific
axis
using
the
axis's
ID.
There
are
several
subtypes
of
XYZ
series:
XYZ
point,
XYZ
line,
XYZ
surface,
and
XYZ
stripe.

Spread for ASP.NET Developer’s Guide 380

Copyright © GrapeCity, Inc. All rights reserved.

You
can
have
any
of
these
types
of
XYZ
plots:

Point
Charts
Line
Charts
Surface
Charts
Stripe
Charts

Point Charts

The
point
chart
can
be
an
XYZ
plot
such
as
the
one
shown
in
this
figure.

Spread for ASP.NET Developer’s Guide 381

Copyright © GrapeCity, Inc. All rights reserved.

Each
point
in
an
XYZ
point
series
has
three
data
values:
x,
y,
and
z.
Each
point
is
visualized
as
a
point
marker.

The
point
markers
in
an
XYZ
series
or
the
series
can
be
assigned
a
border,
fill
effect,
shape,
and
a
size.
Settings
at
the
point
level
have
precedence.
Assigning
null
for
a
border
or
fill
effect
indicates
that
the
property
is
unset.
Size
is
measured
in
model
units.

For
more
information
on
the
point
series
object
in
the
API,
refer
to
the
XYZPointSeries
class.

Line Charts

The
line
chart
can
be
an
XYZ
plot
such
as
the
one
shown
in
this
figure.

Spread for ASP.NET Developer’s Guide 382

Copyright © GrapeCity, Inc. All rights reserved.

Each
point
in
an
XYZ
line
series
has
three
data
values:
x,
y,
and
z.
Each
point
is
visualized
as
a
point
on
a
line.

An
XYZ
line
series
or
each
point
in
the
series
can
be
assigned
a
border
or
a
fill
effect
for
the
line.
You
can
also
specify
whether
the
line
is
jagged
or
smooth
and
whether
drop
lines
are
displayed.
Assigning
null
for
a
border
or
fill
effect
indicates
that
the
property
is
unset.

For
more
information
on
the
line
series
object
in
the
API,
refer
to
the
XYZLineSeries
class.

Surface Charts

The
surface
chart
can
be
an
XYZ
plot
such
as
the
one
shown
in
this
figure.

Each
point
in
an
XYZ
series
has
three
data
values:
x,
y,
and
z.
Each
point
is
visualized
as
a
point
on
a
surface.

An
XYZ
surface
series
can
be
assigned
a
fill
effect
for
the
surface.
Assigning
null
for
the
fill
effect
indicates
that
the
property
is
unset.

Spread for ASP.NET Developer’s Guide 383

Copyright © GrapeCity, Inc. All rights reserved.

For
more
information
on
the
surface
series
object
in
the
API,
refer
to
the
XYZSurfaceSeries
class.

Stripe Charts

The
stripe
chart
can
be
an
XYZ
plot
such
as
the
one
shown
in
this
figure.

You
can
specify
a
start
and
end
value
for
the
stripe
on
the
chart
axis.
You
can
also
specify
a
fill
type
and
color
for
the
stripe.
A
stripe
can
be
added
to
a
chart
with
the
axis
properties
in
the
appropriate
plot
area
class.

For
more
information
on
the
stripe
object
in
the
API,
refer
to
the
Stripe
class.

Pie Plot Types

A
pie
plot
area
contains
series
that
have
values
in
one
dimension.
When
visualized
in
two
dimensions,
a
pie
plot
area
takes
the
form
of
a
circle
(or
partial
circle).
When
visualized
in
three
dimensions,
a
pie
plot
area
takes
the
form
of
a
disk
(or
partial
disk).
The
following
image
displays
a
three
dimensional
chart.

You
can
have
any
of
these
types
of
Pie
plots:

Doughnut
Charts
Pie
Charts

For
details
on
the
API,
refer
to
the
PiePlotArea
class.

Spread for ASP.NET Developer’s Guide 384

Copyright © GrapeCity, Inc. All rights reserved.

Doughnut Charts

The
doughnut
chart
can
be
a
pie
plot
such
as
the
one
shown
in
this
figure.

Each
point
in
a
pie
series
has
a
single
data
value.
Each
point
is
visualized
as
a
pie
slice.

The
HoleSize
('HoleSize
Property'
in
the
on-line
documentation)
property
is
used
to
create
the
doughnut
chart.
If
this
property
is
not
set
when
using
the
PieSeries
class,
the
chart
would
be
a
pie
chart.

A
pie
series
can
be
assigned
a
border
and
fill
effect
for
the
pie
slices.
Assigning
null
for
a
border
or
fill
effect
indicates
that
the
property
is
null.

Each
point
can
be
assigned
a
border,
fill
effect,
and
a
detachment
distance
for
the
pie
slice.
Detachment
distance
is
measured
relative
to
pie
radius
(0
=
no
detachment,
1
=
detachment
is
length
of
pie
radius).
The
detachment
distance
(PieDetachments
('PieDetachments
Property'
in
the
on-line
documentation)
property)
is
used
to
create
an
exploded
doughnut
chart.

For
more
information
on
the
pie
series
object
in
the
API,
refer
to
the
PieSeries
class.

Pie Charts

The
pie
chart
can
be
a
pie
plot
such
as
the
one
shown
in
this
figure.

Each
point
in
a
pie
series
has
a
single
data
value.
Each
point
is
visualized
as
a
pie
slice.

A
pie
series
can
be
assigned
a
border
and
fill
effect
for
the
pie
slices.
Assigning
null
for
a
border
or
fill
effect
indicates
that
the
property
is
null.

Each
point
can
be
assigned
a
border,
fill
effect,
and
a
detachment
distance
for
the
pie
slice.
Detachment
distance
is
measured
relative
to
pie
radius
(0
=
no
detachment,
1
=
detachment
is
length
of
pie
radius).
The
detachment
distance
(PieDetachments
('PieDetachments
Property'
in
the
on-line
documentation)
property)
is
used
to
create
an
exploded
pie
chart.

For
more
information
on
the
pie
series
object
in
the
API,
refer
to
the
PieSeries
class.

Spread for ASP.NET Developer’s Guide 385

Copyright © GrapeCity, Inc. All rights reserved.

Polar Plot Types

A
polar
plot
area
contains
series
that
have
values
in
two
dimensions
(angle
and
radius).
When
visualized
in
two
dimensions,
a
polar
plot
area
takes
the
form
of
a
circle
with
a
circular
x-axis
representing
angle
values
and
a
radial
y-axis
representing
radius
values.
When
visualized
in
three
dimensions,
a
polar
plot
area
takes
the
form
of
a
disk
with
a
circular
x-axis
representing
an
angle
value
and
a
radial
y-axis
representing
a
radius
value.

A
polar
series
is
displayed
in
a
polar
plot
area.
Points
have
value(s)
in
two
dimensions:
x
(angle)
and
y
(radius).
If
a
polar
plot
area
has
multiple
y-axes
then
a
series
can
be
assigned
to
a
specific
axis
using
the
axis's
ID.
There
are
several
subtypes
of
polar
series:
polar
point,
polar
line,
polar
area,
and
polar
stripe.

The
following
image
shows
a
three
dimensional
polar
point
chart
that
was
created
by
using
the
Elevation
('Elevation
Property'
in
the
on-line
documentation),
Rotation
('Rotation
Property'
in
the
on-line
documentation),
and
ViewType
('ViewType
Property'
in
the
on-line
documentation)
properties.
The
Depth
('Depth
Property'
in
the
on-line
documentation)
property
in
the
plot
area
class
was
used
to
add
depth
to
the
point
markers.

You
can
have
any
of
these
types
of
Polar
plots:

Point
Charts
Line
Charts
Area
Charts
Stripe
Charts

For
details
on
the
API,
refer
to
the
PolarPlotArea
class.

Point Charts

The
point
chart
can
be
a
polar
plot
such
as
the
one
shown
in
the
following
figure.

Spread for ASP.NET Developer’s Guide 386

Copyright © GrapeCity, Inc. All rights reserved.

Each
point
has
two
data
values:
x
(angle)
and
y
(radius).
Each
point
is
visualized
as
a
point
marker.

The
point
markers
in
the
polar
point
series
or
the
series
can
be
assigned
a
border,
fill
effect,
shape,
size,
and
a
depth.
Assigning
null
for
a
border
or
fill
effect
indicates
that
the
property
is
unset.
The
size
of
the
point
marker
is
measured
in
model
units.
The
depth
of
the
point
marker
is
measured
relative
to
plot
area
depth
(0
=
no
depth,
1
=
full
depth
of
plot
area).

For
more
information
on
the
point
series
object
in
the
API,
refer
to
the
PolarPointSeries
class.

Line Charts

The
line
chart
can
be
a
polar
plot
such
as
the
one
shown
in
the
following
figure.

Spread for ASP.NET Developer’s Guide 387

Copyright © GrapeCity, Inc. All rights reserved.

Each
point
has
two
data
values:
x
(angle)
and
y
(radius).
Each
point
is
visualized
as
a
point
on
a
line.

A
polar
line
series
or
each
point
in
the
series
can
be
assigned
a
border,
fill
effect,
and
a
depth
for
the
line.
You
can
also
specify
whether
the
line
is
closed.
Assigning
null
for
a
border
or
fill
effect
indicates
that
the
property
is
unset.
Depth
is
measured
relative
to
plot
area
depth
(0
=
no
depth,
1
=
full
depth
of
plot
area).

For
more
information
on
the
line
series
object
in
the
API,
refer
to
the
PolarLineSeries
class.

Area Charts

The
area
chart
can
be
a
polar
plot
such
as
the
one
shown
in
the
following
figure.

Spread for ASP.NET Developer’s Guide 388

Copyright © GrapeCity, Inc. All rights reserved.

Each
point
has
two
data
values:
x
(angle)
and
y
(radius).
Each
point
is
visualized
as
a
point
on
an
area.

A
polar
area
series
can
be
assigned
a
border,
fill
effect,
and
a
depth
for
the
area.
Each
point
can
be
assigned
a
border
and
a
fill
effect
for
the
area.
You
can
also
specify
whether
the
area
is
closed.
Assigning
null
for
a
border
or
fill
effect
indicates
that
the
property
is
unset.
Depth
is
measured
relative
to
the
plot
area
depth
(0
=
no
depth,
1
=
full
depth
of
plot
area).

For
more
information
on
the
area
series
object
in
the
API,
refer
to
the
PolarAreaSeries
class.

Stripe Charts

The
stripe
chart
can
be
a
polar
plot
such
as
the
one
shown
in
this
figure.

You
can
specify
a
start
and
end
value
for
the
stripe
on
the
chart
axis.
You
can
also
specify
a
fill
type
and
color
for
the
stripe.
A
stripe
can
be
added
to
a
chart
with
the
axis
properties
in
the
appropriate
plot
area
class.

For
more
information
on
the
stripe
object
in
the
API,
refer
to
the
Stripe
class.

Radar Plot Types

A
radar
plot
area
contains
series
that
have
values
in
one
dimension.
When
visualized
in
two
dimensions,
a
radar
plot

Spread for ASP.NET Developer’s Guide 389

Copyright © GrapeCity, Inc. All rights reserved.

area
takes
the
form
of
an
n-sided
polygon
with
a
circular
x-axis
representing
categories
and
a
radial
y-axis
representing
values.
When
visualized
in
three
dimensions,
a
radar
plot
area
takes
the
form
of
an
n-sided
disk
with
a
circular
x-axis
representing
categories
and
a
radial
y-axis
representing
values.

A
radar
series
is
displayed
in
a
radar
plot
area.
Each
point
has
value(s)
in
one
dimension:
y
(radius).
If
a
plot
area
has
multiple
y-axes
then
a
series
can
be
assigned
to
a
specific
axis
using
the
axis's
ID.
There
are
several
subtypes
of
radar
series:
radar
point,
radar
line,
radar
area,
and
radar
stripe.

You
can
have
any
of
these
types
of
Radar
plots:

Point
Charts
Line
Charts
Area
Charts
Stripe
Charts

For
details
on
the
API,
refer
to
the
RadarPlotArea
class.

Point Charts

The
point
chart
can
be
a
radar
plot
such
as
the
one
shown
in
this
figure.

Spread for ASP.NET Developer’s Guide 390

Copyright © GrapeCity, Inc. All rights reserved.

Each
point
has
a
single
data
value:
y.
Each
point
is
visualized
as
a
point
marker.

The
point
markers
in
a
radar
point
series
or
the
series
can
be
assigned
a
border,
fill
effect,
shape,
size,
and
a
depth.
Assigning
null
for
a
border
or
fill
effect
indicates
that
the
property
is
unset.
Size
is
measured
in
model
units.
Depth
is
measured
relative
to
the
plot
area
depth
(0
=
no
depth,
1
=
depth
of
plot
area).

For
more
information
on
the
point
series
object
in
the
API,
refer
to
the
RadarPointSeries
class.

Line Charts

The
line
chart
can
be
a
radar
plot
such
as
the
one
shown
in
this
figure.

Each
point
has
a
single
data
value:
y.
Each
point
is
visualized
as
a
point
on
a
line.

Spread for ASP.NET Developer’s Guide 391

Copyright © GrapeCity, Inc. All rights reserved.

A
radar
line
series
can
be
assigned
a
border,
fill
effect,
and
a
depth
for
the
line.
Each
point
can
be
assigned
a
border
and
a
fill
effect
for
the
line.
Assigning
null
for
a
border
or
fill
effect
indicates
that
the
property
is
unset.
Depth
is
measured
relative
to
the
plot
area
depth
(0
=
no
depth,
1
=
depth
of
plot
area).

For
more
information
on
the
line
series
object
in
the
API,
refer
to
the
RadarLineSeries
class.

Area Charts

The
area
chart
can
be
a
radar
plot
such
as
the
one
shown
in
this
figure.

Each
point
has
a
single
data
value:
y.
Each
point
is
visualized
as
a
point
on
an
area.

A
radar
area
series
can
be
assigned
a
border,
fill
effect,
and
a
depth
for
the
area.
Each
point
can
be
assigned
a
border
and
a
fill
effect
for
the
area.
Assigning
null
for
the
border
or
fill
effect
indicates
that
the
property
is
unset.
Depth
is
measured
relative
to
the
plot
area
depth
(0
=
no
depth,
1
=
depth
of
plot
area).

For
more
information
on
the
line
series
object
in
the
API,
refer
to
the
RadarAreaSeries
class.

Stripe Charts

The
stripe
chart
can
be
a
radar
plot
such
as
the
one
shown
in
this
figure.

Spread for ASP.NET Developer’s Guide 392

Copyright © GrapeCity, Inc. All rights reserved.

You
can
specify
a
start
and
end
value
for
the
stripe
on
the
chart
axis.
You
can
also
specify
a
fill
type
and
color
for
the
stripe.
A
stripe
can
be
added
to
a
chart
with
the
axis
properties
in
the
appropriate
plot
area
class.

For
more
information
on
the
stripe
object
in
the
API,
refer
to
the
Stripe
class.

Data Plot Types

Data
charts
are
charts
that
can
be
bound.
Any
series
in
any
of
the
plot
types
can
be
bound
to
a
data
source
using
the
data
source
property
in
the
series
class.
You
can
use
any
of
these
types
of
data
sources:

Array
List
Table

The
array
data
chart
can
be
a
one-dimensional
plot
such
as
the
one
shown
in
this
figure.
This
array
chart
shows
the
bars
alongside
each
other
vertically.

The
following
is
an
example
of
a
bar
chart
bound
to
a
list
data
source:

The
following
is
an
example
of
a
bar
chart
bound
to
a
table
data
source:

Spread for ASP.NET Developer’s Guide 393

Copyright © GrapeCity, Inc. All rights reserved.

Series

A
series
is
a
collection
of
data
points
that
are
displayed
in
the
plot
area.
There
are
several
general
types
of
series:
Y,
XY,
XYZ,
Pie,
Polar,
Radar,
Sunburst,
and
Treemap.
These
types
of
series
correspond
to
the
main
types
of
plot
areas.
Each
main
type
of
series
may
have
additional
subtypes
of
series
(such
as
area,
line,
or
point).

Area,
Line,
and
Point
series
can
have
drop
lines.
Drop
lines
extend
from
the
data
point
down
to
the
series
origin
or
category
axis.
This
can
be
used
to
highlight
the
x
value
of
the
point.

When
a
chart
has
multiple
legends,
a
series
can
be
assigned
to
a
specific
legend
using
the
legend's
ID.
Many
of
the
series
have
properties
(for
example,
border
or
fill
effect)
that
can
be
assigned
to
both
a
series
and
a
point.
If
the
property
is
set
for
both
the
series
and
the
point
then
the
point
setting
overrides
the
series
setting.
If
the
property
is
unset
for
both
the
series
and
the
point
then
the
chart
view
will
provide
a
default
setting.

See
the
following
for
more
information:

AreaSeries
BarSeries
FunnelSeries
('FunnelSeries
Class'
in
the
on-line
documentation)
HighLowAreaSeries
HighLowBarSeries
HighLowCloseSeries
HistogramSeries
('HistogramSeries
Class'
in
the
on-line
documentation)
LineSeries
ParetoSeries
('ParetoSeries
Class'
in
the
on-line
documentation)
PieSeries
PointSeries
PolarSeries
RadarSeries
SunburstSeries
('SunburstSeries
Class'
in
the
on-line
documentation)
TreemapSeries
('TreemapSeries
Class'
in
the
on-line
documentation)
WaterfallSeries
('WaterfallSeries
Class'
in
the
on-line
documentation)
XYSeries
XYZSeries
YSeries

Using
Code

Add
values
to
the
chart
with
a
bar
series.

Spread for ASP.NET Developer’s Guide 394

Copyright © GrapeCity, Inc. All rights reserved.

Example

The
following
example
adds
a
series
to
a
plot
area.

C#
BarSeries series = new BarSeries();
series.SeriesName = "Series 0";
series.Values.Add(2.0);
series.Values.Add(4.0);
series.Values.Add(3.0);
series.Values.Add(5.0);
YPlotArea plotArea = new YPlotArea();
plotArea.Location = new PointF(0.2f, 0.2f);
plotArea.Size = new SizeF(0.6f, 0.6f);
plotArea.Series.Add(series);

VB
Dim series As New FarPoint.Web.Chart.BarSeries()
series.SeriesName = "Series 0"
series.Values.Add(2.0)
series.Values.Add(4.0)
series.Values.Add(3.0)
series.Values.Add(5.0)
Dim plotArea As New FarPoint.Web.Chart.YPlotArea()
plotArea.Location = New PointF(0.2F, 0.2F)
plotArea.Size = New SizeF(0.6F, 0.6F)
plotArea.Series.Add(series)

Using
the
Chart
Designer

1.
 Select
the
PlotArea
Collection
editor.
2.
 Select
the
Series
Collection
editor.
3.
 Set
properties
as
needed.
4.
 Select
Apply
and
OK
to
close
the
Chart
Designer.

Walls

A
wall
is
the
area
(or
plane)
behind,
below,
or
to
the
side
of
a
chart.

A
wall
can
have
a
border,
fill
effect,
or
width
(measured
in
model
units).
The
wall
can
be
visible
or
hidden.
The
axis
grids
(major
and
minor)
and
stripes
are
painted
on
the
walls.
The
axis
grid
lines
(major
and
minor)
are
painted
over
the
axis
stripes.

The
following
image
displays
a
chart
with
back,
bottom,
and
side
walls.

Spread for ASP.NET Developer’s Guide 395

Copyright © GrapeCity, Inc. All rights reserved.

See
the
following
classes
for
more
information
on
how
to
set
properties
for
walls:

Wall
XYPlotArea

Using
Code

Use
properties
in
the
plot
area
classes
to
set
options
for
the
walls.

Example

The
following
example
sets
properties
for
the
wall.

C#
YPlotArea plotArea = new YPlotArea();
plotArea.BackWall.Visible = true;

VB
Dim plotArea As New FarPoint.Web.Chart.YPlotArea()
plotArea.BackWall.Visible = True

Using
the
Chart
Designer

1.
 Select
the
PlotArea
Collection
editor.
2.
 Click
the
drop-down
button
on
the
right
side
of
the
Add
button
(lower,
left
side
of
dialog)
to
change
the
plot
type.
3.
 Set
the
wall
properties
as
needed.
4.
 Select
Apply
and
OK
to
close
the
Chart
Designer.

Axis and Other Lines

An
axis
is
used
to
display
the
scale
for
a
single
dimension
of
a
plot
area.
An
axis
can
have
a
title,
a
ruler
line,
major/minor
tick
marks,
tick
mark
labels,
major/minor
grid
lines,
and
stripes.
The
direction
of
the
axis
can
be
reversed.
The
minimum,
maximum,
major/minor
tick,
and
label
units
can
be
automatically
generated
or
manually
assigned.
The
scale
can
be
linear
or
logarithmic.

Spread for ASP.NET Developer’s Guide 396

Copyright © GrapeCity, Inc. All rights reserved.

Tick
marks
and
grids
are
used
to
mark
individual
values
on
the
ruler.
Tick
marks
are
painted
on
the
ruler
while
corresponding
grids
are
painted
on
the
wall(s).
Stripes
are
used
to
highlight
ranges
of
values.
Stripes
are
painted
on
the
wall(s).

The
title,
ruler,
tick
marks
(major
and
minor),
tick
mark
labels,
and
grids
(major
and
minor)
can
be
hidden.

A
font
can
be
set
for
the
title
and
tick
marks
and
the
title
can
be
customized.
The
title
and
tick
mark
labels
can
have
fill
effects.

The
axis
can
have
lines
for
the
ruler,
major,
and
minor
grids
as
well
as
a
minimum
and
maximum
value.
The
minimum
and
maximum
values
can
be
automatically
generated
by
the
chart
view.

Units
can
be
assigned
for
major
and
minor
tick
marks
and
tick
mark
labels.
The
units
can
also
be
automatically
generated
for
the
chart
view.
Length
(measured
in
model
units),
can
also
be
set
for
major
and
minor
tick
marks.
The
units
can
be
automatically
generated.

An
axis
can
be
assigned
a
collection
of
stripes.
A
stripe
represents
a
range
of
values
on
the
axis
and
is
used
to
highlight
a
range
of
values
on
a
given
axis.
A
stripe
is
associated
with
an
axis,
but
is
painted
on
a
wall.

An
index
axis
is
used
to
display
integer
values
such
as
a
category
or
series
index.
Tick
marks,
tick
mark
labels,
and
grid
lines
can
be
displayed
on
the
integer
values
or
between
the
integer
values.
A
value
axis
is
used
to
display
double
values
(data
values).
The
value
axis
can
have
a
linear
or
logarithmic
scale
(when
using
a
logarithmic
scale,
the
value
axis
can
use
a
logarithmic
base).
For
more
information,
see
the
following
classes:

IndexAxis
ValueAxis

Markers
represent
a
data
point
and
can
have
many
shapes.
For
more
information,
see
the
MarkerShape
('MarkerShape
Enumeration'
in
the
on-line
documentation)
enumeration:

Using
Code

Use
properties
in
the
plot
area
classes
to
set
axis
options.

Example

The
following
example
sets
a
title
for
the
axis.

C#
YPlotArea plotArea = new YPlotArea();
plotArea.Location = new PointF(0.2f, 0.2f);

Spread for ASP.NET Developer’s Guide 397

Copyright © GrapeCity, Inc. All rights reserved.

plotArea.Size = new SizeF(0.6f, 0.6f);
plotArea.XAxis.Title = "Categories";
plotArea.YAxis[0].Title = "Values";

VB
Dim plotArea As New FarPoint.Web.Chart.YPlotArea()
plotArea.Location = New PointF(0.2F, 0.2F)
plotArea.Size = New SizeF(0.6F, 0.6F)
plotArea.XAxis.Title = "Categories"
plotArea.YAxis(0).Title = "Values"

Using
the
Chart
Designer

1.
 Select
the
PlotArea
from
the
Format
menu.
2.
 Select
the
XAxis
and
YAxis
Collections.
3.
 Set
the
Title
and
other
properties
as
needed.
4.
 Select
Apply
and
OK
to
close
the
Chart
Designer.

Fill Effects

A
fill
effect
is
when
the
interior
of
an
object
is
painted.
Three
types
of
fill
effects
are
solid,
gradient,
and
image.
A
solid
fill
effect
uses
a
single
color
and
a
gradient
fill
uses
two
colors
and
a
direction.
An
image
fill
effect
uses
an
image
instead
of
a
color
for
the
fill.

The
following
elements
can
have
fill
effects:
label,
legend,
wall,
stripe,
and
the
chart
itself.

The
following
fill
effects
are
available
in
the
Fill
('Fill
Class'
in
the
on-line
documentation)
class:

No
Fill
Solid
Fill
Image
Fill
Gradient
Fill

You
can
fill
elements
using
the
Fill
property
in
the
following
classes:

ChartModel
('Fill
Property'
in
the
on-line
documentation)
LabelArea
('Fill
Property'
in
the
on-line
documentation)
LegendArea
('Fill
Property'
in
the
on-line
documentation)
Stripe
('Fill
Property'
in
the
on-line
documentation)
Wall
('Fill
Property'
in
the
on-line
documentation)

To
set
the
fill
effect
for
the
entire
plot
area,
you
can
set
the
Fill
('Fill
Property'
in
the
on-line
documentation)
property
of
the
wall
for
the
plot
area.
For
example,
for
a
y-plot,
you
can
set
the
fill
of
the
wall
set
by
the
BackWall
('BackWall
Property'
in
the
on-line
documentation)
property
in
the
YPlotArea
class.

Using
Code

1.
 Create
a
series.
2.
 Use
fill
properties
to
change
the
color
of
the
bars
in
the
chart.
3.
 Add
the
series
to
the
plot
area.

Example

The
following
example
sets
a
fill
effect
for
a
bar.

Spread for ASP.NET Developer’s Guide 398

Copyright © GrapeCity, Inc. All rights reserved.

C#
BarSeries series = new BarSeries();
series.BarFill = new SolidFill(Color.Red);
series.Values.Add(2.0);
series.Values.Add(4.0);
series.Values.Add(3.0);
series.Values.Add(5.0);
YPlotArea plotArea = new YPlotArea();
plotArea.Location = new PointF(0.2f, 0.2f);
plotArea.Size = new SizeF(0.6f, 0.6f);
plotArea.Series.Add(series);
ChartModel model = new ChartModel();
model.PlotAreas.Add(plotArea);
FarPoint.Web.Spread.Chart.SpreadChart chart = new
FarPoint.Web.Spread.Chart.SpreadChart();
chart.Model = model;
FpSpread1.Sheets[0].Charts.Add(chart);

VB
Dim series As New FarPoint.Web.Chart.BarSeries()
series.BarFill = New FarPoint.Web.Chart.SolidFill(System.Drawing.Color.Red)
series.Values.Add(2.0)
series.Values.Add(4.0)
series.Values.Add(3.0)
series.Values.Add(5.0)
Dim plotArea As New FarPoint.Web.Chart.YPlotArea()
plotArea.Location = New System.Drawing.PointF(0.2F, 0.2F)
plotArea.Size = New System.Drawing.SizeF(0.6F, 0.6F)
plotArea.Series.Add(series)
Dim model As New FarPoint.Web.Chart.ChartModel()
model.PlotAreas.Add(plotArea)
Dim chart As New FarPoint.Web.Spread.Chart.SpreadChart()
chart.Model = model
FpSpread1.Sheets(0).Charts.Add(chart)

Using
Code

You
can
set
the
fill
effect
before
or
after
adding
the
data
points
if
you
set
the
fill
effect
for
the
entire
series.

Example

The
following
example
sets
a
fill
effect
for
a
bar.

C#
BarSeries series = new BarSeries();
series.BarFill = new SolidFill(Color.Red);
series.Values.Add(2.0);
\\ OR
BarSeries series = new BarSeries();
series.Values.Add(2.0);
series.BarFill = new SolidFill(Color.Red);

VB
Dim series As New FarPoint.Web.Chart.BarSeries()

Spread for ASP.NET Developer’s Guide 399

Copyright © GrapeCity, Inc. All rights reserved.

series.BarFill = New SolidFill(Color.Red)
series.Values.Add(2.0)
' OR
Dim series As New FarPoint.Web.Chart.BarSeries()
series.Values.Add(2.0)
series.BarFill = New SolidFill(Color.Red)

Using
Code

If
you
set
the
fill
effect
for
a
single
data
point,
then
you
need
to
assign
the
fill
effect
after
you
add
the
data
point,
so
there
is
a
data
point
to
store
the
fill
effect
in.

Example

The
following
example
sets
a
fill
effect
for
a
bar.

C#
BarSeries series = new BarSeries();
series.Values.Add(2.0);
series.Values.Add(4.0);
series.BarFills.Add(new SolidFill(Color.Green));

VB
Dim series As New FarPoint.Web.Chart.BarSeries()
series.Values.Add(2.0)
series.Values.Add(4.0)
series.BarFills.Add(New SolidFill(Color.Green))

Using
Code

You
can
assign
fill
effects
for
lines
and
markers
as
well.

Example

The
following
example
sets
a
fill
effect
for
a
marker.

C#
PointSeries series = new PointSeries();
series.PointFill = new SolidFill(Color.Lime);
series.PointBorder = new SolidLine(Color.Red);
series.PointMarker = new BuiltinMarker(MarkerShape.Triangle, 10.0f);
series.Values.Add(2.0);
series.Values.Add(4.0);
series.Values.Add(3.0);
series.Values.Add(5.0);

VB
Dim series As New PointSeries()
series.PointFill = New SolidFill(Color.Lime)
series.PointBorder = New SolidLine(Color.Red)
series.PointMarker = New BuiltinMarker(MarkerShape.Triangle, 10F)
series.Values.Add(2.0)
series.Values.Add(4.0)

Spread for ASP.NET Developer’s Guide 400

Copyright © GrapeCity, Inc. All rights reserved.

series.Values.Add(3.0)
series.Values.Add(5.0)

Using
the
Chart
Designer

1.
 Create
a
chart
with
values.
2.
 Select
the
series.
3.
 Select
the
Fill
option.
4.
 Set
properties
as
needed.
5.
 Select
Apply
and
OK
to
close
the
Chart
Designer.

Elevation and Rotation

The
elevation
rotates
the
graph
counterclockwise
around
the
horizontal
axis.
The
following
image
displays
a
graph
with
a
changed
elevation.

For
API
information,
see
the
Elevation
('Elevation
Property'
in
the
on-line
documentation)
property.

The
rotation
rotates
the
graph
counterclockwise
around
the
vertical
axis.
The
following
image
displays
a
graph
with
a
changed
rotation.

For
API
information,
see
the
Rotation
('Rotation
Property'
in
the
on-line
documentation)
property.

Using
Code

You
can
set
the
Elevation
('Elevation
Property'
in
the
on-line
documentation)
and
Rotation
('Rotation
Property'
in
the
on-line
documentation)
properties.

Spread for ASP.NET Developer’s Guide 401

Copyright © GrapeCity, Inc. All rights reserved.

Example

The
following
example
sets
Elevation
('Elevation
Property'
in
the
on-line
documentation)
and
Rotation
('Rotation
Property'
in
the
on-line
documentation).
Use
this
code
with
a
3D
chart.

C#
YPlotArea plotArea = new YPlotArea();
plotArea.Location = new PointF(0.2f, 0.2f);
plotArea.Size = new SizeF(0.6f, 0.6f);
plotArea.Rotation = 20;
plotArea.Elevation = 15;

VB
Dim plotArea As New FarPoint.Web.Chart.YPlotArea()
plotArea.Location = New System.Drawing.PointF(0.2F, 0.2F)
plotArea.Size = New System.Drawing.SizeF(0.6F, 0.6F)
plotArea.Rotation = 20
plotArea.Elevation = 15

Lighting, Shapes, and Borders

You
can
set
borders
for
most
areas
of
the
chart.
See
the
LineBorder
('LineBorder
Property'
in
the
on-line
documentation)
and
PointBorder
('PointBorder
Property'
in
the
on-line
documentation)
properties
in
the
LineSeries
class
for
more
information.
The
XYBubbleSeries
class
has
additional
border
settings
such
as
NegativeBorder
('NegativeBorder
Property'
in
the
on-line
documentation)
and
PositiveBorder
('PositiveBorder
Property'
in
the
on-line
documentation).

You
can
set
shapes
such
as
the
bar
shape.
See
the
BarShape
('BarShape
Property'
in
the
on-line
documentation)
property
for
more
information.

You
can
apply
additional
effects
to
the
3D
Chart
control
such
as
color,
directional
lighting,
and
positional
lighting.
Directional
lighting
mimics
a
distant
light
source
such
as
rays
from
the
sun
(parallel
paths).
Positional
lighting
mimics
a
close
light
source
such
as
a
lamp
where
the
light
radiates
out
from
a
single
point.

The
following
image
displays
a
graph
that
uses
light
colors,
direction,
and
position:

The
following
color
effects
are
available:

AmbientColor
('AmbientColor
Property'
in
the
on-line
documentation)
DiffuseColor
('DiffuseColor
Property'
in
the
on-line
documentation)
SpecularColor
('SpecularColor
Property'
in
the
on-line
documentation)

You
can
specify
the
position
and
the
direction
of
the
light
with
the
following
properties:

PositionX
('PositionX
Property'
in
the
on-line
documentation)
PositionY
('PositionY
Property'
in
the
on-line
documentation)

Spread for ASP.NET Developer’s Guide 402

Copyright © GrapeCity, Inc. All rights reserved.

PositionZ
('PositionZ
Property'
in
the
on-line
documentation)
DirectionX
('DirectionX
Property'
in
the
on-line
documentation)
DirectionY
('DirectionY
Property'
in
the
on-line
documentation)
DirectionZ
('DirectionZ
Property'
in
the
on-line
documentation)

Using
Code

1.
 Create
a
series.
2.
 Add
values
to
the
series.
3.
 Create
a
plot
area.
4.
 Set
the
AmbientColor
('AmbientColor
Property'
in
the
on-line
documentation),
DiffuseColor
('DiffuseColor
Property'
in
the
on-line
documentation),
and
SpecularColor
('SpecularColor
Property'
in
the
on-line
documentation)
in
the
PositionalLight
('PositionalLight
Class'
in
the
on-
line
documentation)
class.

5.
 Set
the
PositionX
('PositionX
Property'
in
the
on-line
documentation),
PositionY
('PositionY
Property'
in
the
on-line
documentation),
and
PositionZ
('PositionZ
Property'
in
the
on-line
documentation)
properties
in
the
PositionalLight
('PositionalLight
Class'
in
the
on-line
documentation)
class.

6.
 Set
the
AmbientColor
('AmbientColor
Property'
in
the
on-line
documentation),
DiffuseColor
('DiffuseColor
Property'
in
the
on-line
documentation),
and
SpecularColor
('SpecularColor
Property'
in
the
on-line
documentation)
in
the
DirectionalLight
('DirectionalLight
Class'
in
the
on-
line
documentation)
class.

7.
 Set
the
DirectionX
('DirectionX
Property'
in
the
on-line
documentation),
DirectionY
('DirectionY
Property'
in
the
on-line
documentation),
and
DirectionZ
('DirectionZ
Property'
in
the
on-line
documentation)
properties
in
the
DirectionalLight
('DirectionalLight
Class'
in
the
on-line
documentation)
class.

8.
 Add
the
light
settings
to
the
plot
area.
9.
 Create
a
chart
model
and
assign
the
plot
area
settings
to
it.
10.
 Create
a
chart
and
assign
the
chart
model
to
it.
11.
 Add
the
chart
to
the
Spread
control.

Example

The
following
example
demonstrates
using
light
colors,
direction,
and
position.

C#
FarPoint.Web.Chart.PieSeries series = new FarPoint.Web.Chart.PieSeries();
series.SeriesName = "Series 1";
series.TopBevel = new FarPoint.Web.Chart.CircleBevel(12.0f, 12.0f);
series.BottomBevel = new FarPoint.Web.Chart.CircleBevel(12.0f, 12.0f);
series.Values.Add(1.0);
series.Values.Add(2.0);
series.Values.Add(4.0);
series.Values.Add(8.0);
FarPoint.Web.Chart.PiePlotArea plotArea = new FarPoint.Web.Chart.PiePlotArea();
plotArea.Location = new System.Drawing.PointF(0.2f, 0.2f);
plotArea.Size = new System.Drawing.SizeF(0.6f, 0.6f);
plotArea.Series.Add(series);
FarPoint.Web.Chart.PositionalLight light0 = new FarPoint.Web.Chart.PositionalLight();
light0.AmbientColor = System.Drawing.Color.FromArgb(64, 64, 64);
light0.DiffuseColor = System.Drawing.Color.FromArgb(64, 64, 64);
light0.SpecularColor = System.Drawing.Color.FromArgb(128, 128, 128);
light0.PositionX = 0.0f;
light0.PositionY = 0.0f;

Spread for ASP.NET Developer’s Guide 403

Copyright © GrapeCity, Inc. All rights reserved.

light0.PositionZ = 100.0f;
FarPoint.Web.Chart.DirectionalLight light1 = new FarPoint.Web.Chart.DirectionalLight();
light1.AmbientColor = System.Drawing.Color.FromArgb(64, 64, 64);
light1.DiffuseColor = System.Drawing.Color.FromArgb(64, 64, 64);
light1.SpecularColor = System.Drawing.Color.FromArgb(128, 128, 128);
light1.DirectionX = 1.0f;
light1.DirectionY = 0.0f;
light1.DirectionZ = 1.0f;
FarPoint.Web.Chart.ChartModel model = new FarPoint.Web.Chart.ChartModel();
model.PlotAreas.Add(plotArea);
model.PlotAreas[0].Lights.Clear();
model.PlotAreas[0].Lights.Add(light0);
model.PlotAreas[0].Lights.Add(light1);
FarPoint.Web.Spread.Chart.SpreadChart chart = new
FarPoint.Web.Spread.Chart.SpreadChart();
chart.Model = model;
chart.ViewType = FarPoint.Web.Chart.ChartViewType.View3D;
FpSpread1.Sheets[0].Charts.Add(chart);

VB
Dim series As New FarPoint.Web.Chart.PieSeries()
series.SeriesName = "Series 1"
series.TopBevel = New FarPoint.Web.Chart.CircleBevel(12.0F, 12.0F)
series.BottomBevel = New FarPoint.Web.Chart.CircleBevel(12.0F, 12.0F)
series.Values.Add(1.0)
series.Values.Add(2.0)
series.Values.Add(4.0)
series.Values.Add(8.0)
Dim plotArea As New FarPoint.Web.Chart.PiePlotArea()
plotArea.Location = New System.Drawing.PointF(0.2F, 0.2F)
plotArea.Size = New System.Drawing.SizeF(0.6F, 0.6F)
plotArea.series.Add(series)
Dim light0 As New FarPoint.Web.Chart.PositionalLight()
light0.AmbientColor = System.Drawing.Color.FromArgb(64, 64, 64)
light0.DiffuseColor = System.Drawing.Color.FromArgb(64, 64, 64)
light0.SpecularColor = System.Drawing.Color.FromArgb(128, 128, 128)
light0.PositionX = 0.0F
light0.PositionY = 0.0F
light0.PositionZ = 100.0F
Dim light1 As New FarPoint.Web.Chart.DirectionalLight()
light1.AmbientColor = System.Drawing.Color.FromArgb(64, 64, 64)
light1.DiffuseColor = System.Drawing.Color.FromArgb(64, 64, 64)
light1.SpecularColor = System.Drawing.Color.FromArgb(128, 128, 128)
light1.DirectionX = 1.0F
light1.DirectionY = 0.0F
light1.DirectionZ = 1.0F
Dim model As New FarPoint.Web.Chart.ChartModel()
model.PlotAreas.Add(plotArea)
model.PlotAreas(0).Lights.Clear()
model.PlotAreas(0).Lights.Add(light0)
model.PlotAreas(0).Lights.Add(light1)
Dim chart As New FarPoint.Web.Spread.Chart.SpreadChart()
chart.Model = model
chart.ViewType = FarPoint.Web.Chart.ChartViewType.View3D
FpSpread1.Sheets(0).Charts.Add(chart)

Spread for ASP.NET Developer’s Guide 404

Copyright © GrapeCity, Inc. All rights reserved.

Using
the
Chart
Designer

1.
 Select
the
Plot
Areas
Collection.
2.
 Select
the
Light
Collection
editor.
3.
 Set
properties
as
needed.
4.
 Select
Apply
and
OK
to
close
the
Chart
Designer.

Size - Height, Width, and Depth

You
can
set
the
height,
width,
and
depth
for
the
plot
area
of
the
chart.
The
height
of
the
chart
is
the
distance
from
the
top
to
the
bottom
of
the
plot
area.
The
width
of
the
chart
is
the
distance
from
the
right
to
the
left
of
the
plot
area.
The
depth
of
the
plot
area
is
the
distance
from
the
back
to
the
front
of
the
chart.

In
two
dimensions,
the
height
and
width
would
be
the
rectangle
that
makes
up
the
plot
area.
In
three
dimensions,
the
height,
width,
and
depth
would
be
the
cube
that
makes
up
the
plot
area.
The
depth
is
the
size
of
the
cube
along
the
z-
axis.
The
following
image
shows
a
3D
chart.

See
the
following
for
more
information:

Size
('Size
Property'
in
the
on-line
documentation)
(height
and
width)
Depth
('Depth
Property'
in
the
on-line
documentation)

Using
Code

Use
properties
in
the
plot
area
classes
to
set
the
size
and
depth.

Example

The
following
example
sets
the
size
for
a
plot
area.

C#
PiePlotArea plotArea = new PiePlotArea();
plotArea.Location = new PointF(0.2f, 0.2f);

Spread for ASP.NET Developer’s Guide 405

Copyright © GrapeCity, Inc. All rights reserved.

plotArea.Size = new SizeF(0.6f, 0.6f);
plotArea.Series.Add(series);

VB
Dim plotArea As New FarPoint.Web.Chart.PiePlotArea()
plotArea.Location = New PointF(0.2F, 0.2F)
plotArea.Size = New SizeF(0.6F, 0.6F)
plotArea.Series.Add(series)

Using
the
Chart
Designer

1.
 Select
the
PlotArea
Collection
editor.
2.
 Set
properties
as
needed.
3.
 Select
Apply
and
OK
to
close
the
Chart
Designer.

Labels

The
labels
contain
the
plot
title
and
the
axis
labels.
You
can
set
the
main
title
for
the
chart
using
the
Text
('Text
Property'
in
the
on-line
documentation)
property
in
the
LabelArea
class.

You
can
set
the
text,
alignment,
and
other
formatting
properties
for
the
axis
labels.
The
label
text
can
be
bound
to
a
datasource
with
the
TitleDataSource
and
TitleDataField
properties.
See
the
following
for
more
information:

YPlotArea
IndexAxis
ValueAxis

Using
Code

1.
 Create
a
plot
area.
2.
 To
set
the
title
in
the
plot
area
class
for
the
x-axis,
set
the
IndexAxis.Title
('Title
Property'
in
the
on-line
documentation)
property.

3.
 Set
TitleTextFill
('TitleTextFill
Property'
in
the
on-line
documentation)
and
TitleTextFont
('TitleTextFont
Property'
in
the
on-line
documentation)
for
additional
formatting.
You
can
also
set
the
TitleOffset
('TitleOffset
Property'
in
the
on-line
documentation).

4.
 To
set
the
title
in
the
plot
area
for
the
y-axis,
set
the
ValueAxis.Title
('Title
Property'
in
the
on-line
documentation)
property.

5.
 Set
TitleTextFill
('TitleTextFill
Property'
in
the
on-line
documentation)
and
TitleTextFont
('TitleTextFont
Property'
in
the
on-line
documentation)
for
additional
formatting.
You
can
also
set
the
TitleOffset
('TitleOffset
Property'
in
the
on-line
documentation).

Example

The
following
example
sets
a
title
for
the
axis.

C#
YPlotArea plotArea = new YPlotArea();
plotArea.Location = new PointF(0.2f, 0.2f);
plotArea.Size = new SizeF(0.6f, 0.6f);
plotArea.XAxis.Title = "Categories";
plotArea.XAxis.TitleTextFont = new System.Drawing.Font("Arial", 12);
plotArea.XAxis.TitleTextFill = new FarPoint.Web.Chart.SolidFill(Drawing.Color.Crimson);
plotArea.XAxis.TitleVisible = true;

Spread for ASP.NET Developer’s Guide 406

Copyright © GrapeCity, Inc. All rights reserved.

plotArea.YAxis[0].Title = "Values";
plotArea.YAxes[0].TitleTextFont = new System.Drawing.Font("Comic Sans MS", 12);
plotArea.YAxes[0].TitleTextFill = new
FarPoint.Web.Chart.SolidFill(Drawing.Color.Chartreuse);

VB
Dim plotArea As New FarPoint.Web.Chart.YPlotArea()
plotArea.Location = New PointF(0.2F, 0.2F)
plotArea.Size = New SizeF(0.6F, 0.6F)
plotArea.XAxis.Title = "Categories"
plotArea.XAxis.TitleTextFont = New System.Drawing.Font("Arial", 12)
plotArea.XAxis.TitleTextFill = New FarPoint.Web.Chart.SolidFill(Drawing.Color.Crimson)
plotArea.XAxis.TitleVisible = True
plotArea.YAxis(0).Title = "Values"
plotArea.YAxes(0).TitleTextFont = New System.Drawing.Font("Comic Sans MS", 12)
plotArea.YAxes(0).TitleTextFill = New
FarPoint.Web.Chart.SolidFill(Drawing.Color.Chartreuse)

Using
the
Chart
Designer

1.
 Select
the
PlotArea
from
the
Format
menu.
2.
 Select
the
XAxis
and
YAxis
Collections
3.
 Set
the
Title
and
other
properties
as
needed.
4.
 Select
Apply
and
OK
to
close
the
Chart
Designer.

Legends

The
legend
contains
identifiers
for
each
of
the
data
series.
The
legend
area
can
contain
legend
items,
a
background,
and
borders.
The
legend
area
is
positioned
using
a
relative
location
(where
(0,0)
=
the
left
upper
corner
of
the
chart
and
(1,1)
=
the
right
lower
corner
of
the
chart)
and
a
relative
alignment
(where
(0,0)
=
the
left
upper
corner
of
the
label
area
and
(1,1)
=
the
right
lower
corner
of
the
label
area).

See
the
following
for
more
information
on
how
to
set
properties
for
the
legend:

LegendArea
LegendAreaCollection

Using
Code

Use
the
Location
('Location
Property'
in
the
on-line
documentation),
AlignmentX
('AlignmentX
Property'
in
the
on-line
documentation),
and
AlignmentY
('AlignmentY
Property'
in
the
on-line
documentation)
properties
in
the
legend
area
classes
to
set
the
legend.

Example

The
following
example
sets
properties
for
the
legend.

C#
LegendArea legend = new LegendArea();
legend.Location = new PointF(0.98f, 0.5f);
legend.AlignmentX = 1.0f;
legend.AlignmentY = 0.5f;

Spread for ASP.NET Developer’s Guide 407

Copyright © GrapeCity, Inc. All rights reserved.

VB
Dim legend As New FarPoint.Web.Chart.LegendArea()
legend.Location = New PointF(0.98F, 0.5F)
legend.AlignmentX = 1.0F
legend.AlignmentY = 0.5F

Using
the
Chart
Designer

1.
 Select
the
Legend
Area
Collection
editor.
2.
 Set
the
properties
as
needed.
3.
 Select
Apply
and
OK
to
close
the
Chart
Designer.

Creating Charts

You
can
add
charts
using
code,
the
Spread
designer,
or
the
Chart
Designer.
You
can
also
bind
charts
and
let
the
end
user
make
changes
to
the
chart
at
run
time.

For
more
information,
see
the
following
topics:

Creating
Plot
Types
Connecting
to
Data
Using
the
Chart
Designer
Using
the
Spread
Designer
Using
the
Chart
Control
Using
the
Chart
Control
in
Spread

Creating Plot Types

Read
the
following
sections
for
more
information
and
instructions:

Creating
a
Y
Plot
Creating
an
XY
Plot
Creating
an
XYZ
Plot
Creating
a
Pie
Plot
Creating
a
Polar
Plot
Creating
a
Radar
Plot
Creating
a
Sunburst
Chart
(on-line
documentation)
Creating
a
Treemap
Chart
(on-line
documentation)
Combining
Plot
Types

Creating a Y Plot

You
can
create
a
Y
Plot
Chart
using
code
or
the
designer.
The
following
image
shows
a
YPlot
bar
type
chart.

Spread for ASP.NET Developer’s Guide 408

Copyright © GrapeCity, Inc. All rights reserved.

For
details
on
the
API,
see
the
YPlotArea
class.

The
following
classes
are
also
available:

AreaSeries
BarSeries
BoxWhiskerSeries
('BoxWhiskerSeries
Class'
in
the
on-line
documentation)
HighLowAreaSeries
HighLowBarSeries
HighLowCloseSeries
HistogramSeries
('HistogramSeries
Class'
in
the
on-line
documentation)
LineSeries
ParetoSeries
('ParetoSeries
Class'
in
the
on-line
documentation)
PointSeries
WaterfallSeries
('WaterfallSeries
Class'
in
the
on-line
documentation)
YSeries

Using
Code

1.
 Use
the
BarSeries
class
to
add
data
to
a
Chart
control.
2.
 Use
the
YPlotArea
class
to
create
a
plot
area.
3.
 Set
the
location
and
size
of
the
plot
area.
4.
 Add
the
series
to
the
plot
area.
5.
 Create
a
label
and
legend
for
the
chart.
6.
 Create
a
chart
model
and
add
the
plot
area,
label,
and
legend
to
the
model.
7.
 Create
a
chart
and
add
the
chart
model
to
it.
8.
 Add
the
chart
to
the
Spread
control.

Example

The
following
example
demonstrates
creating
a
Y
Plot
chart
and
adding
unbound
data
to
the
control.

C#
BarSeries series = new BarSeries();
series.SeriesName = "Series 0";
series.Values.Add(2.0);
series.Values.Add(4.0);
series.Values.Add(3.0);
series.Values.Add(5.0);
YPlotArea plotArea = new YPlotArea();
plotArea.Location = new PointF(0.2f, 0.2f);

Spread for ASP.NET Developer’s Guide 409

Copyright © GrapeCity, Inc. All rights reserved.

plotArea.Size = new SizeF(0.6f, 0.6f);
plotArea.Series.Add(series);
LabelArea label = new LabelArea();
label.Text = "Bar Chart";
label.Location = new PointF(0.5f, 0.02f);
label.AlignmentX = 0.5f;
label.AlignmentY = 0.0f;
LegendArea legend = new LegendArea();
legend.Location = new PointF(0.98f, 0.5f);
legend.AlignmentX = 1.0f;
legend.AlignmentY = 0.5f;
ChartModel model = new ChartModel();
model.LabelAreas.Add(label);
model.LegendAreas.Add(legend);
model.PlotAreas.Add(plotArea);
FarPoint.Web.Spread.Chart.SpreadChart chart = new
FarPoint.Web.Spread.Chart.SpreadChart();
chart.Model = model;
FpSpread1.Sheets[0].Charts.Add(chart);

VB
Dim series As New FarPoint.Web.Chart.BarSeries()
series.SeriesName = "Series 0"
series.Values.Add(2.0)
series.Values.Add(4.0)
series.Values.Add(3.0)
series.Values.Add(5.0)
Dim plotArea As New FarPoint.Web.Chart.YPlotArea()
plotArea.Location = New PointF(0.2F, 0.2F)
plotArea.Size = New SizeF(0.6F, 0.6F)
plotArea.Series.Add(series)
Dim label As New FarPoint.Web.Chart.LabelArea()
label.Text = "Bar Chart"
label.Location = New PointF(0.5F, 0.02F)
label.AlignmentX = 0.5F
label.AlignmentY = 0.0F
Dim legend As New FarPoint.Web.Chart.LegendArea()
legend.Location = New PointF(0.98F, 0.5F)
legend.AlignmentX = 1.0F
legend.AlignmentY = 0.5F
Dim model As New FarPoint.Web.Chart.ChartModel()
model.LabelAreas.Add(label)
model.LegendAreas.Add(legend)
model.PlotAreas.Add(plotArea)
Dim chart As New FarPoint.Web.Spread.Chart.SpreadChart()
chart.Model = model
FpSpread1.Sheets(0).Charts.Add(chart)

Using
the
Chart
Designer

1.
 Select
the
PlotArea
Collection
editor.
2.
 Set
properties
as
needed.
3.
 Select
Apply
and
OK
to
close
the
Chart
Designer.

Spread for ASP.NET Developer’s Guide 410

Copyright © GrapeCity, Inc. All rights reserved.

Creating an XY Plot

You
can
create
an
XY
Plot
Chart
using
code
or
the
designer.
The
following
image
shows
an
XYPlot
point
type
chart.

For
details
on
the
API,
see
the
XYPlotArea
class.

The
following
classes
are
also
available
when
creating
XY
plot
type
charts:

XYBubbleSeries
XYLineSeries
XYPointSeries

Using
Code

1.
 Use
the
XYPointSeries
class
to
add
data
to
a
Chart
control.
2.
 Use
the
XYPlotArea
class
to
create
the
plot
area.
3.
 Set
the
location
and
size
of
the
plot
area.
4.
 Add
the
series
to
the
plot
area.
5.
 Create
a
label
and
legend
for
the
chart.
6.
 Create
a
chart
model
and
add
the
plot
area,
label,
and
legend
to
the
model.
7.
 Create
a
chart
and
add
the
chart
model
to
it.
8.
 Add
the
chart
to
the
Spread
control.

Example

The
following
example
demonstrates
using
unbound
data
to
create
an
XY
point
chart.

C#
XYPointSeries series0 = new XYPointSeries();
series0.SeriesName = "Series 0";
series0.XValues.Add(1.0);
series0.XValues.Add(2.0);
series0.XValues.Add(4.0);
series0.XValues.Add(8.0);
series0.YValues.Add(2.0);
series0.YValues.Add(4.0);
series0.YValues.Add(3.0);
series0.YValues.Add(5.0);
XYPointSeries series1 = new XYPointSeries();
series1.SeriesName = "Series 1";
series1.XValues.Add(1.0);

Spread for ASP.NET Developer’s Guide 411

Copyright © GrapeCity, Inc. All rights reserved.

series1.XValues.Add(3.0);
series1.XValues.Add(5.0);
series1.XValues.Add(7.0);
series1.YValues.Add(1.0);
series1.YValues.Add(2.0);
series1.YValues.Add(4.0);
series1.YValues.Add(8.0);
XYPlotArea plotArea = new XYPlotArea();
plotArea.Location = new PointF(0.2f, 0.2f);
plotArea.Size = new SizeF(0.6f, 0.6f);
plotArea.Series.Add(series0);
plotArea.Series.Add(series1);
LabelArea label = new LabelArea();
label.Text = "XY Point Chart";
label.Location = new PointF(0.5f, 0.02f);
label.AlignmentX = 0.5f;
label.AlignmentY = 0.0f;
LegendArea legend = new LegendArea();
legend.Location = new PointF(0.98f, 0.5f);
legend.AlignmentX = 1.0f;
legend.AlignmentY = 0.5f;
ChartModel model = new ChartModel();
model.LabelAreas.Add(label);
model.LegendAreas.Add(legend);
model.PlotAreas.Add(plotArea);
FarPoint.Web.Spread.Chart.SpreadChart chart = new
FarPoint.Web.Spread.Chart.SpreadChart();
chart.Model = model;
FpSpread1.Sheets[0].Charts.Add(chart);

VB
Dim series0 As New FarPoint.Web.Chart.XYPointSeries()
series0.SeriesName = "Series 0"
series0.XValues.Add(1.0)
series0.XValues.Add(2.0)
series0.XValues.Add(4.0)
series0.XValues.Add(8.0)
series0.YValues.Add(2.0)
series0.YValues.Add(4.0)
series0.YValues.Add(3.0)
series0.YValues.Add(5.0)
Dim series1 As New FarPoint.Web.Chart.XYPointSeries()
series1.SeriesName = "Series 1"
series1.XValues.Add(1.0)
series1.XValues.Add(3.0)
series1.XValues.Add(5.0)
series1.XValues.Add(7.0)
series1.YValues.Add(1.0)
series1.YValues.Add(2.0)
series1.YValues.Add(4.0)
series1.YValues.Add(8.0)
Dim plotArea As New FarPoint.Web.Chart.XYPlotArea()
plotArea.Location = New PointF(0.2F, 0.2F)
plotArea.Size = New SizeF(0.6F, 0.6F)
plotArea.Series.Add(series0)
plotArea.Series.Add(series1)

Spread for ASP.NET Developer’s Guide 412

Copyright © GrapeCity, Inc. All rights reserved.

Dim label As New FarPoint.Web.Chart.LabelArea()
label.Text = "XY Point Chart"
label.Location = New PointF(0.5F, 0.02F)
label.AlignmentX = 0.5F
label.AlignmentY = 0.0F
Dim legend As New FarPoint.Web.Chart.LegendArea()
legend.Location = New PointF(0.98F, 0.5F)
legend.AlignmentX = 1.0F
legend.AlignmentY = 0.5F
Dim model As New FarPoint.Web.Chart.ChartModel()
model.LabelAreas.Add(label)
model.LegendAreas.Add(legend)
model.PlotAreas.Add(plotArea)
Dim chart As New FarPoint.Web.Spread.Chart.SpreadChart()
chart.Model = model
FpSpread1.Sheets(0).Charts.Add(chart)

Using
the
Chart
Designer

1.
 Select
the
PlotArea
Collection
editor.
2.
 Click
the
drop-down
button
on
the
right
side
of
the
Add
button
(lower,
left
side
of
dialog)
3.
 Select
the
XYPlotArea
option
and
set
properties
as
needed.
4.
 Select
Apply
and
OK
to
close
the
Chart
Designer.

Creating an XYZ Plot

You
can
create
an
XYZ
Plot
Chart
using
code
or
the
designer.
The
following
image
shows
an
XYZPlot
point
type
chart.

Spread for ASP.NET Developer’s Guide 413

Copyright © GrapeCity, Inc. All rights reserved.

For
details
on
the
API,
see
the
XYZPlotArea
class.

The
following
classes
are
also
available
when
creating
XYZ
plot
type
charts:

XYZSeries
XYZPointSeries
XYZLineSeries
XYZSurfaceSeries

Using
Code

1.
 Use
the
XYZPointSeries
class
to
add
data
to
a
Chart
control.
2.
 Use
the
XYZPlotArea
class
to
create
the
plot
area.
3.
 Set
the
location
and
size
of
the
plot
area.
4.
 Add
the
series
to
the
plot
area.
5.
 Create
a
label
and
legend
for
the
chart.
6.
 Create
a
chart
model
and
add
the
plot
area,
label,
and
legend
to
the
model.
7.
 Create
a
chart
and
add
the
chart
model
to
it.
8.
 Add
the
chart
to
the
Spread
control.

Example

The
following
example
demonstrates
using
unbound
data
to
create
an
XYZ
point
chart.

C#
XYZPointSeries series0 = new XYZPointSeries();
series0.SeriesName = "Series 0";
series0.XValues.Add(1.0);
series0.XValues.Add(2.0);
series0.XValues.Add(4.0);
series0.XValues.Add(8.0);
series0.YValues.Add(2.0);
series0.YValues.Add(4.0);
series0.YValues.Add(3.0);
series0.YValues.Add(5.0);
series0.ZValues.Add(1.0);
series0.ZValues.Add(2.0);
series0.ZValues.Add(1.0);
series0.ZValues.Add(2.0)
XYZPointSeries series1 = new XYZPointSeries();
series1.SeriesName = "Series 1";
series1.XValues.Add(1.0);
series1.XValues.Add(3.0);
series1.XValues.Add(5.0);
series1.XValues.Add(8.0);
series1.YValues.Add(1.0);
series1.YValues.Add(2.0);
series1.YValues.Add(4.0);
series1.YValues.Add(8.0);
series1.ZValues.Add(4.0);
series1.ZValues.Add(3.0);
series1.ZValues.Add(4.0);
series1.ZValues.Add(3.0);
XYZPlotArea plotArea = new XYZPlotArea();
plotArea.Location = new PointF(0.2f, 0.2f);

Spread for ASP.NET Developer’s Guide 414

Copyright © GrapeCity, Inc. All rights reserved.

plotArea.Size = new SizeF(0.6f, 0.6f);
plotArea.Series.Add(series0);
plotArea.Series.Add(series1);
LabelArea label = new LabelArea();
label.Text = "XYZ Point Chart";
label.Location = new PointF(0.5f, 0.02f);
label.AlignmentX = 0.5f;
label.AlignmentY = 0.0f;
LegendArea legend = new LegendArea();
legend.Location = new PointF(0.98f, 0.5f);
legend.AlignmentX = 1.0f;
legend.AlignmentY = 0.5f;
ChartModel model = new ChartModel();
model.LabelAreas.Add(label);
model.LegendAreas.Add(legend);
model.PlotAreas.Add(plotArea);
FarPoint.Web.Spread.Chart.SpreadChart chart = new
FarPoint.Web.Spread.Chart.SpreadChart();
chart.Model = model;
FpSpread1.Sheets[0].Charts.Add(chart);

VB
Dim series0 As New FarPoint.Web.Chart.XYZPointSeries()
series0.SeriesName = "Series 0"
series0.XValues.Add(1.0)
series0.XValues.Add(2.0)
series0.XValues.Add(4.0)
series0.XValues.Add(8.0)
series0.YValues.Add(2.0)
series0.YValues.Add(4.0)
series0.YValues.Add(3.0)
series0.YValues.Add(5.0)
series0.ZValues.Add(1.0)
series0.ZValues.Add(2.0)
series0.ZValues.Add(1.0)
series0.ZValues.Add(2.0)
Dim series1 As New FarPoint.Web.Chart.XYZPointSeries()
series1.SeriesName = "Series 1"
series1.XValues.Add(1.0)
series1.XValues.Add(3.0)
series1.XValues.Add(5.0)
series1.XValues.Add(7.0)
series1.YValues.Add(1.0)
series1.YValues.Add(2.0)
series1.YValues.Add(4.0)
series1.YValues.Add(8.0)
series1.ZValues.Add(4.0)
series1.ZValues.Add(3.0)
series1.ZValues.Add(4.0)
series1.ZValues.Add(3.0)
Dim plotArea As New FarPoint.Web.Chart.XYZPlotArea()
plotArea.Location = New PointF(0.2F, 0.2F)
plotArea.Size = New SizeF(0.6F, 0.6F)
plotArea.Series.Add(series0)
plotArea.Series.Add(series1)
Dim label As New FarPoint.Web.Chart.LabelArea()

Spread for ASP.NET Developer’s Guide 415

Copyright © GrapeCity, Inc. All rights reserved.

label.Text = "XYZ Point Chart"
label.Location = New PointF(0.5F, 0.02F)
label.AlignmentX = 0.5F
label.AlignmentY = 0.0F
Dim legend As New FarPoint.Web.Chart.LegendArea()
legend.Location = New PointF(0.98F, 0.5F)
legend.AlignmentX = 1.0F
legend.AlignmentY = 0.5F
Dim model As New FarPoint.Web.Chart.ChartModel()
model.LabelAreas.Add(label)
model.LegendAreas.Add(legend)
model.PlotAreas.Add(plotArea)
Dim chart As New FarPoint.Web.Spread.Chart.SpreadChart()
chart.Model = model
FpSpread1.Sheets(0).Charts.Add(chart)

Using
the
Chart
Designer

1.
 Select
the
PlotArea
Collection
editor.
2.
 Click
the
drop-down
button
on
the
right
side
of
the
Add
button
(lower,
left
side
of
dialog)
3.
 Select
the
XYZPlotArea
option
and
set
properties
as
needed.
4.
 Select
Apply
and
OK
to
close
the
Chart
Designer.

Creating a Pie Plot

You
can
create
a
pie
plot
chart
using
code
or
the
designer.
The
following
image
shows
a
Pie
Plot
type
chart.

For
details
on
the
API,
see
the
PiePlotArea
class.

The
following
class
is
also
available:

PieSeries

Using
Code

1.
 Use
the
PieSeries
class
to
add
data
to
a
Chart
control.
2.
 Use
the
PiePlotArea
class
to
create
the
plot
area.
3.
 Set
the
location
and
size
of
the
plot
area.
4.
 Add
the
series
to
the
plot
area.
5.
 Create
a
label
and
legend
for
the
chart.
6.
 Create
a
chart
model
and
add
the
plot
area,
label,
and
legend
to
the
model.
7.
 Create
a
chart
and
add
the
chart
model
to
it.
8.
 Add
the
chart
to
the
Spread
control.

Spread for ASP.NET Developer’s Guide 416

Copyright © GrapeCity, Inc. All rights reserved.

Example

The
following
example
demonstrates
using
unbound
data
to
create
a
Pie
chart.

C#
PieSeries series = new PieSeries();
series.SeriesName = "Series 0";
series.Values.Add(1.0);
series.Values.Add(2.0);
series.Values.Add(4.0);
series.Values.Add(8.0);
PiePlotArea plotArea = new PiePlotArea();
plotArea.Location = new PointF(0.2f, 0.2f);
plotArea.Size = new SizeF(0.6f, 0.6f);
plotArea.Series.Add(series);
LabelArea label = new LabelArea();
label.Text = "Pie Chart";
label.Location = new PointF(0.5f, 0.02f);
label.AlignmentX = 0.5f;
label.AlignmentY = 0.0f;
LegendArea legend = new LegendArea();
legend.Location = new PointF(0.98f, 0.5f);
legend.AlignmentX = 1.0f;
legend.AlignmentY = 0.5f;
ChartModel model = new ChartModel();
model.LabelAreas.Add(label);
model.LegendAreas.Add(legend);
model.PlotAreas.Add(plotArea);
FarPoint.Web.Spread.Chart.SpreadChart chart = new
FarPoint.Web.Spread.Chart.SpreadChart();
chart.Model = model;
FpSpread1.Sheets[0].Charts.Add(chart);

VB
Dim series As New FarPoint.Web.Chart.PieSeries()
series.SeriesName = "Series 0"
series.Values.Add(1.0)
series.Values.Add(2.0)
series.Values.Add(4.0)
series.Values.Add(8.0)
Dim plotArea As New FarPoint.Web.Chart.PiePlotArea()
plotArea.Location = New PointF(0.2F, 0.2F)
plotArea.Size = New SizeF(0.6F, 0.6F)
plotArea.Series.Add(series)
Dim label As New FarPoint.Web.Chart.LabelArea()
label.Text = "Pie Chart"
label.Location = New PointF(0.5F, 0.02F)
label.AlignmentX = 0.5F
label.AlignmentY = 0.0F
Dim legend As New FarPoint.Web.Chart.LegendArea()
legend.Location = New PointF(0.98F, 0.5F)
legend.AlignmentX = 1.0F
legend.AlignmentY = 0.5F
Dim model As New FarPoint.Web.Chart.ChartModel()
model.LabelAreas.Add(label)

Spread for ASP.NET Developer’s Guide 417

Copyright © GrapeCity, Inc. All rights reserved.

model.LegendAreas.Add(legend)
model.PlotAreas.Add(plotArea)
Dim chart As New FarPoint.Web.Spread.Chart.SpreadChart()
chart.Model = model
FpSpread1.Sheets(0).Charts.Add(chart)

Using
the
Chart
Designer

1.
 Select
the
PlotArea
Collection
editor.
2.
 Click
the
drop-down
button
on
the
right
side
of
the
Add
button
(lower,
left
side
of
dialog).
3.
 Select
the
PiePlotArea
option
and
set
properties
as
needed.
4.
 Select
Apply
and
OK
to
close
the
Chart
Designer.

Creating a Polar Plot

You
can
create
a
polar
plot
chart
using
code
or
the
designer.
The
following
image
shows
a
Polar
Plot
type
chart.

For
details
on
the
API,
see
the
PolarPlotArea
class.

The
following
classes
are
also
available:

PolarAreaSeries
PolarSeries
PolarLineSeries
PolarPointSeries
PolarAngleAxis
PolarRadiusAxis

Using
Code

1.
 Use
the
PolarPointSeries
class
to
add
data
to
a
Chart
control.

Spread for ASP.NET Developer’s Guide 418

Copyright © GrapeCity, Inc. All rights reserved.

2.
 Use
the
PolarPlotArea
class
to
create
the
plot
area.
3.
 Set
the
location
and
size
of
the
plot
area.
4.
 Add
the
series
to
the
plot
area.
5.
 Create
a
label
and
legend
for
the
chart.
6.
 Create
a
chart
model
and
add
the
plot
area,
label,
and
legend
to
the
model.
7.
 Create
a
chart
and
add
the
chart
model
to
it.
8.
 Add
the
chart
to
the
Spread
control.

Example

The
following
example
demonstrates
using
unbound
data
to
create
a
polar
point
series
chart.

C#
PolarPointSeries series0 = new PolarPointSeries();
series0.SeriesName = "Series 0";
series0.XValues.Add(0.0);
series0.XValues.Add(45.0);
series0.XValues.Add(90.0);
series0.XValues.Add(180.0);
series0.XValues.Add(270.0);
series0.YValues.Add(1.0);
series0.YValues.Add(2.0);
series0.YValues.Add(3.0);
series0.YValues.Add(4.0);
series0.YValues.Add(5.0);
PolarPointSeries series1 = new PolarPointSeries();
series1.SeriesName = "Series 1";
series1.XValues.Add(0.0);
series1.XValues.Add(45.0);
series1.XValues.Add(90.0);
series1.XValues.Add(180.0);
series1.XValues.Add(270.0);
series1.YValues.Add(2.0);
series1.YValues.Add(3.0);
series1.YValues.Add(4.0);
series1.YValues.Add(5.0);
series1.YValues.Add(6.0);
PolarPlotArea plotArea = new PolarPlotArea();
plotArea.Location = new PointF(0.2f, 0.2f);
plotArea.Size = new SizeF(0.6f, 0.6f);
plotArea.Series.Add(series0);
plotArea.Series.Add(series1);
LabelArea label = new LabelArea();
label.Text = "Polar Point Chart";
label.Location = new PointF(0.5f, 0.02f);
label.AlignmentX = 0.5f;
label.AlignmentY = 0.0f;
LegendArea legend = new LegendArea();
legend.Location = new PointF(0.98f, 0.5f);
legend.AlignmentX = 1.0f;
legend.AlignmentY = 0.5f;
ChartModel model = new ChartModel();
model.LabelAreas.Add(label);
model.LegendAreas.Add(legend);
model.PlotAreas.Add(plotArea);

Spread for ASP.NET Developer’s Guide 419

Copyright © GrapeCity, Inc. All rights reserved.

FarPoint.Web.Spread.Chart.SpreadChart chart = new
FarPoint.Web.Spread.Chart.SpreadChart();
chart.Model = model;
FpSpread1.Sheets[0].Charts.Add(chart);

VB
Dim series0 As New PolarPointSeries()
series0.SeriesName = "Series 0"
series0.XValues.Add(0.0)
series0.XValues.Add(45.0)
series0.XValues.Add(90.0)
series0.XValues.Add(180.0)
series0.XValues.Add(270.0)
series0.YValues.Add(1.0)
series0.YValues.Add(2.0)
series0.YValues.Add(3.0)
series0.YValues.Add(4.0)
series0.YValues.Add(5.0)
Dim series1 As New PolarPointSeries()
series1.SeriesName = "Series 1"
series1.XValues.Add(0.0)
series1.XValues.Add(45.0)
series1.XValues.Add(90.0)
series1.XValues.Add(180.0)
series1.XValues.Add(270.0)
series1.YValues.Add(2.0)
series1.YValues.Add(3.0)
series1.YValues.Add(4.0)
series1.YValues.Add(5.0)
series1.YValues.Add(6.0)
Dim plotArea As New PolarPlotArea()
plotArea.Location = New PointF(0.2F, 0.2F)
plotArea.Size = New SizeF(0.6F, 0.6F)
plotArea.Series.Add(series0)
plotArea.Series.Add(series1)
Dim label As New LabelArea()
label.Text = "Polar Point Chart"
label.Location = New PointF(0.5F, 0.02F)
label.AlignmentX = 0.5F
label.AlignmentY = 0F
Dim legend As New LegendArea()
legend.Location = New PointF(0.98F, 0.5F)
legend.AlignmentX = 1F
legend.AlignmentY = 0.5F
Dim model As New ChartModel()
model.LabelAreas.Add(label)
model.LegendAreas.Add(legend)
model.PlotAreas.Add(plotArea)
Dim chart As New FarPoint.Web.Spread.Chart.SpreadChart()
chart.Model = model
FpSpread1.Sheets(0).Charts.Add(chart)

Using
the
Chart
Designer

1.
 Select
the
PlotArea
Collection
editor.

Spread for ASP.NET Developer’s Guide 420

Copyright © GrapeCity, Inc. All rights reserved.

2.
 Click
the
drop-down
button
on
the
right
side
of
the
Add
button
(lower,
left
side
of
dialog).
3.
 Select
the
PolarPlotArea
option
and
set
properties
as
needed.
4.
 Select
Apply
and
OK
to
close
the
Chart
Designer.

Creating a Radar Plot

You
can
create
a
radar
plot
chart
using
code
or
the
designer.
The
following
image
shows
a
Radar
point
type
chart.

For
details
on
the
API,
see
the
RadarPlotArea
class.

The
following
classes
are
also
available:

RadarAreaSeries
RadarSeries
RadarLineSeries
RadarPointSeries
RadarIndexAxis
RadarValueAxis

Using
Code

1.
 Use
the
RadarPointSeries
class
to
add
data
to
a
Chart
control.
2.
 Use
the
RadarPlotArea
class
to
create
the
plot
area.
3.
 Set
the
location
and
size
of
the
plot
area.
4.
 Add
the
series
to
the
plot
area.
5.
 Create
a
label
and
legend
for
the
chart.
6.
 Create
a
chart
model
and
add
the
plot
area,
label,
and
legend
to
the
model.
7.
 Create
a
chart
and
add
the
chart
model
to
it.
8.
 Add
the
chart
to
the
Spread
control.

Example

Spread for ASP.NET Developer’s Guide 421

Copyright © GrapeCity, Inc. All rights reserved.

The
following
example
demonstrates
using
unbound
data
to
create
a
Radar
chart.

C#
RadarPointSeries series0 = new RadarPointSeries();
series0.SeriesName = "Series 0";
series0.Values.Add(1.0);
series0.Values.Add(2.0);
series0.Values.Add(3.0);
series0.Values.Add(4.0);
series0.Values.Add(5.0);
RadarPointSeries series1 = new RadarPointSeries();
series1.SeriesName = "Series 1";
series1.Values.Add(2.0);
series1.Values.Add(3.0);
series1.Values.Add(4.0);
series1.Values.Add(5.0);
series1.Values.Add(6.0);
RadarPlotArea plotArea = new RadarPlotArea();
plotArea.Location = new PointF(0.2f, 0.2f);
plotArea.Size = new SizeF(0.6f, 0.6f);
plotArea.Series.Add(series0);
plotArea.Series.Add(series1);
LabelArea label = new LabelArea();
label.Text = "Radar Point Chart";
label.Location = new PointF(0.5f, 0.02f);
label.AlignmentX = 0.5f;
label.AlignmentY = 0.0f;
LegendArea legend = new LegendArea();
legend.Location = new PointF(0.98f, 0.5f);
legend.AlignmentX = 1.0f;
legend.AlignmentY = 0.5f;
ChartModel model = new ChartModel();
model.LabelAreas.Add(label);
model.LegendAreas.Add(legend);
model.PlotAreas.Add(plotArea);
FarPoint.Web.Spread.Chart.SpreadChart chart = new
FarPoint.Web.Spread.Chart.SpreadChart();
chart.Model = model;
FpSpread1.Sheets[0].Charts.Add(chart);

VB
Dim series0 As New FarPoint.Web.Chart.RadarPointSeries()
series0.SeriesName = "Series 0"
series0.Values.Add(1.0)
series0.Values.Add(2.0)
series0.Values.Add(3.0)
series0.Values.Add(4.0)
series0.Values.Add(5.0)
Dim series1 As New FarPoint.Web.Chart.RadarPointSeries()
series1.SeriesName = "Series 1"
series1.Values.Add(2.0)
series1.Values.Add(3.0)
series1.Values.Add(4.0)
series1.Values.Add(5.0)
series1.Values.Add(6.0)
Dim plotArea As New FarPoint.Web.Chart.RadarPlotArea()

Spread for ASP.NET Developer’s Guide 422

Copyright © GrapeCity, Inc. All rights reserved.

plotArea.Location = New PointF(0.2F, 0.2F)
plotArea.Size = New SizeF(0.6F, 0.6F)
plotArea.Series.Add(series0)
plotArea.Series.Add(series1)
Dim label As New FarPoint.Web.Chart.LabelArea()
label.Text = "Radar Point Chart"
label.Location = New PointF(0.5F, 0.02F)
label.AlignmentX = 0.5F
label.AlignmentY = 0.0F
Dim legend As New FarPoint.Web.Chart.LegendArea()
legend.Location = New PointF(0.98F, 0.5F)
legend.AlignmentX = 1.0F
legend.AlignmentY = 0.5F
Dim model As New FarPoint.Web.Chart.ChartModel()
model.LabelAreas.Add(label)
model.LegendAreas.Add(legend)
model.PlotAreas.Add(plotArea)
Dim chart As New FarPoint.Web.Spread.Chart.SpreadChart()
chart.Model = model
FpSpread1.Sheets(0).Charts.Add(chart)

Using
the
Chart
Designer

1.
 Select
the
PlotArea
Collection
editor.
2.
 Click
the
drop-down
button
on
the
right
side
of
the
Add
button
(lower,
left
side
of
dialog).
3.
 Select
the
RadarPlotArea
option
and
set
properties
as
needed.
4.
 Select
Apply
and
OK
to
close
the
Chart
Designer.

Combining Plot Types

Multiple
series
from
the
same
major
category
are
compatible
with
each
other
and
can
be
combined
in
a
single
plot
area.
For
example,
a
BarSeries
and
a
LineSeries
can
be
combined
together
in
a
YPlotArea.

For
details
on
the
API,
see
the
YPlotArea
class.

The
following
classes
are
used
to
create
the
bar
and
line
series
example:

BarSeries
LineSeries

Spread for ASP.NET Developer’s Guide 423

Copyright © GrapeCity, Inc. All rights reserved.

Using
Code

1.
 Use
the
BarSeries
and
LineSeries
classes
to
add
data
to
the
Chart
control.
2.
 Use
the
YPlotArea
class
to
create
the
plot
area.
3.
 Set
the
location
and
size
of
the
plot
area.
4.
 Add
both
series
to
the
plot
area.
5.
 Create
a
label
for
the
chart.
6.
 Create
a
chart
model
and
add
the
plot
area
and
label
to
the
model.
7.
 Create
a
chart
and
add
the
chart
model
to
it.
8.
 Add
the
chart
to
the
Spread
control.

Example

The
following
example
demonstrates
using
unbound
data
to
create
a
chart
that
uses
a
bar
series
and
a
line
series.

C#
BarSeries series0 = new BarSeries();
series0.Values.Add(8.0);
series0.Values.Add(4.0);
series0.Values.Add(2.0);
series0.Values.Add(1.0);
LineSeries series1 = new LineSeries();
series1.PointMarker = new BuiltinMarker(MarkerShape.Circle, 7.0f);
series1.Values.Add(8.0);
series1.Values.Add(12.0);
series1.Values.Add(14.0);
series1.Values.Add(15.0);
YPlotArea plotArea = new YPlotArea();
plotArea.Location = new PointF(0.2f, 0.2f);
plotArea.Size = new SizeF(0.6f, 0.6f);
plotArea.Series.Add(series0);
plotArea.Series.Add(series1);
LabelArea labelArea = new LabelArea();
labelArea.Location = new PointF(0.5f, 0.02f);
labelArea.AlignmentX = 0.5f;
labelArea.AlignmentY = 0.0f;
labelArea.Text = "Pareto Chart";
ChartModel model = new ChartModel();
model.LabelAreas.Add(labelArea);
model.PlotAreas.Add(plotArea);
FarPoint.Web.Spread.Chart.SpreadChart chart = new
FarPoint.Web.Spread.Chart.SpreadChart();
chart.Model = model;
FpSpread1.Sheets[0].Charts.Add(chart);

VB
Dim series0 As New FarPoint.Web.Chart.BarSeries()
series0.Values.Add(8.0)
series0.Values.Add(4.0)
series0.Values.Add(2.0)
series0.Values.Add(1.0)
Dim series1 As New FarPoint.Web.Chart.LineSeries()
series1.PointMarker = New
FarPoint.Web.Chart.BuiltinMarker(FarPoint.Web.Chart.MarkerShape.Circle, 7.0F)

Spread for ASP.NET Developer’s Guide 424

Copyright © GrapeCity, Inc. All rights reserved.

series1.Values.Add(8.0)
series1.Values.Add(12.0)
series1.Values.Add(14.0)
series1.Values.Add(15.0)
Dim plotArea As New FarPoint.Web.Chart.YPlotArea()
plotArea.Location = New PointF(0.2F, 0.2F)
plotArea.Size = New SizeF(0.6F, 0.6F)
plotArea.Series.Add(series0)
plotArea.Series.Add(series1)
Dim labelArea As New FarPoint.Web.Chart.LabelArea()
labelArea.Location = New PointF(0.5F, 0.02F)
labelArea.AlignmentX = 0.5F
labelArea.AlignmentY = 0.0F
labelArea.Text = "Pareto Chart"
Dim model As New FarPoint.Web.Chart.ChartModel()
model.LabelAreas.Add(labelArea)
model.PlotAreas.Add(plotArea)
Dim chart As New FarPoint.Web.Spread.Chart.SpreadChart()
chart.Model = model
FpSpread1.Sheets(0).Charts.Add(chart)

Connecting to Data

The
Chart
control
can
be
bound
or
unbound.
If
the
control
is
unbound,
provide
the
values
as
double
values.

When
the
chart
is
bound,
the
values
can
any
data
type
that
can
be
converted
to
a
double
value
(including
int,
double,
decimal,
string,
and
so
on).

For
more
information
on
adding
data
to
a
Chart
control,
see
the
following
topics:

Using
a
Bound
Data
Source
Using
an
Unbound
Data
Source
Using
Raw
Data
Versus
Represented
Data

Using a Bound Data Source

You
can
bind
the
chart
to
the
following
data
sources.

Array
Array
List
(IList)
List
Collection
Table

When
the
chart
is
bound
to
data,
it
dynamically
plots
the
data
when
it
paints.
A
single
chart
can
support
(and
display)
data
from
multiple
data
sources
and
multiple
data
fields
within
a
data
source.
For
more
information
about
the
DataSource
property,
refer
to
the
specific
chart
type
in
the
Assembly
Reference
(on-line
documentation)
(for
example:
SeriesNameDataSource
in
the
RadarLineSeries
class).

Using
Code

Use
the
Values
('Values
Property'
in
the
on-line
documentation)
property
of
the
series
to
add
a
data
source.

Example

The
following
example
demonstrates
how
to
bind
the
control
to
a
data
source.

Spread for ASP.NET Developer’s Guide 425

Copyright © GrapeCity, Inc. All rights reserved.

C#
// Create an array and bind the control.
object[] values = new object[] { 2, 4.0, 3.0m, "5.0" };
BarSeries series = new BarSeries();
series.Values.DataSource = values;

VB
' Create an array and bind the control.
Dim values() As Object = {2, 4.0, 3.0D, "5.0"}
Dim series As New BarSeries()
series.Values.DataSource = values

Using
Code

Use
the
Values
('Values
Property'
in
the
on-line
documentation)
property
of
the
series
to
add
a
data
source.

Example

The
following
example
demonstrates
how
to
bind
the
control
to
a
data
table.

C#
System.Data.DataTable dt = new System.Data.DataTable("Test");
System.Data.DataRow dr = default(System.Data.DataRow);
dt.Columns.Add("Series0");
dt.Columns.Add("Series1");
dr = dt.NewRow();
dr[0] = 2;
dr[1] = 1;
dt.Rows.Add(dr);
dr = dt.NewRow();
dr[0] = 4;
dr[1] = 2;
dt.Rows.Add(dr);
dr = dt.NewRow();
dr[0] = 3;
dr[1] = 4;
FarPoint.Web.Chart.BarSeries series = new FarPoint.Web.Chart.BarSeries();
series.Values.DataSource = dt;
series.Values.DataField = dt.Columns[0].ColumnName;
FarPoint.Web.Chart.YPlotArea plotArea = new FarPoint.Web.Chart.YPlotArea();
FarPoint.Web.Chart.ChartModel model = new FarPoint.Web.Chart.ChartModel();
plotArea.Location = new System.Drawing.PointF(0.2F, 0.2F);
plotArea.Size = new System.Drawing.SizeF(0.6F, 0.6F);
plotArea.Series.Add(series);
model.PlotAreas.Add(plotArea);
FarPoint.Web.Spread.Chart.SpreadChart chart = new
FarPoint.Web.Spread.Chart.SpreadChart();
chart.Model = model;
FpSpread1.Sheets[0].Charts.Add(chart);

VB
Dim dt As New System.Data.DataTable("Test")
Dim dr As System.Data.DataRow
dt.Columns.Add("Series0")

Spread for ASP.NET Developer’s Guide 426

Copyright © GrapeCity, Inc. All rights reserved.

dt.Columns.Add("Series1")
dr = dt.NewRow()
dr(0) = 2
dr(1) = 1
dt.Rows.Add(dr)
dr = dt.NewRow()
dr(0) = 4
dr(1) = 2
dt.Rows.Add(dr)
dr = dt.NewRow()
dr(0) = 3
dr(1) = 4
dt.Rows.Add(dr)
Dim series As New FarPoint.Web.Chart.BarSeries
series.Values.DataSource = dt
series.Values.DataField = dt.Columns(0).ColumnName
Dim model As New FarPoint.Web.Chart.ChartModel()
Dim plotArea As New FarPoint.Web.Chart.YPlotArea()
plotArea.Location = New System.Drawing.PointF(0.2F, 0.2F)
plotArea.Size = New System.Drawing.SizeF(0.6F, 0.6F)
plotArea.Series.Add(series)
model.PlotAreas.Add(plotArea)
Dim chart As New FarPoint.Web.Spread.Chart.SpreadChart()
chart.Model = model
FpSpread1.Sheets(0).Charts.Add(chart)

Using an Unbound Data Source

You
can
add
double
values
to
the
Chart
control
without
using
a
data
source.

Using
Code

Use
the
Values
('Values
Property'
in
the
on-line
documentation)
property
of
the
series
to
add
data.

Example

The
following
example
demonstrates
adding
unbound
data
to
the
control.

C#
BarSeries series = new BarSeries();
series.Values.Add(2.0);
series.Values.Add(4.0);
series.Values.Add(3.0);
series.Values.Add(5.0);

VB
Dim series As New BarSeries()
series.Values.Add(2.0)
series.Values.Add(4.0)
series.Values.Add(3.0)
series.Values.Add(5.0)

Using
the
Chart
Designer

Spread for ASP.NET Developer’s Guide 427

Copyright © GrapeCity, Inc. All rights reserved.

1.
 Select
the
PlotArea
Collection
editor.
2.
 Select
the
Series
Collection
editor.
3.
 Select
the
Values
Collection
editor.
4.
 Set
values
as
needed.
5.
 Select
Apply
and
OK
to
close
the
Chart
Designer.

Using Raw Data Versus Represented Data

You
can
set
the
scale
of
the
data
before
displaying
the
data.

For
example,
if
the
data
values
are
in
the
millions,
you
may
wish
to
display
them
using
a
much
smaller
scale
such
as
hundreds
(100,000,000
vs
100).
Use
the
DisplayUnits
('DisplayUnits
Property'
in
the
on-line
documentation)
property
in
the
ValueAxis
class
to
set
the
scale.

Using
Code

Use
the
DisplayUnits
('DisplayUnits
Property'
in
the
on-line
documentation)
property
to
create
a
smaller
scale
on
the
axis.

Example

The
following
example
uses
the
DisplayUnits
('DisplayUnits
Property'
in
the
on-line
documentation)
property.

C#
FarPoint.Web.Chart.BarSeries series = new FarPoint.Web.Chart.BarSeries();
series.Values.Add(10000.0);
series.Values.Add(20000.0);
series.Values.Add(40000.0);
series.Values.Add(80000.0);
FarPoint.Web.Chart.YPlotArea plotArea = new FarPoint.Web.Chart.YPlotArea();
plotArea.Location = new PointF(0.2F, 0.2F);
plotArea.Size = new SizeF(0.6F, 0.6F);
plotArea.XAxis.Title = "Entry";
plotArea.XAxis.TitleVisible = true;
plotArea.YAxes[0].DisplayUnits = 1000.0;
plotArea.Series.Add(series);
FarPoint.Web.Chart.ChartModel model = new FarPoint.Web.Chart.ChartModel();
model.PlotAreas.Add(plotArea);
FarPoint.Web.Spread.Chart.SpreadChart chart = new
FarPoint.Web.Spread.Chart.SpreadChart();
chart.Model = model;
fpSpread1.Sheets[0].Charts.Add(chart);

VB
Dim series As New FarPoint.Web.Chart.BarSeries()
series.Values.Add(10000.0)
series.Values.Add(20000.0)
series.Values.Add(40000.0)
series.Values.Add(80000.0)
Dim plotArea As New FarPoint.Web.Chart.YPlotArea()
plotArea.Location = New PointF(0.2F, 0.2F)
plotArea.Size = New SizeF(0.6F, 0.6F)
plotArea.XAxis.Title = "Entry" 'IndexAxis

Spread for ASP.NET Developer’s Guide 428

Copyright © GrapeCity, Inc. All rights reserved.

plotArea.XAxis.TitleVisible = True 'IndexAxis
plotArea.YAxes(0).DisplayUnits = 1000.0 'ValueAxis
plotArea.Series.Add(series)
Dim model As New FarPoint.Web.Chart.ChartModel()
model.PlotAreas.Add(plotArea)
Dim chart As New FarPoint.Web.Spread.Chart.SpreadChart()
chart.Model = model
FpSpread1.Sheets(0).Charts.Add(chart)

Using the Chart Designer

The
Chart
Designer’s
graphical
interface
saves
time
and
effort
and
provides
a
visual
representation
of
the
Chart
control
as
you
change
settings
in
the
designer.
You
can
apply
the
changes
to
the
control.

See
the
following
topics
for
more
information
about
using
the
Chart
Designer:

Opening
the
Chart
Designer
Creating
a
Chart
Control
Using
the
Chart
Collection
Editors

Opening the Chart Designer

You
can
open
the
designer
by
right-clicking
on
a
chart
and
then
selecting
Chart
Designer
from
the
menu.

This
opens
the
designer
with
the
various
editors
that
can
be
used
to
customize
the
Chart
control.

Spread for ASP.NET Developer’s Guide 429

Copyright © GrapeCity, Inc. All rights reserved.

You
can
also
edit
the
Chart
control
by
adding
a
Chart
control
to
the
form
and
using
the
chart
verb
to
bring
up
the
designer.

Creating a Chart Control

You
can
create
a
Chart
control
with
the
Chart
Designer.
In
the
Spread
designer,
select
the
chart
icon,
add
a
chart,
right-
click
on
the
chart,
and
select
the
Chart
Designer
(or
select
a
Chart
control
on
the
form
and
select
the
designer
from
the
chart
verb).

1.
 Click
on
the
PlotArea
Collection
drop-down
button.
If
the
YPlotArea
is
selected,
click
Remove.
Then
click
Add
and
select
the
PiePlotArea.

Spread for ASP.NET Developer’s Guide 430

Copyright © GrapeCity, Inc. All rights reserved.

2.
 Select
the
Series
Collection
drop-down
button
(under
Data).
3.
 Click
the
Add
button
in
the
Series
Collection
Editor.
Then
select
the
Values
Collection
drop-down
button.

Spread for ASP.NET Developer’s Guide 431

Copyright © GrapeCity, Inc. All rights reserved.

4.
 Click
the
Add
button
and
add
multiple
data
values.
Type
a
double
value
in
the
text
area
on
the
right
side
of
the
editor.

5.
 Select
OK
on
the
three
dialogs.
Click
Apply
and
OK
to
apply
the
designer
changes
to
the
control
and
close
the
designer.
The
LabelArea
Collection
editor
can
be
used
to
change
the
text
of
the
legend
(from
Bar
to
Pie,
for
example).

Spread for ASP.NET Developer’s Guide 432

Copyright © GrapeCity, Inc. All rights reserved.

Using the Chart Collection Editors

There
are
several
editors
that
can
be
used
to
edit
areas
of
the
Chart
control.
Open
the
Chart
Designer
and
select
the
appropriate
collection
drop-down
under
the
Misc
section.

LabelArea
Collection
Editor
LegendArea
Collection
Editor
PlotArea
Collection
Editor
Light
Collection
Editor
Series
Collection
Editor

LabelArea Collection Editor

The
Label
Collection
Editor
can
be
used
to
create
labels
for
the
chart
as
shown
in
the
following
figure:

Spread for ASP.NET Developer’s Guide 433

Copyright © GrapeCity, Inc. All rights reserved.

LegendArea Collection Editor

The
Legend
Collection
Editor
can
be
used
to
create
legends
for
the
chart
as
shown
in
the
following
figure:

PlotArea Collection Editor

Spread for ASP.NET Developer’s Guide 434

Copyright © GrapeCity, Inc. All rights reserved.

The
PlotArea
Collection
Editor
can
be
used
to
create
plots
for
the
chart
as
shown
in
the
following
figure:

Light Collection Editor

The
Light
Collection
Editor
can
be
used
to
create
lighting
effects
for
the
chart
as
shown
in
the
following
figure:

Spread for ASP.NET Developer’s Guide 435

Copyright © GrapeCity, Inc. All rights reserved.

The
Light
Collection
Editor
is
under
the
Appearance
section
after
you
select
the
Plot
Areas
Collection.
You
can
also
select
a
plot
area
from
the
diagram
on
the
left
side
of
the
designer
and
then
select
the
Lights
Collection
under
the
Appearance
section.

Series Collection Editor

The
Series
Collection
Editor
can
be
used
to
set
borders,
bar
shapes,
and
fill
options,
add
chart
data,
specify
labels
and
names,
and
other
options.
The
editor
appears
as
follows:

The
Series
Collection
Editor
is
under
the
Data
section
after
you
select
the
Plot
Areas
Collection.
You
can
also
select
a
plot
area
from
the
diagram
on
the
left
side
of
the
designer
and
then
select
the
Series
Collection
under
the
Data
section.

Using the Spread Designer

You
can
open
the
designer
by
right-clicking
on
the
control
and
then
selecting
Spread
Designer
from
the
menu.
Click
on
the
Insert
tab
to
bring
up
the
Chart
options.
Click
on
one
of
the
chart
types
to
bring
up
the
Insert
Chart
dialog.

You
can
use
the
Insert
Chart
dialog
to
add
a
chart.
Select
a
chart
type
and
then
click
OK.
The
chart
is
placed
in
the
middle
of
the
current
sheet
view
and
the
Chart
Tools
dialog
is
displayed.

Spread for ASP.NET Developer’s Guide 436

Copyright © GrapeCity, Inc. All rights reserved.

The
Chart
Tools
dialog
can
be
used
to
make
changes
to
the
chart
(move,
resize,
change
the
chart
type,
and
so
on).

You
can
type
data
in
the
designer
before
adding
a
chart
or
you
can
add
data
after
adding
a
chart.
If
you
add
the
Chart
control
first,
you
can
then
right
click
on
the
Chart
control
and
select
the
Chart
Designer
from
the
context
menu
to
add
data.

If
you
select
a
cell
range
and
then
add
the
chart,
that
data
is
used
in
creating
the
chart.
If
you
select
a
cell,
the
control
will
auto-detect
a
cell
range
based
on
the
selected
cell.
If
you
do
not
select
a
cell
or
cells(s),
an
empty
chart
is
created.

For
more
information
about
the
Chart
context
menu,
see
Using
the
Chart
Context
Menu.

Using the Chart Control

You
can
use
the
Chart
control
without
having
a
Spread
control
on
the
form.
The
Chart
control
icon
is
added
to
the
toolbox
when
installing
the
control.
Select
the
icon
and
draw
the
Chart
control
on
the
form.
You
can
then
use
the
Chart
Designer
or
code
to
add
data
and
formatting
to
the
Chart
control.

Creating
the
Chart
Control
Rendering
or
Saving
the
Chart
Control
to
an
Image
Loading
or
Saving
the
Chart
Control
to
XML

Creating the Chart Control

You
can
create
a
Chart
control
with
code
or
with
the
Chart
Designer.
Select
the
Chart
control,
click
on
the
chart
verb,
and
then
select
Designer
to
bring
up
the
Chart
Designer.

You
can
also
create
a
chart
with
code.
The
code
is
similar
to
using
the
Chart
control
in
Spread;
however,
you
do
not
need
the
AddChart
('AddChart
Method'
in
the
on-line
documentation)
method
in
this
case.

Using
Code

1.
 Use
the
BarSeries
('BarSeries
Class'
in
the
on-line
documentation)
class
to
add
data
to
a
Chart
control.
2.
 Use
the
YPlotArea
('YPlotArea
Class'
in
the
on-line
documentation)
class
to
create
a
plot
area.
3.
 Set
the
location
and
size
of
the
plot
area.
4.
 Add
the
series
to
the
plot
area.
5.
 Create
a
label
and
legend
for
the
chart.
6.
 Create
a
chart
model
and
add
the
plot
area,
label,
and
legend
to
the
model.
7.
 Add
the
chart
model
to
the
Chart
control.

Spread for ASP.NET Developer’s Guide 437

Copyright © GrapeCity, Inc. All rights reserved.

Example

The
following
example
creates
a
bar
type
chart
with
a
label
and
legend.

C#
FarPoint.Web.Chart.BarSeries series = new FarPoint.Web.Chart.BarSeries();
series.SeriesName = "Series 0";
series.Values.Add(2.0);
series.Values.Add(4.0);
series.Values.Add(3.0);
series.Values.Add(5.0);
FarPoint.Web.Chart.YPlotArea plotArea = new FarPoint.Web.Chart.YPlotArea();
plotArea.Location = new System.Drawing.PointF(0.2f, 0.2f);
plotArea.Size = new System.Drawing.SizeF(0.6f, 0.6f);
plotArea.Series.Add(series);
FarPoint.Web.Chart.LabelArea label = new FarPoint.Web.Chart.LabelArea();
label.Text = "Bar Chart";
label.Location = new System.Drawing.PointF(0.5f, 0.02f);
label.AlignmentX = 0.5f;
label.AlignmentY = 0.0f;
FarPoint.Web.Chart.LegendArea legend = new FarPoint.Web.Chart.LegendArea();
legend.Location = new System.Drawing.PointF(0.98f, 0.5f);
legend.AlignmentX = 1.0f;
legend.AlignmentY = 0.5f;
FarPoint.Web.Chart.ChartModel model = new FarPoint.Web.Chart.ChartModel();
model.LabelAreas.Add(label);
model.LegendAreas.Add(legend);
model.PlotAreas.Add(plotArea);
FpChart1.Model = model;

VB
Dim series As New FarPoint.Web.Chart.BarSeries()
series.SeriesName = "Series 0"
series.Values.Add(2.0)
series.Values.Add(4.0)
series.Values.Add(3.0)
series.Values.Add(5.0)
Dim plotArea As New FarPoint.Web.Chart.YPlotArea()
plotArea.Location = New System.Drawing.PointF(0.2f, 0.2f)
plotArea.Size = New System.Drawing.SizeF(0.6f, 0.6f)
plotArea.Series.Add(series)
Dim label As New FarPoint.Web.Chart.LabelArea()
label.Text = "Bar Chart"
label.Location = New System.Drawing.PointF(0.5f, 0.02f)
label.AlignmentX = 0.5f
label.AlignmentY = 0.0f
Dim legend As New FarPoint.Web.Chart.LegendArea()
legend.Location = New System.Drawing.PointF(0.98f, 0.5f)
legend.AlignmentX = 1.0f
legend.AlignmentY = 0.5f
Dim model As New FarPoint.Web.Chart.ChartModel()
model.LabelAreas.Add(label)
model.LegendAreas.Add(legend)
model.PlotAreas.Add(plotArea)
FpChart1.Model = model

Spread for ASP.NET Developer’s Guide 438

Copyright © GrapeCity, Inc. All rights reserved.

Rendering or Saving the Chart Control to an Image

You
can
specify
how
to
render
the
Chart
control
as
an
image.
The
Chart
control
has
two
built-in
image
render
classes:

FileImageRender
HttpHandlerImageRender

The
HttpHandlerImageRender
class
should
be
used
when
the
charts
are
easy
to
generate
or
when
there
will
be
requests
for
many
different
charts.
The
images
can
be
saved
to
the
server
using
a
session
or
cache.
You
can
specify
the
storage
type
with
the
ImageTransferStorage
('ImageTransferStorage
Property'
in
the
on-line
documentation)
property.

The
FileImageRender
class
renders
the
chart
image
to
the
client
using
temporary
files.
Since
repeated
requests
for
the
same
chart
use
the
same
file,
this
reduces
the
load
on
the
server.
New
requests
create
new
files
as
needed.
Files
are
not
cleaned
up
automatically.
This
class
should
be
used
when
charts
are
complex
and
expensive
to
generate
or
when
you
expect
a
large
number
of
requests
for
a
small
number
of
different
charts.
You
can
select
the
image
type
with
the
ChartImageType
('ChartImageType
Property'
in
the
on-line
documentation)
property.

Use
the
ImageRender
('ImageRender
Property'
in
the
on-line
documentation)
property
to
specify
which
image
render
class
to
use.

There
are
several
server
Chart
events
that
can
be
used
when
working
with
a
chart
image:

MapAreaClick
('MapAreaClick
Event'
in
the
on-line
documentation)
BeforeRenderMapAreas
('BeforeRenderMapAreas
Event'
in
the
on-line
documentation)

The
MapAreaClick
('MapAreaClick
Event'
in
the
on-line
documentation)
event
can
be
used
to
determine
which
chart
element
the
user
clicked
on.
Each
map
area
on
the
client
side
corresponds
to
a
chart
element
(plot
area,
legend,
series,
and
so
on).
The
BeforeRenderMapAreas
('BeforeRenderMapAreas
Event'
in
the
on-line
documentation)
event
can
be
used
to
customize
client
behavior
of
the
map
area.

The
RenderMapArea
('RenderMapArea
Property'
in
the
on-line
documentation)
property
should
be
set
to
true
to
use
the
MapAreaClick
('MapAreaClick
Event'
in
the
on-line
documentation)
event.
The
HitTest
('HitTest
Method'
in
the
on-line
documentation)
method
can
be
used
to
get
information
about
the
chart
element
that
is
clicked.

The
EnableClickEvent
('EnableClickEvent
Property'
in
the
on-line
documentation)
property
specifies
whether
the
Click
('Click
Event'
in
the
on-line
documentation)
event
fires.

The
MapAreaClick
('MapAreaClick
Event'
in
the
on-line
documentation)
event
fires
if
the
RenderMapArea
('RenderMapArea
Property'
in
the
on-line
documentation)
property
is
true
and
the
EnableClickEvent
('EnableClickEvent
Property'
in
the
on-line
documentation)
property
is
false.
If
the
RenderMapArea
('RenderMapArea
Property'
in
the
on-line
documentation)
property
is
false
and
the
EnableClickEvent
('EnableClickEvent
Property'
in
the
on-line
documentation)
property
is
true,
only
the
Click
('Click
Event'
in
the
on-line
documentation)
event
fires.
If
the
RenderMapArea
('RenderMapArea
Property'
in
the
on-line
documentation)
property
is
true
and
the
EnableClickEvent
('EnableClickEvent
Property'
in
the
on-line
documentation)
property
is
true,
the
MapAreaClick
('MapAreaClick
Event'
in
the
on-line
documentation)
event
fires
if
the
user
clicks
on
a
chart
element.
The
Click
('Click
Event'
in
the
on-line
documentation)
event
fires
if
the
user
clicks
on
the
chart
background.

The
HotSpotMode
('HotSpotMode
Property'
in
the
on-line
documentation)
property
is
used
if
RenderMapArea
('RenderMapArea
Property'
in
the
on-line
documentation)
is
true.
HotSpotMode
('HotSpotMode
Property'
in
the
on-line
documentation)
determines
the
behavior
when
the
user
clicks
in
a
map
area.
The
options
are
inactive,
navigate,
and
post
back.
The
inactive
option
is
useful
if
you
wish
to
display
a
tooltip
in
the
map
area.
If
the
HotSpotMode
('HotSpotMode
Property'
in
the
on-line
documentation)
is
set
to
post
back,
the
MapAreaClick
('MapAreaClick
Event'
in
the
on-line
documentation)
and
Client
events
are
fired.
If
the
RenderMapArea
('RenderMapArea
Property'
in
the
on-line
documentation)
property
is
false,
the
HotSpotMode
('HotSpotMode
Property'
in
the
on-line
documentation)
property
has
no
effect.

Spread for ASP.NET Developer’s Guide 439

Copyright © GrapeCity, Inc. All rights reserved.

Loading or Saving the Chart Control to XML

You
can
load
or
save
the
Chart
control
to
or
from
an
XML
file.
This
option
is
available
at
design
time
if
you
select
the
Chart
control
on
the
form
and
select
the
chart
verb.
Select
the
Save
to
XML
or
Load
from
XML
menu
option.
Use
the
LoadFromTemplate
('LoadFromTemplate
Method'
in
the
on-line
documentation)
or
SaveToTemplate
('SaveToTemplate
Method'
in
the
on-line
documentation)
methods
at
run
time.

Using
Code

Save
or
load
a
Chart
control
to
an
XML
file.

Example

The
following
example
saves
or
loads
a
Chart
control.

C#
string f;
f = "c:\\chart.xml";
System.IO.FileStream s = new System.IO.FileStream(f, IO.FileMode.OpenorCreate,
IO.FileAccess.ReadWrite);
FpChart1.SaveToTemplate(s);
//FpChart1.LoadFromTemplate(s);

VB
Dim f As String
f = "c:\chart.xml"
Dim s As New System.IO.FileStream(f, IO.FileMode.OpenOrCreate, IO.FileAccess.ReadWrite)
FpChart1.SaveToTemplate(s)
'FpChart1.LoadFromTemplate(s)

Using the Chart Control in Spread

You
can
scroll,
select,
resize,
or
move
the
chart.
You
can
also
create
borders
and
set
the
type
of
view
(2D
or
3D).
You
can
create
a
chart
with
code
using
Spread
classes
or
a
combination
of
Chart
and
Spread
classes.

See
the
following
topics
for
more
information:

Creating
the
Chart
Control
with
Code
Binding
the
Chart
Control
with
Spread
Moving
and
Resizing
the
Chart
Control
in
Spread
Selecting
the
Chart
Control
in
Spread
Setting
the
Chart
Control
Border
in
Spread
Setting
the
Chart
View
Type
Using
the
Chart
Context
Menu

Creating the Chart Control with Code

You
can
create
a
chart
with
Spread
methods
or
you
can
create
a
chart
by
using
Chart
classes
and
then
adding
the
chart
to
Spread.

There
is
a
Spread
AddChart
('AddChart
Method'
in
the
on-line
documentation)
method
and
a
SpreadChart
('SpreadChart
Constructor'
in
the
on-line
documentation)
constructor
that
can
be
used
to
create
a
Chart

Spread for ASP.NET Developer’s Guide 440

Copyright © GrapeCity, Inc. All rights reserved.

control.
The
AddChart
('AddChart
Method'
in
the
on-line
documentation)
method
and
the
SpreadChart
constructor
have
overloads
that
allow
you
to
specify
the
cell
range
to
get
the
data
from,
the
type
of
series,
height
and
width
of
the
chart,
location
of
the
chart,
the
view
type
of
the
chart,
and
whether
to
show
a
legend.

You
can
control
how
empty
cell
data
is
displayed
in
the
Chart
control
with
the
DataSetting
('DataSetting
Property'
in
the
on-line
documentation)
property.

For
more
information
on
using
Chart
classes,
see
the
Creating
Plot
Types
topic.

Using
Code

Add
values
to
cells
and
then
use
the
AddChart
('AddChart
Method'
in
the
on-line
documentation)
method
to
add
a
Chart
control
to
Spread.

Example

The
following
example
uses
the
AddChart
('AddChart
Method'
in
the
on-line
documentation)
method.

C#
FpSpread1.Sheets[0].RowCount = 10;
FpSpread1.Sheets[0].ColumnCount = 10;
FpSpread1.Sheets[0].Cells[0, 1].Value = "c1";
FpSpread1.Sheets[0].Cells[0, 2].Value = "c2";
FpSpread1.Sheets[0].Cells[0, 3].Value = "c3";
FpSpread1.Sheets[0].Cells[1, 0].Value = "s1";
FpSpread1.Sheets[0].Cells[2, 0].Value = "s2";
FpSpread1.Sheets[0].Cells[3, 0].Value = "s3";
FpSpread1.Sheets[0].Cells[4, 0].Value = "s4";
FpSpread1.Sheets[0].Cells[1, 1].Value = 1;
FpSpread1.Sheets[0].Cells[2, 1].Value = 2;
FpSpread1.Sheets[0].Cells[3, 1].Value = 3;
FpSpread1.Sheets[0].Cells[4, 1].Value = 4;
FpSpread1.Sheets[0].Cells[1, 2].Value = 7;
FpSpread1.Sheets[0].Cells[2, 2].Value = 8;
FpSpread1.Sheets[0].Cells[3, 2].Value = 9;
FpSpread1.Sheets[0].Cells[4, 2].Value = 10;
FpSpread1.Sheets[0].Cells[1, 3].Value = 13;
FpSpread1.Sheets[0].Cells[2, 3].Value = 14;
FpSpread1.Sheets[0].Cells[3, 3].Value = 15;
FpSpread1.Sheets[0].Cells[4, 3].Value = 16;
FarPoint.Web.Spread.Model.CellRange range = new FarPoint.Web.Spread.Model.CellRange(0,
0, 4, 4);
FpSpread1.Sheets[0].AddChart(range, typeof(FarPoint.Web.Chart.ClusteredBarSeries), 200,
200, 0, 0, FarPoint.Web.Chart.ChartViewType.View3D, false);

VB
FpSpread1.Sheets(0).RowCount = 10
FpSpread1.Sheets(0).ColumnCount = 10
FpSpread1.Sheets(0).Cells(1, 0).Value = "s1"
FpSpread1.Sheets(0).Cells(2, 0).Value = "s2"
FpSpread1.Sheets(0).Cells(3, 0).Value = "s3"
FpSpread1.Sheets(0).Cells(4, 0).Value = "s4"
FpSpread1.Sheets(0).Cells(0, 1).Value = "c1"
FpSpread1.Sheets(0).Cells(1, 1).Value = 1
FpSpread1.Sheets(0).Cells(2, 1).Value = 2
FpSpread1.Sheets(0).Cells(3, 1).Value = 3
FpSpread1.Sheets(0).Cells(4, 1).Value = 4

Spread for ASP.NET Developer’s Guide 441

Copyright © GrapeCity, Inc. All rights reserved.

FpSpread1.Sheets(0).Cells(0, 2).Value = "c2"
FpSpread1.Sheets(0).Cells(1, 2).Value = 7
FpSpread1.Sheets(0).Cells(2, 2).Value = 8
FpSpread1.Sheets(0).Cells(3, 2).Value = 9
FpSpread1.Sheets(0).Cells(4, 2).Value = 10
FpSpread1.Sheets(0).Cells(0, 3).Value = "c3"
FpSpread1.Sheets(0).Cells(1, 3).Value = 13
FpSpread1.Sheets(0).Cells(2, 3).Value = 14
FpSpread1.Sheets(0).Cells(3, 3).Value = 15
FpSpread1.Sheets(0).Cells(4, 3).Value = 16
Dim range As New FarPoint.Web.Spread.Model.CellRange(0, 0, 4, 4)
FpSpread1.Sheets(0).AddChart(range, GetType(FarPoint.Web.Chart.ClusteredBarSeries),
200, 200, 0, 0, FarPoint.Web.Chart.ChartViewType.View3D, False)

Using
Code

You
can
also
use
chart
classes
to
create
a
chart
and
then
add
the
chart
to
the
Spread
control.

Example

The
following
example
demonstrates
creating
a
Y
Plot
chart
and
adding
unbound
data
to
the
control.

C#
BarSeries series = new BarSeries();
series.SeriesName = "Series 0";
series.Values.Add(2.0);
series.Values.Add(4.0);
series.Values.Add(3.0);
series.Values.Add(5.0);
YPlotArea plotArea = new YPlotArea();
plotArea.Location = new PointF(0.2f, 0.2f);
plotArea.Size = new SizeF(0.6f, 0.6f);
plotArea.Series.Add(series);
LabelArea label = new LabelArea();
label.Text = "Bar Chart";
label.Location = new PointF(0.5f, 0.02f);
label.AlignmentX = 0.5f;
label.AlignmentY = 0.0f;
LegendArea legend = new LegendArea();
legend.Location = new PointF(0.98f, 0.5f);
legend.AlignmentX = 1.0f;
legend.AlignmentY = 0.5f;
ChartModel model = new ChartModel();
model.LabelAreas.Add(label);
model.LegendAreas.Add(legend);
model.PlotAreas.Add(plotArea);
FarPoint.Web.Spread.Chart.SpreadChart chart = new
FarPoint.Web.Spread.Chart.SpreadChart();
chart.Model = model;
FpSpread1.Sheets[0].Charts.Add(chart);

VB
Dim series As New FarPoint.Web.Chart.BarSeries()
series.SeriesName = "Series 0"
series.Values.Add(2.0)

Spread for ASP.NET Developer’s Guide 442

Copyright © GrapeCity, Inc. All rights reserved.

series.Values.Add(4.0)
series.Values.Add(3.0)
series.Values.Add(5.0)
Dim plotArea As New FarPoint.Web.Chart.YPlotArea()
plotArea.Location = New PointF(0.2F, 0.2F)
plotArea.Size = New SizeF(0.6F, 0.6F)
plotArea.Series.Add(series)
Dim label As New FarPoint.Web.Chart.LabelArea()
label.Text = "Bar Chart"
label.Location = New PointF(0.5F, 0.02F)
label.AlignmentX = 0.5F
label.AlignmentY = 0.0F
Dim legend As New FarPoint.Web.Chart.LegendArea()
legend.Location = New PointF(0.98F, 0.5F)
legend.AlignmentX = 1.0F
legend.AlignmentY = 0.5F
Dim model As New FarPoint.Web.Chart.ChartModel()
model.LabelAreas.Add(label)
model.LegendAreas.Add(legend)
model.PlotAreas.Add(plotArea)
Dim chart As New FarPoint.Web.Spread.Chart.SpreadChart()
chart.Model = model
FpSpread1.Sheets(0).Charts.Add(chart)

Binding the Chart Control with Spread

You
can
bind
the
Chart
control
to
data
in
the
Spread
control
with
the
formula
parameters
in
the
SpreadChart
('SpreadChart
Constructor'
in
the
on-line
documentation)
constructor.
The
constructor
uses
formula
syntax
to
specify
the
cell
range.

You
can
also
bind
the
Chart
control
in
Spread
with
the
CategoryFormula
('CategoryFormula
Property'
in
the
on-line
documentation),
DataFormula
('DataFormula
Property'
in
the
on-line
documentation),
Formula
('Formula
Property'
in
the
on-line
documentation),
or
SeriesNameFormula
('SeriesNameFormula
Property'
in
the
on-line
documentation)
properties.

Using
Code

Add
values
to
the
cells
and
then
use
the
formula
parameters
in
the
SpreadChart
('SpreadChart
Constructor'
in
the
on-line
documentation)
constructor
to
create
the
Chart
control.

Example

The
following
example
uses
the
SpreadChart
('SpreadChart
Constructor'
in
the
on-line
documentation)
constructor
to
create
a
Chart
control.

C#
FpSpread1.Sheets[0].RowCount = 10;
FpSpread1.Sheets[0].ColumnCount = 10;
FpSpread1.Sheets[0].Cells[0, 0].Value = 3;
FpSpread1.Sheets[0].Cells[1, 1].Value = 7;
FpSpread1.Sheets[0].Cells[2, 2].Value = 7;
FpSpread1.Sheets[0].Cells[3, 3].Value = 5;
FarPoint.Web.Spread.Chart.SpreadChart chart = new
FarPoint.Web.Spread.Chart.SpreadChart("Sheet1!A2:A7", "Sheet1!B1:D1",
"Sheet1!B2:D7", typeof(FarPoint.Web.Chart.BarSeries));

Spread for ASP.NET Developer’s Guide 443

Copyright © GrapeCity, Inc. All rights reserved.

FpSpread1.Sheets[0].Charts.Add(chart);

VB
FpSpread1.Sheets(0).RowCount = 10
FpSpread1.Sheets(0).ColumnCount = 10
FpSpread1.Sheets(0).Cells(0, 0).Value = 3
FpSpread1.Sheets(0).Cells(1, 1).Value = 7
FpSpread1.Sheets(0).Cells(2, 2).Value = 7
FpSpread1.Sheets(0).Cells(3, 3).Value = 5
Dim chart As New FarPoint.Web.Spread.Chart.SpreadChart("Sheet1!A2:A7",
"Sheet1!B1:D1", "Sheet1!B2:D7", GetType(FarPoint.Web.Chart.BarSeries))
FpSpread1.Sheets(0).Charts.Add(chart)

Moving and Resizing the Chart Control in Spread

You
can
move
and
resize
the
Chart
control
at
design
time
in
the
Spread
Designer
or
at
run
time.

At
design
time
or
run
time
you
can
move
the
chart
by
clicking
on
it
and
then
dragging
the
chart
on
the
Spread
control
with
the
mouse
or
you
can
click
on
the
chart
and
use
the
keyboard
direction
keys.
You
can
resize
the
chart
by
selecting
it,
moving
the
mouse
pointer
over
one
of
the
indicators
and
waiting
until
the
mouse
pointer
changes
to
a
left-right
icon
or
an
up-down
icon,
and
then
dragging.
The
following
image
shows
the
red
outline
and
indicator
symbols.

At
run
time
you
can
allow
the
user
to
move
or
resize
the
Chart
control
by
setting
the
CanSize
('CanSize
Property'
in
the
on-line
documentation)
and
CanMove
('CanMove
Property'
in
the
on-line
documentation)
properties.
The
CanSelect
('CanSelect
Property'
in
the
on-line
documentation)
property
must
be
true
to
allow
moving
and
resizing.

Using
Code

Set
the
CanSize
('CanSize
Property'
in
the
on-line
documentation)
and
CanMove
('CanMove
Property'
in
the
on-line
documentation)
properties
in
the
SpreadChart
('SpreadChart
Class'
in
the
on-line
documentation)
class.

Spread for ASP.NET Developer’s Guide 444

Copyright © GrapeCity, Inc. All rights reserved.

Example

The
following
example
sets
the
CanSize
('CanSize
Property'
in
the
on-line
documentation)
and
CanMove
('CanMove
Property'
in
the
on-line
documentation)
properties.

C#
FarPoint.Web.Spread.Chart.SpreadChart chart = new
FarPoint.Web.Spread.Chart.SpreadChart;
chart.Model = model;
chart.CanSize = true;
chart.CanMove = false;
fpSpread1.Sheets[0].Charts.Add(chart);

VB
Dim chart As New FarPoint.Web.Spread.Chart.SpreadChart()
chart.Model = model
chart.CanSize = True
chart.CanMove = False
FpSpread1.Sheets(0).Charts.Add(chart)

Using
the
Spread
Designer

1.
 Select
the
Chart
Tools
menu.
2.
 Check
the
AllowResize
or
AllowMove
option
(or
both).
3.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Selecting the Chart Control in Spread

You
can
select
the
Chart
control
at
design
time
in
the
Spread
Designer
or
at
run
time.

At
design
time
or
run
time
you
can
select
the
chart
by
clicking
on
it
with
the
mouse.

At
run
time
the
user
cannot
move
or
resize
the
chart
if
the
CanSelect
('CanSelect
Property'
in
the
on-line
documentation)
property
has
been
set
to
false.
The
ActiveChart
('ActiveChart
Property'
in
the
on-line
documentation)
property
can
be
used
to
programmatically
select
a
chart.

You
can
specify
the
order
in
which
the
charts
are
displayed
with
the
ZIndex
('ZIndex
Property'
in
the
on-line
documentation)
property.

The
default
selected
border
is
a
red,
solid
border
with
a
width
of
one
pixel.
You
can
change
this
by
setting
the
SelectedCssClass
('SelectedCssClass
Property'
in
the
on-line
documentation)
property.

Using
Code

Set
the
CanSelect
('CanSelect
Property'
in
the
on-line
documentation)
property
in
the
SpeadChart
('SpreadChart
Class'
in
the
on-line
documentation)
class.

Example

The
following
example
sets
the
CanSelect
('CanSelect
Property'
in
the
on-line
documentation)
property.

C#
FarPoint.Web.Spread.Chart.SpreadChart chart = new
FarPoint.Web.Spread.Chart.SpreadChart;
chart.Model = model;

Spread for ASP.NET Developer’s Guide 445

Copyright © GrapeCity, Inc. All rights reserved.

chart.CanSelect = true;
fpSpread1.Sheets[0].Charts.Add(chart);

VB
Dim chart As New FarPoint.Web.Spread.Chart.SpreadChart()
chart.Model = model
chart.CanSelect = True
FpSpread1.Sheets(0).Charts.Add(chart)

Setting the Chart Control Border in Spread

You
can
specify
the
color,
type,
and
size
of
the
border
that
goes
around
the
edge
of
the
Chart
control.

Using
Code

1.
 To
set
the
border
color,
set
BorderColor
('BorderColor
Property'
in
the
on-line
documentation)
in
the
SpeadChart
('SpreadChart
Class'
in
the
on-line
documentation)
class.

2.
 To
set
the
border
style,
set
BorderStyle
('BorderStyle
Property'
in
the
on-line
documentation)
in
the
SpeadChart
('SpreadChart
Class'
in
the
on-line
documentation)
class.

3.
 To
set
the
border
width,
set
BorderWidth
('BorderWidth
Property'
in
the
on-line
documentation)
in
the
SpeadChart
('SpreadChart
Class'
in
the
on-line
documentation)
class.

Example

The
following
example
creates
an
orange
border
around
the
Chart
control.

C#
FarPoint.Web.Spread.Chart.SpreadChart chart = new
FarPoint.Web.Spread.Chart.SpreadChart;
chart.BorderColor = Drawing.Color.DarkOrange;

Spread for ASP.NET Developer’s Guide 446

Copyright © GrapeCity, Inc. All rights reserved.

chart.BorderStyle = BorderStyle.Solid;
chart.BorderWidth = 3;
fpSpread1.Sheets[0].Charts.Add(chart);

VB
Dim chart As New FarPoint.Web.Spread.Chart.SpreadChart()
chart.BorderColor = Drawing.Color.DarkOrange
chart.BorderStyle = BorderStyle.Solid
chart.chart.BorderWidth = 3
FpSpread1.Sheets(0).Charts.Add(chart)

Setting the Chart View Type

You
can
specify
a
2D
or
3D
view
of
the
Chart
control.
You
can
set
this
with
the
ChartViewType
parameter
in
the
SpreadChart
('SpreadChart
Constructor'
in
the
on-line
documentation)
constructor
when
creating
a
chart.
The
following
image
shows
a
2D
chart.

The
following
image
shows
a
3D
chart.

Using
Code

Set
the
ViewType
('ViewType
Property'
in
the
on-line
documentation)
property.

Example

The
following
example
sets
the
ViewType
('ViewType
Property'
in
the
on-line
documentation)
property.

Spread for ASP.NET Developer’s Guide 447

Copyright © GrapeCity, Inc. All rights reserved.

C#
FarPoint.Web.Spread.Chart.SpreadChart chart = new
FarPoint.Web.Spread.Chart.SpreadChart;
chart.ViewType = FarPoint.Web.Chart.ChartViewType.View2D;
fpSpread1.Sheets[0].Charts.Add(chart);

VB
Dim chart As New FarPoint.Web.Spread.Chart.SpreadChart()
chart.ViewType = FarPoint.Web.Chart.ChartViewType.View2D
FpSpread1.Sheets(0).Charts.Add(chart)

Context
Menu

You
can
set
the
view
type
to
2D
or
3D
by
using
the
chart
context
menu.

1.
 Right-click
the
Chart
control
on
the
form
at
design
time.
2.
 Select
ViewType
in
the
context
menu
and
set
the
type.

Using
the
Spread
Designer

You
can
set
the
view
type
to
2D
or
3D
using
the
properties
window
in
the
designer.

1.
 Select
the
Chart
control
in
the
designer.
2.
 The
ViewType
setting
is
under
the
Behavior
category
in
the
Properties
window
on
the
right
side
of
the

designer
(selected
item
section).
3.
 Click
Apply
and
Exit
to
close
the
Spread
Designer.

Using the Chart Context Menu

Select
and
right-click
on
the
Chart
control
at
design
time
to
bring
up
the
chart
context
menu.
This
menu
gives
you
the
standard
cut,
copy,
paste,
and
delete
options
as
well
as
options
to
change
the
chart.

Spread for ASP.NET Developer’s Guide 448

Copyright © GrapeCity, Inc. All rights reserved.

The
cut,
copy,
and
paste
options
allow
you
to
cut,
copy,
and
paste
the
Chart
control.
Delete
allows
you
to
delete
the
Chart
control.

The
Change
Chart
Type
option
allows
you
to
change
the
chart
type
(bar
to
pie,
for
example).
The
Switch
Row/Column
option
swaps
the
category
and
series
names
and
swaps
the
rows
and
columns
of
data.

The
Move
Chart
option
brings
up
a
Move
Chart
dialog
that
allows
you
to
move
the
chart
to
another
sheet
view
or
a
new
sheet.
The
Move
Chart
dialog
appears
as
follows:

The
Chart
Designer
option
allows
you
to
bring
up
the
Chart
Designer.

The
View
option
allows
you
to
change
the
view
to
2D
or
3D.

Spread for ASP.NET Developer’s Guide 449

Copyright © GrapeCity, Inc. All rights reserved.

Using Touch Support with the Component

Spread
supports
touch
gestures
in
many
areas
of
the
control.
You
can
use
touch
gestures
with
filtering,
grouping,
sorting,
and
with
many
other
types
of
interactions
in
Spread.
A
touch
screen
is
required
(either
a
touch
monitor
or
a
smartbook-type
laptop
with
a
touch
screen).
Touch
is
also
supported
with
Apple
Safari
on
the
iPad.

The
following
topics
provide
information
about
touch
support
and
the
areas
where
touch
support
is
available:

Understanding
Touch
Support

Using
Touch
Support

Understanding Touch Support

Touch
support
requires
that
the
control
support
basic
touch
gestures.

The
following
topics
provide
additional
information:

Understanding
Touch
Gestures

Understanding Touch Gestures

There
are
several
types
of
touch
gestures
such
as
basic
or
common
and
pinch
or
stretch.

Basic
touch
gestures
include
the
following:

Gesture Description

Tap One
finger
touches
the
screen
and
lifts
up.

Press
and
hold One
finger
touches
the
screen
and
stays
in
place.

Slide One
or
more
fingers
touch
the
screen
and
move
in
the
same
direction.

Swipe One
or
more
fingers
touch
the
screen
and
move
a
short
distance
in
the
same
direction.

Pinch Two
or
more
fingers
touch
the
screen
and
move
farther
apart
or
closer
together.

Rotate Two
or
more
fingers
touch
the
screen
and
move
in
a
clockwise
or
counter-clockwise
arc.

Switch Two
or
more
fingers
touch
the
screen
and
move
farther
apart.

FpSpread
uses
standard
pinch
and
stretch
gestures
when
zooming.
For
more
information,
see
http://msdn.microsoft.com/en-us/library/windows/apps/hh465415.aspx.

Using Touch Support

You
can
use
touch
support
in
many
areas
and
in
many
types
of
interactions
with
the
Spread
control.

The
following
topics
explain
where
touch
support
is
available:

Using
the
Touch
Menu
Bar
Using
Touch
Support
with
AutoFit
Using
Touch
Support
with
Charts
Using
Touch
Support
with
Editable
Cells
Using
Touch
Support
with
Filtering
Using
Touch
Support
with
Grouping

Using
Touch
Support
when
Moving
Columns
Using
Touch
Support
when
Moving
Rows
(on-line
documentation)

Spread for ASP.NET Developer’s Guide 450

Copyright © GrapeCity, Inc. All rights reserved.

http://msdn.microsoft.com/en-us/library/windows/apps/hh465415.aspx

Using
Touch
Support
when
Resizing
Columns
or
Rows
Using
Touch
Support
with
Scrolling
Using
Touch
Support
with
Selections
Using
Touch
Support
with
Sorting

Using the Touch Menu Bar

You
can
use
the
default
touch
menu
bar
or
touch
strip
to
cut,
copy,
and
paste
cells.
You
can
also
customize
the
touch
strip
to
provide
additional
options.

Tap
a
selected
range
to
display
the
touch
menu
bar
strip.
The
following
image
displays
a
default
touch
menu.

The
touch
menu
bar
provides
additional
options
when
selecting
a
column
or
row
(insert,
delete,
hide,
or
unhide).

You
can
add
custom
menu
items
to
the
touch
strip.

You
can
prevent
the
touch
strip
from
being
displayed
on
the
server
side
by
setting
the
TouchStrips
('TouchStrips
Property'
in
the
on-line
documentation)
property
to
None.

There
are
several
client-side
events
and
classes
that
can
be
used
with
the
touch
strip:
TouchStripOpening
(on-line
documentation),
TouchStripOpened
(on-line
documentation),
TouchStripClosed
(on-line
documentation),
MenuItem
(on-line
documentation),
TouchStrip
(on-line
documentation),
and
TouchStripItem
(on-line
documentation).

Using
Code

1.
 Create
a
touch
strip.

2.
 Create
touch
strip
items.

3.
 Add
the
menu
items
to
the
touch
strip.

4.
 Specify
when
to
display
the
touch
strip.

Example

This
example
adds
custom
items
to
the
touch
strip.

C#
FarPoint.Web.Spread.TouchStrip touchStrip = new FarPoint.Web.Spread.TouchStrip();
FarPoint.Web.Spread.TouchStripItem parent = new
FarPoint.Web.Spread.TouchStripItem("Other....");
parent.ChildItems.Add(new FarPoint.Web.Spread.MenuItem("Child item"));
touchStrip.Items.Add(parent);
FpSpread1.TouchStrips[FarPoint.Web.Spread.TouchStripShowingArea.Cell] = touchStrip;

VB

Spread for ASP.NET Developer’s Guide 451

Copyright © GrapeCity, Inc. All rights reserved.

Dim touchStrip As New FarPoint.Web.Spread.TouchStrip()
Dim parent As New FarPoint.Web.Spread.TouchStripItem("Other....")
parent.ChildItems.Add(New FarPoint.Web.Spread.MenuItem("Child item"))
touchStrip.Items.Add(parent)
FpSpread1.TouchStrips(FarPoint.Web.Spread.TouchStripShowingArea.Cell) = touchStrip

Using Touch Support with AutoFit

You
can
use
touch
support
gestures
with
automatic
fit.

Tap
to
select
a
column
(resize
handle
becomes
visible).
Double-tap
to
resize
the
column
automatically.
The
Resizable
('Resizable
Property'
in
the
on-line
documentation)
property
must
be
true
for
the
column.

The
following
image
displays
the
resized
column.

Using Touch Support with Charts

You
can
use
touch
gestures
with
the
Chart
control.

The
Chart
control
uses
the
following
touch
gestures:

Touch
Gesture

Mouse
Action Action

Tap Click Selects
a
chart
if
CanSelect
('CanSelect
Property'
in
the
on-line
documentation)
is
true.

Hold
and
Release

Right-click Selects
a
chart
and
displays
the
touch
strip
if
CanSelect
('CanSelect
Property'
in
the
on-line
documentation)
is
set
to
true.

Press
resize
handles,
then
slide

Press
left
button
on
edge
then
move

Resizes
a
chart
if
CanSize
('CanSize
Property'
in
the
on-line
documentation)
is
set
to
true.

Press
chart
then
slide

Press
left
button
on
chart
then
move

Moves
a
chart
if
CanMove
('CanMove
Property'
in
the
on-line
documentation)
is
set
to
true.

Using Touch Support with Editable Cells

You
can
use
touch
gestures
to
edit
cells
that
allow
editing.

Double-tap
a
cell
to
go
into
edit
mode.
Tap
a
cell
to
go
into
edit
mode
if
the
EditModePermanent
('EditModePermanent
Property'
in
the
on-line
documentation)
property
is
true.
Typing
a
character
in
the
cell

Spread for ASP.NET Developer’s Guide 452

Copyright © GrapeCity, Inc. All rights reserved.

also
starts
edit
mode.

Common
touch
gestures
and
the
mouse
action
equivalent
are
listed
in
the
following
table.

Touch
Gesture Mouse
Action

Tap Click

Double-tap Double-click

Press
and
slide Press
left
mouse
button
and
move

Combo
box,
list
box,
text,
double,
currency,
and
date
time
cells
use
the
standard
.NET
control
and
the
standard
control's
touch
policy.
When
the
standard
.NET
control
text
box
has
focus
and
is
in
edit
mode,
a
text
selection
gripper
is
displayed.
This
is
supported
by
the
browser.

Tap
an
item
in
the
list
box
cell
to
select
the
item.

The
multiple-column
combo
box
cell
uses
a
larger
row
height
in
the
drop-down
list
when
using
touch
support.

Using Touch Support with Filtering

You
can
use
touch
gestures
when
filtering.

If
the
user
selects
a
column
that
contains
sorting
and
filtering
indicators,
the
resize
gripper
is
displayed.
The
gripper
has
a
higher
priority
than
the
filter
list
or
sort
operation.
Set
the
HeaderIndicatorPositionAdjusting
('HeaderIndicatorPositionAdjusting
Property'
in
the
on-line
documentation)
property
to
specify
the
distance
between
the
sorting
and
filtering
indicators
and
the
right
edge
of
the
column
so
that
the
user
can
sort
or
filter
the
column
while
the
gripper
is
displayed.

Using
Code

Set
the
HeaderIndicatorPositionAdjusting
('HeaderIndicatorPositionAdjusting
Property'
in
the
on-line
documentation)
property.

Example

This
example
creates
a
filter
and
sets
the
HeaderIndicatorPositionAdjusting
('HeaderIndicatorPositionAdjusting
Property'
in
the
on-line
documentation)
property.

Spread for ASP.NET Developer’s Guide 453

Copyright © GrapeCity, Inc. All rights reserved.

C#
FpSpread1.Sheets[0].Columns.Count = 10;
FpSpread1.Sheets[0].Rows.Count = 20;
FpSpread1.Sheets[0].AutoFilterMode = FarPoint.Web.Spread.AutoFilterMode.Enhanced;
FarPoint.Web.Spread.NamedStyle instyle = new FarPoint.Web.Spread.NamedStyle();
FarPoint.Web.Spread.NamedStyle outstyle = new FarPoint.Web.Spread.NamedStyle();
instyle.BackColor = System.Drawing.Color.Yellow;
outstyle.BackColor = System.Drawing.Color.Aquamarine;
FarPoint.Web.Spread.FilterColumnDefinition fcd = new
FarPoint.Web.Spread.FilterColumnDefinition(1,
FarPoint.Web.Spread.FilterListBehavior.SortByMostOccurrences |
FarPoint.Web.Spread.FilterListBehavior.Default);
FarPoint.Web.Spread.FilterColumnDefinition fcd1 = new
FarPoint.Web.Spread.FilterColumnDefinition(2);
FarPoint.Web.Spread.FilterColumnDefinition fcd2 = new
FarPoint.Web.Spread.FilterColumnDefinition();
FarPoint.Web.Spread.StyleRowFilter sf = new
FarPoint.Web.Spread.StyleRowFilter(FpSpread1.Sheets[0], instyle, outstyle);
sf.AddColumn(fcd);
sf.AddColumn(fcd1);
sf.AddColumn(fcd2);
FpSpread1.Sheets[0].RowFilter = sf;
FpSpread1.HeaderIndicatorPositionAdjusting = 10;

VB
FpSpread1.Sheets(0).Columns.Count = 10
FpSpread1.Sheets(0).Rows.Count = 20
FpSpread1.Sheets(0).AutoFilterMode = FarPoint.Web.Spread.AutoFilterMode.Enhanced
Dim instyle As New FarPoint.Web.Spread.NamedStyle()
Dim outstyle As New FarPoint.Web.Spread.NamedStyle()
instyle.BackColor = Drawing.Color.Yellow
outstyle.BackColor = Drawing.Color.Aquamarine
Dim fcd As New FarPoint.Web.Spread.FilterColumnDefinition(1,
FarPoint.Web.Spread.FilterListBehavior.SortByMostOccurrences Or
FarPoint.Web.Spread.FilterListBehavior.Default)
Dim fcd1 As New FarPoint.Web.Spread.FilterColumnDefinition(2)
Dim fcd2 As New FarPoint.Web.Spread.FilterColumnDefinition()
Dim sf As New FarPoint.Web.Spread.StyleRowFilter(FpSpread1.Sheets(0), instyle,
outstyle)
sf.AddColumn(fcd)
sf.AddColumn(fcd1)
sf.AddColumn(fcd2)
FpSpread1.Sheets(0).RowFilter = sf
FpSpread1.HeaderIndicatorPositionAdjusting = 10

Using Touch Support with Grouping

You
can
use
touch
gestures
when
grouping.

Tap
to
select
a
column,
then
press
down
on
a
column
header
and
slide
to
the
group
bar
area.
Release
to
create
a
group.
You
can
also
double-tap
on
a
column
header
to
create
a
group.
The
following
image
displays
a
group.

Spread for ASP.NET Developer’s Guide 454

Copyright © GrapeCity, Inc. All rights reserved.

You
can
remove
the
group
by
dragging
the
group
back
to
the
column
header
area.

Tap
the
group
header
button
area
to
sort.

Using
Code

Set
the
AllowGroup
('AllowGroup
Property'
in
the
on-line
documentation),
GroupBarVisible
('GroupBarVisible
Property'
in
the
on-line
documentation),
and
AllowColumnMove
('AllowColumnMove
Property'
in
the
on-line
documentation)
properties.

Example

This
example
allows
the
user
to
group.

C#
FpSpread1.ActiveSheetView.ColumnHeader.Cells[0, 0].Text = "Last Name";
FpSpread1.ActiveSheetView.ColumnHeader.Cells[0, 1].Text = "First Name";
FpSpread1.ActiveSheetView.Cells[0, 0].Text = "Smith";
FpSpread1.ActiveSheetView.Cells[0, 1].Text = "J";
FpSpread1.ActiveSheetView.Cells[1, 0].Text = "Smith";
FpSpread1.ActiveSheetView.Cells[1, 1].Text = "L";
FpSpread1.ActiveSheetView.AllowColumnMove = true;
FpSpread1.ActiveSheetView.GroupBarVisible = true;
FpSpread1.ActiveSheetView.AllowGroup = true;

VB

Spread for ASP.NET Developer’s Guide 455

Copyright © GrapeCity, Inc. All rights reserved.

FpSpread1.ActiveSheetView.ColumnHeader.Cells(0, 0).Text = "Last Name"
FpSpread1.ActiveSheetView.ColumnHeader.Cells(0, 1).Text = "First Name"
FpSpread1.ActiveSheetView.Cells(0, 0).Text = "Smith"
FpSpread1.ActiveSheetView.Cells(0, 1).Text = "J"
FpSpread1.ActiveSheetView.Cells(1, 0).Text = "Smith"
FpSpread1.ActiveSheetView.Cells(1, 1).Text = "L"
FpSpread1.ActiveSheetView.AllowColumnMove = True
FpSpread1.ActiveSheetView.GroupBarVisible = True
FpSpread1.ActiveSheetView.AllowGroup = True

Using Touch Support when Moving Columns

You
can
use
touch
gestures
to
move
columns.

Tap
the
column
header
to
select
it,
then
slide
to
the
target
location.
Release
to
move
the
column.

The
following
image
displays
the
column
after
the
move
action
has
been
completed.

Select
a
column
header
range
and
then
press
and
slide
to
move
the
range.
Release
to
complete
the
action.

Spread for ASP.NET Developer’s Guide 456

Copyright © GrapeCity, Inc. All rights reserved.

The
AllowColumnMove
('AllowColumnMove
Property'
in
the
on-line
documentation)
property
must
be
true
to
move
columns.

Refer
to
Using
Touch
Support
with
Selections
for
more
information
on
how
to
select
a
column
or
row.

Using
Code

Set
the
AllowColumnMove
('AllowColumnMove
Property'
in
the
on-line
documentation)
property.

Example

This
example
code
sets
the
AllowColumnMove
('AllowColumnMove
Property'
in
the
on-line
documentation)
property.

C#
FpSpread1.ActiveSheetView.AllowColumnMove = true;

VB
FpSpread1.ActiveSheetView.AllowColumnMove = True

Using Touch Support when Resizing Columns or Rows

You
can
resize
columns
or
rows
using
touch
gestures.

Select
a
column
or
row
(tap
to
select),
press
the
column
or
row
resize
handle
and
slide
to
change
the
width
or
height,
and
then
release.

Spread for ASP.NET Developer’s Guide 457

Copyright © GrapeCity, Inc. All rights reserved.

Spread
displays
the
column
and
row
resize
handles
if
the
AllowHeaderResize
('AllowHeaderResize
Property'
in
the
on-line
documentation)
property
is
true.
The
following
image
displays
both
handles.

Row
resizing
is
disabled
if
the
RowTemplateLayoutMode
is
used.

Using
Code

Set
the
AllowHeaderResize
('AllowHeaderResize
Property'
in
the
on-line
documentation)
and
Resizable
('Resizable
Property'
in
the
on-line
documentation)
properties.

Example

This
example
allows
the
user
to
resize
headers,
columns,
and
rows.

C#
FpSpread1.Sheets[0].Columns.Count = 10;
FpSpread1.Sheets[0].Rows.Count = 20;
FpSpread1.AllowHeaderResize = true;
FpSpread1.ActiveSheetView.Columns[0, 5].Resizable = true;
FpSpread1.ActiveSheetView.Rows[0, 10].Resizable = true;

VB
FpSpread1.Sheets(0).Columns.Count = 10

Spread for ASP.NET Developer’s Guide 458

Copyright © GrapeCity, Inc. All rights reserved.

FpSpread1.Sheets(0).Rows.Count = 20
FpSpread1.AllowHeaderResize = True
FpSpread1.ActiveSheetView.Columns(0, 5).Resizable = True
FpSpread1.ActiveSheetView.Rows(0, 10).Resizable = True

Using Touch Support with Scrolling

You
can
use
touch
gestures
when
scrolling
in
the
control.

You
can
tap
the
scroll
bar
or
press
and
slide
the
scroll
bar
to
scroll.
You
can
also
use
panning
gestures
in
the
cell
area
of
the
control
(vertical,
horizontal,
or
oblique).
Panning
in
the
diagonal
direction
scrolls
horizontally
and
vertically.
Specify
the
type
of
panning
mode
with
the
PanningMode
('PanningMode
Property'
in
the
on-line
documentation)
property
and
SpreadPanningMode
('SpreadPanningMode
Enumeration'
in
the
on-line
documentation)
enumeration.

Spread for ASP.NET Developer’s Guide 459

Copyright © GrapeCity, Inc. All rights reserved.

Panning
does
not
apply
to
header
or
footer
areas.

Using
Code

Set
the
PanningMode
('PanningMode
Property'
in
the
on-line
documentation)
property.

Example

This
example
sets
the
PanningMode
('PanningMode
Property'
in
the
on-line
documentation)
property
to
Both.

C#
FpSpread1.Sheets[0].Columns.Count = 10;
FpSpread1.Sheets[0].Rows.Count = 20;
FpSpread1.TouchInfo.PanningMode = FarPoint.Web.Spread.SpreadPanningMode.Both;

VB
FpSpread1.Sheets(0).Columns.Count = 10
FpSpread1.Sheets(0).Rows.Count = 20
FpSpread1.TouchInfo.PanningMode = FarPoint.Web.Spread.SpreadPanningMode.Both

Spread for ASP.NET Developer’s Guide 460

Copyright © GrapeCity, Inc. All rights reserved.

Using Touch Support with Selections

You
can
select
columns,
rows,
cell
ranges,
and
the
entire
control
using
touch
gestures.

The
selection
gripper
is
displayed
when
touching
the
cell,
column,
or
row.
The
gripper
is
not
displayed
when
using
the
mouse
or
keyboard.
The
selection
grippers
are
displayed
on
the
outside
edge
of
the
range
(top-left
and
bottom-right
edges,
by
default).
The
border
is
displayed
around
the
selected
cell
range
when
using
touch
operations.

Tap
a
cell
to
select
the
cell
and
display
the
selection
gripper.
Press
the
cell
selection
gripper
and
slide.
Release
to
select
a
cell
range.

Tap
a
column
header
(or
row
header)
to
select
a
column
(or
row).
You
can
then
press
the
selection
gripper
and
slide
to
select
a
column
range
(or
row
range).
Release
to
complete
the
selection.

You
can
select
the
entire
control
by
tapping
the
corner
header.

Spread for ASP.NET Developer’s Guide 461

Copyright © GrapeCity, Inc. All rights reserved.

You
can
change
the
size
of
the
cell
range
selection
by
pressing
the
selection
gripper
and
sliding
in
any
direction.
Release
to
complete
the
action.

You
can
customize
the
gripper
appearance
using
the
SelectionGripperThickness
('SelectionGripperThickness
Property'
in
the
on-line
documentation),
SelectionGripperLineColor
('SelectionGripperLineColor
Property'
in
the
on-line
documentation),
and
SelectionGripperBackColor
('SelectionGripperBackColor
Property'
in
the
on-line
documentation)
properties
as
in
the
following
image.

Using
Code

Set
the
SelectionGripperThickness
('SelectionGripperThickness
Property'
in
the
on-line
documentation),
SelectionGripperLineColor
('SelectionGripperLineColor
Property'
in
the
on-line
documentation),
and
SelectionGripperBackColor
('SelectionGripperBackColor
Property'
in
the
on-line
documentation)
properties.

Example

This
example
sets
the
selection
gripper
appearance.

C#
FpSpread1.TouchInfo.SelectionGripperBackColor = System.Drawing.Color.Aqua;
FpSpread1.TouchInfo.SelectionGripperLineColor = System.Drawing.Color.Red;
FpSpread1.TouchInfo.SelectionGripperThickness = 2;

VB
FpSpread1.TouchInfo.SelectionGripperBackColor = System.Drawing.Color.Aqua
FpSpread1.TouchInfo.SelectionGripperLineColor = System.Drawing.Color.Red
FpSpread1.TouchInfo.SelectionGripperThickness = 2

Using Touch Support with Sorting

You
can
use
touch
gestures
when
sorting.

Double-tap
the
sort
indicator
to
sort.
The
AllowSort
('AllowSort
Property'
in
the
on-line
documentation)
property
must
be
true
to
use
touch
gestures.
The
following
image
displays
a
sort
indicator.

Spread for ASP.NET Developer’s Guide 462

Copyright © GrapeCity, Inc. All rights reserved.

If
the
user
selects
a
column
that
contains
sorting
and
filtering
indicators,
the
resize
gripper
is
displayed.
The
gripper
has
a
higher
priority
than
the
filter
list
or
sort
operation.
Set
the
HeaderIndicatorPositionAdjusting
('HeaderIndicatorPositionAdjusting
Property'
in
the
on-line
documentation)
property
to
specify
the
distance
between
the
sorting
and
filtering
indicators
and
the
right
edge
of
the
column
so
that
the
user
can
sort
or
filter
the
column
while
the
gripper
is
displayed.

Using
Code

Set
the
HeaderIndicatorPositionAdjusting
('HeaderIndicatorPositionAdjusting
Property'
in
the
on-line
documentation)
property.

Example

This
example
sets
the
HeaderIndicatorPositionAdjusting
('HeaderIndicatorPositionAdjusting
Property'
in
the
on-line
documentation)
property.

C#
FpSpread1.Sheets[0].Columns.Count = 10;
FpSpread1.Sheets[0].Rows.Count = 20;
FpSpread1.Sheets[0].AllowSort = true;
FpSpread1.HeaderIndicatorPositionAdjusting = 5;

VB
FpSpread1.Sheets(0).Columns.Count = 10
FpSpread1.Sheets(0).Rows.Count = 20
FpSpread1.Sheets(0).AllowSort = True
FpSpread1.HeaderIndicatorPositionAdjusting = 5

Spread for ASP.NET Developer’s Guide 463

Copyright © GrapeCity, Inc. All rights reserved.

2 Index

policy

sheet
name
tabs,

123-125

allowing

Tab
key,

108

appearance

sheet
corner,

191-193

automatic
text

headers,

216-218

buttons

setting
type,

117-120

colors

scroll
bars,

105-106

compound
files

opening,

339-340

data

saving
to
files,

327

data
binding

adding
unbound
row,

303-304

displaying

pager,

125-128

scroll
bars,

103-104

labels

headers,

216-218

loading

from
Spread
XML
files,

338-339

look
and
feel,

176

modes

setting,

170-172

navigation

page
advancing,

125-128

position,

125-128

pager

position,

125-128

setting

button
type,

117-120

settings

scroll
bar
colors,

105-106

sheets

appearance,

181-182

tool
bars

hierarchy,

129-130

Spread for ASP.NET Developer’s Guide 464

Copyright © GrapeCity, Inc. All rights reserved.

<$nopage>deleting,
See
removing,

202-204
,

184-185

<$nopage>displaying,
See
hiding,

185-186

active

cell,

226

cell
type
of
active
cell,

252-253

sheet,

182

skin,

199-200

adding

cell
reference,

319-320

cell
spans,

236-238

columns,

201-202

data
to
sheet,

311

formula
to
sheet,

318-319

notes,

156-157

rows,

201-202

selections,

172-173

styles,

232-234

tags,

157-159

Adding
a
Component
to
a
Web
Site
using
Visual
Studio
2010,

30-33

Adding
a
Component
to
a
Web
Site
using
Visual
Studio
2012,

28-30

Adding
a
Component
to
a
Web
Site
using
Visual
Studio
2013,

24-28

Adding
a
Component
to
a
Web
Site
using
Visual
Studio
2015
or
2017,

21-24

Adding
a
Context
Menu,

111-113

Adding
a
Note
to
a
Cell,

156-157

Adding
a
Row
or
Column,

201-202

Adding
a
Sheet,

183-184

Adding
a
Sparkline
to
a
Cell,

241-243

Adding
a
Tag
to
a
Cell,

157-159

Adding
a
Title
and
Subtitle
to
a
Sheet,

187-188

Adding
an
Unbound
Row,

303-304

Adding
and
Using
JavaScript
IntelliSense,

33

Adding
Formulas
to
Calculate
Balances,

59-60

Adding
Formulas
to
Cells,

99-101

Adding
Headers
and
Footers
to
Printed
Pages,

175

Adding
JavaScript
IntelliSense
for
Visual
Studio
2010,

35-36

Adding
JavaScript
IntelliSense
for
Visual
Studio
2012,

33-35

adding
spans,

236-238

adding
Spread
component

tutorials,

53-55

Adding
Spread
to
a
DataBind
Project,

306

Adding
Spread
to
a
Project,

53-55

Adding
Spread
to
the
Checkbook
Project,

53

AJAX

Spread for ASP.NET Developer’s Guide 465

Copyright © GrapeCity, Inc. All rights reserved.

browser
support,

36-38

automatic-completion
cell
type,

281

check
box
cell
type,

283

combo
box
cell
type,

282

date
with
calendar
cell
type,

281-282

extenders,

63-64

filtered
text
cell
type,

282

masked
edit
cell
type,

282-283

mutually
exclusive
check
box
cell
type,

283

numeric
up-down
cell
type,

283

overview,

63

rating
cell
type,

283-284

slide
show
cell
type,

284

slider
cell
type,

284

support,

113-114

text
box
with
watermark
cell
type,

284-285

AJAX
Support,

63

Aligning
Cell
Contents,

228-229

alignment

setting
for
cell
contents,

228-229

All
(filtering
list
item),

141-142
,

140-141

Allowing
Cells
to
Merge
Automatically,

238-240

Allowing
Load
on
Demand,

106-108

Allowing
the
User
to
Group
Rows,

149-150

Allowing
the
User
to
Move
Columns,

130-131

Allowing
the
User
to
Resize
Rows
or
Columns,

131-132

Allowing
User
Sorting,

155-156

alternating
rows,

207-208

Alternating
Rows
Editor,

81-82

anchor
cells,

236-238

appearance,

176

cell
settings,

225-226

conditional
format,

169-170

grouping
affect
on,

153-154

headers,

212-213

overall
component,

176

rows
and
columns,

200

See
also
styles,

232-234

selections,

173-174

settings
in
general,

176

sheet,

181-182

application-specific
tags,

157-159

Applying
a
Skin
to
a
Sheet,

199-200

Spread for ASP.NET Developer’s Guide 466

Copyright © GrapeCity, Inc. All rights reserved.

Applying
Changes
and
Closing
Spread
Designer,

102

Area
Charts,

368-370
,

388-389
,

392

arranging

columns,

154-155

rows,

154-155

ASCII
files

saving,

329-330

ASP.NET
AJAX,

113-114

automatic-completion
cell
type,

281

check
box
cell
type,

283

combo,

282

date
with
calendar
cell
type,

281-282

filtered
text
cell
type,

282

masked
edit
cell
type,

282-283

mutually
exclusive
check
box
cell
type,

283

numeric
up-down
cell
type,

283

rating
cell
type,

283-284

slide
show
cell
type,

284

slider
cell
type,

284

text
box
with
watermark
cell
type,

284-285

ASP.NET
AJAX
Extenders,

63-64

assigning

cell
types
for
bound
data,

298-299

CSS
to
cell,

234-235

Assigning
a
Cascading
Style
Sheet
to
a
Cell,

234-235

ATLAS
(see
AJAX),

113-114

attaching

CSS
to
cell,

234-235

autofit,

452

automatic
cell
type
assignment,

298-299

automatic
merging,

238-240

automatic
text,

216-218

automatic-completion
cell
type,

281

axis,

396-398
,

245-246

Axis
and
Other
Lines,

396-398

axis
model,

72-73
,

342-344

Azure,

40

background

cell
color,

186-187

Bar
Charts,

370-373

bars

grouping,

148-149

base
models,

342-344

Spread for ASP.NET Developer’s Guide 467

Copyright © GrapeCity, Inc. All rights reserved.

BIFF8
file
format,

61-62

BIFF-compatible
files

opening,

339-340

saving
to,

328-329

binding

to
data
set,

66

Binding
Spread
to
the
Database,

309-310

Binding
the
Chart
Control
with
Spread,

443-444

Binding
to
a
Data
Source,

291-292

Binding
to
a
Range,

292-294

binding
to
data
set,

291-292
,

292-294

hierarchy
display,

299-302

limiting
postbacks,

304

managing,

290

binding
to
database

tutorial,

304

Blanks
(filtering
list
item),

141-142
,

140-141

borders,

402-405

selection,

173-174

bound
data,

291-292
,

292-294

limiting
postbacks,

304

bound
spreadsheet,

290

Browse
button,

39

browsers

downlevel,

36-38

support,

36-38

uplevel,

36-38

Bubble
Charts,

378-379

Built-In
Functions,

64

built-in
skins,

199-200

button
(cell)

hypertext
link,

264-266

image,

264-266

button
cell
type,

264-266

buttons,

115

changing
images
in
command
bar,

120-122

command,

117-120

hiding
in
command
bar,

122-123

hierarchy,

129-130

page
navigation,

128-129
,

125-128

print
button,

174-175

cascading
style
sheet

assigning
to
cell,

234-235

Spread for ASP.NET Developer’s Guide 468

Copyright © GrapeCity, Inc. All rights reserved.

cell
alignment,

228-229

cell
margins,

230-232

cell
notes,

156-157

cell
reference,

319-320

style,

319-320

cell
spacing,

230-232

cell
spans,

236-238

column
headers,

224-225

row
headers,

224-225

cell
type,

284-285

automatic
completion,

281

button,

264-266

check
box,

283
,

266-268

combo
box,

268-270
,

275-276

combo
with
list
drop-down,

282

currency,

253-255

date
time,

256-257

date
with
calendar
drop-down,

281-282

double,

258-259

filtered
text,

282

general,

259-260

hyperlink,

270-272

image,

272-273

integer,

260-261

label,

273-274

list
box,

274-275

masked
edit,

282-283

mutually
exclusive
check
box,

283

numeric,

283

radio
button
list,

276-278

rating,

283-284

regular
expression,

262-263

setting,

253
,

264

slide
show,

284

slider,

284

tag
cloud,

278-280

text,

263-264

text
box
with
watermark,

284-285

time
(see
date
time),

256-257

cell
types,

64-65
,

73

in
formulas,

318-319

active
cell,

252-253

automatic
assignment,

298-299

Spread for ASP.NET Developer’s Guide 469

Copyright © GrapeCity, Inc. All rights reserved.

basics,

249

bound
data,

298-299

headers,

249

overview,

64-65

percent,

261-262

sorting,

154-155

cells

active
cell,

226

adding
data,

311

anchor
cell,

236-238

appearance
settings,

225-226

assigning
CSS,

234-235

automatic
merging,

238-240

conditional
formatting,

169-170

custom
name,

325-326

editor,

82-83
,

81

formula,

99-101

formulas,

318-319

header
size,

219-220

headers,

212-213

locking,

159-161

margins,

230-232

notes,

156-157

searching,

68

selections,

170

shortcut
object,

225-226
,

69-71

sorting,

68

spacing,

230-232

spanning,

236-238
,

68

styles,

232-234

tags,

157-159

Cells,
Columns,
and
Rows
Editor,

82-83

changes

saving,

311

changing

command
button
images,

120-122

Changing
the
Command
Button
Images,

120-122

chart,

365

control,

65

overview,

65

chart
control,

365
,

65

Chart
Tools
Menu,

80

Chart
Types
and
Views,

366-367

Spread for ASP.NET Developer’s Guide 470

Copyright © GrapeCity, Inc. All rights reserved.

Chart
User
Interface
Elements,

365-366

check
box
cell
type,

283
,

266-268

child
sheets,

299-302

child
views,

299-302

circular
reference,

321-322

clearing

selections,

172-173

Client-Side
Scripting,

65
,

74

overview,

65

client-side
validation

effects
of
EnableClientScript,

314-315

collapsing

grouping,

148-149

Collection
Editor,

39

Color
Scale
Rules,

162-163

colors,

243-245

cell
background,

186-187

grid
lines,

190-191

header
empty
areas,

220-221

scroll
bars¶,

105-106

selections,

173-174

column
footer

hiding,

193-197

column
headers

automatic
text,

216-218

content,

218-219

custom
text,

218-219

default
style,

213-214

displaying,

214-216

editor,

89-90
,

81

hiding,

214-216

multiple,

66

multiple
rows,

221-224

spans,

224-225

text,

216-218
,

218-219

columns

adding,

201-202

appearance,

200

default
number,

200-201

editor,

82-83
,

81

frozen,

66
,

132-133

grid
lines,

190-191

hiding,

204-205

Spread for ASP.NET Developer’s Guide 471

Copyright © GrapeCity, Inc. All rights reserved.

moving,

130-131

multiple
lines,

208-212

removing,

202-204

resizing,

131-132

searching,

68

setting
number
of,

200-201

shortcut
object,

200
,

69-71

sorting,

68
,

154-155

width,

205-206

combined,

423-425

Combining
Plot
Types,

423-425

combo
box
cell,

268-270
,

275-276

combo
box
cell
type,

268-270
,

275-276

combo-box
cell
type,

282

command
bar

button
images,

120-122

buttons,

117-120

hiding
buttons,

122-123

position,

115-117

print
icon,

174-175

Update
button,

117-120
,

311

command
bar
button

effect
of
EnableClientScript,

314-315

command
buttons,

117-120

Compatibility
with
Other
Features,

153-154

component

customizing
interaction,

103

events,

108

composite
of
settings,

71

computed
value

custom
name,

325-326

Concepts
Overview,

69

Conditional
Formatting,

65
,

169-170
,

161

overview,

65

Conditional
Formatting
of
Cells,

169-170

Connecting
to
Data,

425

context
menu,

111-113
,

65
,

83-86

ContextMenu
Collection
Editor,

83-86

control

Azure,

40

control
size

effect
of
EnableClientScript,

314-315

controls

Spread for ASP.NET Developer’s Guide 472

Copyright © GrapeCity, Inc. All rights reserved.

ASP.NET
AJAX
extenders,

63-64

Copying
Shared
Assemblies
to
Local
Folder,

48-49

corner,

65-66

sheet,

191-193

Corner
Customization,

65-66

creating

custom
function,

324-325

custom
names,

325-326

skins,

197-199

styles,

232-234

Creating
a
Build
License,

18-19

Creating
a
Chart
Control,

430-433

Creating
a
Completely
Custom
Filter,

142-143

Creating
a
Custom
Function,

324-325

Creating
a
Custom
Group,

153

Creating
a
Custom
Name,

325-326

Creating
a
Custom
Sheet
Model,

352-353

Creating
a
Header
with
Multiple
Rows
or
Columns,

221-224

Creating
a
Pie
Plot,

416-418

Creating
a
Polar
Plot,

418-421

Creating
a
Radar
Plot,

421-423

Creating
a
Range
of
Cells,

235-236

Creating
a
Skin
for
Sheets,

197-199

Creating
a
Span
in
a
Header,

224-225

Creating
a
Y
Plot,

408-410

Creating
Alternating
Rows,

207-208

Creating
an
XY
Plot,

410-413

Creating
an
XYZ
Plot,

413-416

Creating
and
Applying
a
Custom
Style
for
Cells,

232-234

Creating
Charts,

408

Creating
Conditional
Formatting
with
Rules,

161-162

Creating
Filtered
Rows
and
Setting
the
Appearance,

136-140

Creating
Plot
Types,

408

Creating
Row
Templates
(Multiple-Line
Columns),

208-212

Creating
the
Chart
Control,

437-439

Creating
the
Chart
Control
with
Code,

440-443

Creating
the
Data
Set,

308-309

CSS

assigning
to
cell,

234-235

currency

minimum
and
maximum
values,

255-256

currency
cell,

253-255

currency
separator,

253-255

Spread for ASP.NET Developer’s Guide 473

Copyright © GrapeCity, Inc. All rights reserved.

custom

filter,

142-143

functions,

324-325

names,

325-326

skins,

197-199

styles,

232-234

text
in
headers,

218-219

custom
functions,

324-325

custom
names,

325-326

custom
skins,

197-199

custom
styles,

232-234

custom
text
in
headers,

218-219

Customized
Appearance
(Skins),

66

customized
styles

overview,

66

customizing

data
model,

352-353

graphical
interface,

109-110

selections,

170

Customizing
Cell
Borders,

229-230

Customizing
Cells
in
Spread
Designer,

97-99

Customizing
Grouping
of
Rows
of
User
Data,

148

Customizing
Header
Label
Text,

218-219

Customizing
Interaction
Based
on
Events,

108

Customizing
Interaction
with
Cells,

156

Customizing
Interaction
with
Rows
and
Columns,

130

Customizing
Interaction
with
the
Overall
Component,

103

Customizing
Markers
and
Pointers,

243-245

Customizing
Models,

344

Customizing
Page
Navigation,

125-128

Customizing
Page
Navigation
Buttons
on
the
Client,

128-129

Customizing
Selections
of
Cells,

170

Customizing
Sheets,
Rows,
and
Columns
in
Spread
Designer,

96-97

Customizing
Simple
Filtering
of
Rows
of
User
Data,

140

Customizing
Sorting
of
Rows
of
User
Data,

154-155

Customizing
the
Appearance,

176

Customizing
the
Appearance
of
a
Cell,

225-226

Customizing
the
Appearance
of
Headers,

212-213

Customizing
the
Appearance
of
Rows
and
Columns,

200

Customizing
the
Appearance
of
Selections,

173-174

Customizing
the
Appearance
of
the
Overall
Component,

176

Customizing
the
Appearance
of
the
Sheet,

181-182

Customizing
the
Colors
of
a
Cell,

226-228

Spread for ASP.NET Developer’s Guide 474

Copyright © GrapeCity, Inc. All rights reserved.

Customizing
the
Command
Bar
on
the
Component,

115-117

Customizing
the
Command
Buttons,

117-120

Customizing
the
Default
Header
Labels,

216-218

Customizing
the
Default
Initial
Appearance,

178-179

Customizing
the
Dimensions
of
the
Component,

176-177

Customizing
the
Graphical
Interface,

109-110

Customizing
the
Group
Bar,

152-153

Customizing
the
Header
Empty
Areas,

220-221

Customizing
the
Hierarchy
Bar,

129-130

Customizing
the
List
of
Filter
Items,

141-142

Customizing
the
Margins
and
Spacing
of
the
Cell,

230-232

Customizing
the
Number
of
Rows
or
Columns,

200-201

Customizing
the
Outline
of
the
Component,

177-178

Customizing
the
Page
Size
(Rows
to
Display),

188-190

Customizing
the
Scroll
Bar
Colors,

105-106

Customizing
the
Sheet
Corner,

191-193

Customizing
the
Style
of
Header
Cells,

213-214

Customizing
the
Tool
Bars,

115

Customizing
User
Interaction,

103

Customizing
with
Cell
Types,

248-249

data

searching,

110-111

sorting,

154-155

data
area

appearance,

181-182

Data
Bar
Rule,

163-165

data
binding,

66

automatic
cell
type
assignment,

298-299

binding,

291-292
,

292-294

hierarchy
display,

299-302

limiting
postbacks,

304

overview,

66

procedures,

290

Data
Binding
Overview,

290-291

data
key

editor,

86-87
,

81

Data
Menu,

79

data
model,

72-73
,

342-344

customizing,

352-353

optional
interfaces,

351

Data
Plot
Types,

393-394

data
set

binding
to,

291-292
,

292-294

Spread for ASP.NET Developer’s Guide 475

Copyright © GrapeCity, Inc. All rights reserved.

data
types

in
formulas,

318-319

DataAutoCellTypes
Property

using,

298-299

database

binding
to,

291-292
,

292-294

database
state
management,

358

DataKey
Names
(String
Collection)
Editor,

86-87

DataKeyField
Property

using,

291-292

DataMember
Property

using,

291-292

DataSource
Property

using,

291-292

date
time
cell
type,

256-257

date-selection
(calendar)
cell
type,

281-282

decimal
symbol
in
currency,

253-255

default

header
labels,

216-218

header
style,

213-214

models,

342-344

number
rows,
columns,

200-201

sheet
names,

123-125

default

skins,

199-200

defining

cell
styles,

232-234

sheet
skins,

197-199

DeleteMethod,

294-298

deleting,
See
removing,

202-204
,

184-185

Determining
the
Cell
Type
of
a
Cell,

252-253

Developer’s
Guide

FarPoint
Spread
for
ASP.NET,

0

Developer's
Guide,

0

FarPoint
Spread
for
ASP.NET,

0

dialog
box

printing,

174

dialogs

Formula
editor,

99-101

dimensions,

176-177

display
data,

365

displaying

active
cell,

226

Spread for ASP.NET Developer’s Guide 476

Copyright © GrapeCity, Inc. All rights reserved.

active
sheet,

182

command
bar,

115-117
,

117-120

date
and
time,

256-257

hiding
rows
or
columns,

204-205

number
of
rows,

188-190

sheet
names,

123-125

top
row,

204-205

Displaying
a
Calendar
in
a
Date-Time
Cell,

257-258

Displaying
a
Footer
for
Columns
or
Groups,

193-197

Displaying
Data
as
a
Hierarchy,

299-302

Displaying
Grid
Lines
on
the
Sheet,

190-191

Displaying
Scroll
Bar
Text
Tips,

105

Displaying
Scroll
Bars,

103-104

Displaying
the
Sheet
Names,

123-125

displaying,
See
hiding,

193-197
,

185-186

displays

grouping
affect
on,

153-154

doc
type,

36-38

DOCTYPE,

36-38

double
cell
type,

258-259

double-precision
floating-point
number
(cell
type),

258-259

doughnut,

384

Doughnut
Charts,

385

downlevel
browser,

36-38

dragging

columns,

130-131

drop-down

filtering,

140-141

drop-down
list
cell,

268-270
,

274-275

EditBaseCellType
Class

about,

249

editors

Collection,

39

cell
types,

249

Cells,
Columns,
and
Rows,

82-83
,

81

data
key
names,

86-87
,

81

formula,

81
,

87-88

Formula
Editor,

99-101

grouping
headers,

88-89
,

81

headers,

89-90
,

81

row
template,

91-92
,

81

sheet
skins,

92-93
,

81

sheets,

93-94
,

81

Spread for ASP.NET Developer’s Guide 477

Copyright © GrapeCity, Inc. All rights reserved.

Spread
Designer,

81

styles,

90-91
,

81

effect,

398-401

elevation,

401-402

Elevation
and
Rotation,

401-402

empty
areas

appearance,

191-193

headers,

220-221

enabling

AJAX,

113-114

Enabling
AJAX
Support,

113-114

enabling
client
scripts,

314-315

End-User
License
Agreement,

17-18

entity,

44-48

error
message,

285-289

events

effect
of
EnableClientScript,

314-315

page
load,

315-316

post
back,

315-316

Excel
files,

101-102

loading
from,

339-340

opening,

339-340

saving
to,

328-329

expanding

customizing
images,

109-110

grouping,

148-149

rows
in
hierarchy,

302-303

exporting,

67

expression
(see
regular
expression),

262-263

expression
cell
type
(see
regular
expression
cell
type),

262-263

expressions

names
in
formulas,

325-326

extenders

ASP.NET
AJAX,

63-64

features

AJAX,

63

ASP.NET
AJAX
extenders,

63-64

built-in
functions,

64

cell
types,

64-65

chart
control,

65

column
footer,

66

conditional
formatting,

65

data
binding,

66

Spread for ASP.NET Developer’s Guide 478

Copyright © GrapeCity, Inc. All rights reserved.

designer,

68-69
,

69

filtering,

68

frozen
columns,

66
,

132-133

goal
seeking,

66

grouping,

66

grouping
affect
on,

153-154

hierarchy,

66-67

import
and
export,

67

load
on
demand,

67
,

106-108

multiple
headers,

66

multiple
sheets,

67

multiple-line
columns,

67

preview,

68

printing,

67-68
,

67

searching,

68

sheet
corner,

65-66

skins,

66

sorting,

68

spanning
cells,

68

Spread
Designer,

68-69

Spread
Wizard,

69

subtitle,

69

template,

68

title,

69

Features
Overview,

62-63

File
Menu,

78

file
type,

101-102

files,

327

loading,

338

loading
from
Excel
files,

339-340

loading
from
Spread
XML
files,

338-339

loading
from
text
files,

340

opening,

338

opening
Excel
files,

339-340

opening
Spread
XML
files,

338-339

opening
text
files,

340

saving
to,

327

saving
to
Excel
files,

328-329

saving
to
Spread
XML
files,

327-328

XLSX
support,

339-340

fill,

398-401

Fill
Effects,

398-401

filter,

135-136
,

453-454

Spread for ASP.NET Developer’s Guide 479

Copyright © GrapeCity, Inc. All rights reserved.

filter
bar

customizing
images,

109-110

filtered
text
cell
type,

282

filtered-in
style,

136-140

filtered-out
style,

136-140

filtering,

135-136
,

140-141

custom
filter,

142-143

enhanced,

143-145

filter
bar,

145-148

hiding
row,

136-140

setting
style,

136-140

finding

value
with
GoalSeek,

322-323

finding
(searching),

110-111

Finding
a
Value
with
Goal
Seeking,

322-323

Firefox

browser
support,

36-38

floating-point
number
(cell
type),

258-259

footers

overview,

66

printing,

175
,

334-338

Footers
for
Columns
or
Groups,

66

Formatted
versus
Unformatted
Data,

73-74

formatter

cell
types,

249

formatting

conditional,

65
,

169-170

inheriting,

71

formula
bar,

97-99

Formula
Editor,

99-101
,

81
,

87-88

Formula
toolbar,

99-101

formulas,

64
,

99-101

adding
to
sheet,

318-319

cell
reference,

319-320

cell
types,

318-319

custom
functions,

324-325

custom
name,

325-326

custom
names,

325-326

data
types,

318-319

Formula
Editor,

81
,

87-88

goal
seeking,

66
,

322-323

nesting
functions,

322

one-based,

319-320

Spread for ASP.NET Developer’s Guide 480

Copyright © GrapeCity, Inc. All rights reserved.

FpSpread
Designer,

76-77

Freezing
Rows
and
Columns,

132-133

frozen
columns

overview,

66
,

132-133

frozen
rows

overview,

66
,

132-133

Frozen
Rows
and
Columns,

66

functions,

64

custom,

324-325

nesting
in
formula,

322

general
cell
type,

259-260

generic
cell
type
(see
general
cell
type),

259-260

Getting
More
Practice,

49

Getting
Started,

17

tutorials,

53-55

Getting
Technical
Support,

51

Goal
Seeking,

66
,

322-323

GoalSeek
method,

66
,

322-323

graphic
cell
(see
image
cell
type),

272-273

gray
areas
(See
empty
areas),

220-221

grid
lines,

190-191

colors,

190-191

columns,

190-191

hiding,

190-191

rows,

190-191

group
footer,

66

GroupInfo
Collection
Editor,

88-89

GroupInfo
editor,

88-89
,

81

Grouping,

66
,

148-149
,

148

bar,

148-149

header
editor,

88-89
,

81

interoperability,

153-154

multiple
levels,

148-149

overview,

66

primary,

148-149

secondary,

148-149

spacing
between
group
names,

152-153

GUI
(graphical
user
interface)

customizing,

109-110

Handling
Data
Using
Cell
Properties,

314

Handling
Data
Using
Sheet
Methods,

311-314

Handling
Installation,

17

Handling
Redistribution,

19-20

Spread for ASP.NET Developer’s Guide 481

Copyright © GrapeCity, Inc. All rights reserved.

Handling
Row
Expansion,

302-303

Handling
the
Tab
Key,

108

Handling
Variations
in
Windows
Regional
Settings,

20-21

Header
Editor,

89-90

headers

appearance,

212-213

automatic
text,

216-218

cell
types,

249

corner,

191-193

default
style,

213-214

displaying,

214-216

editor,

89-90
,

81

empty
areas,

220-221

grouping
header
editor,

88-89
,

81

height,

219-220

label
text,

218-219

labels,

216-218

multiple,

66

printing,

175
,

334-338

setting,

212-213

shortcut
object,

212-213
,

69-71

size,

219-220

width,

219-220

Headers
with
Multiple
Columns
and
Rows,

66

height

headers,

219-220

rows,

205-206

hidden

cells
when
spanned,

236-238

hiding

columns,

204-205

filtering
rows,

136-140

footer,

193-197

grid
lines,

190-191

rows,

204-205

sheets,

185-186

Hiding
a
Specific
Command
Button,

122-123

Hierarchical
Display,

66-67

hierarchy,

66-67

bar,

129-130

displaying
data,

299-302

expandable
rows,

302-303

grouping,

148-149

Spread for ASP.NET Developer’s Guide 482

Copyright © GrapeCity, Inc. All rights reserved.

views,

299-302

hierarchy
buttons,

129-130

Highlighting
Rules,

165-167

Home
Menu,

78-79

horizontal
alignment,

228-229

horizontal
grid
lines,

190-191

How
To’s,

49-51

How
To's,

49-51

hyperlink
cell
type,

270-272

hypertext
link
button,

264-266

Icon
Set
Rule,

167-168

IE

browser
support,

36-38

image
button,

264-266

image
cell
type,

272-273

images

changing
command
buttons,

120-122

customizing
in
interface,

109-110

Import
and
Export
Capabilities,

67

importing,

67

Improving
the
Display
by
Changing
the
Cell
Type,

310

indicator

filtering,

140-141

indicators

ascending
in
grouping,

148-149

expanding
in
grouping,

148-149

inheriting
formatting,

71

Insert
Menu,

79

InsertMethod,

294-298

Installing
the
Product,

17

integer
cell
type,

260-261

Intellisense,

33-35
,

35-36
,

49

interaction

customizing,

103
,

103

events,

108

interfaces

models,

342-344

optional
model,

351

Internet
Explorer

browser
support,

36-38

Internet
Information
Services
(IIS)
,

356-358

interoperability

grouping,

153-154

Spread for ASP.NET Developer’s Guide 483

Copyright © GrapeCity, Inc. All rights reserved.

ItemType,

294-298

iteration,

321-322

label
cell
type,

273-274

LabelArea
Collection
Editor,

433-434

Labels,

406-407

automatic
text
in
headers,

216-218

header
text,

218-219

headers,

216-218

LegendArea
Collection
Editor,

434

Legends,

407-408

Licensing
a
Trial
Project
after
Installation,

17

Light
Collection
Editor,

435-436

lighting,

402-405

Lighting,
Shapes,
and
Borders,

402-405

limiting

currency
value,

255-256

Limiting
Postbacks
When
Updating
Bound
Data,

304

Limiting
Values
for
a
Currency
Cell,

255-256

Line
Charts,

379
,

382-383
,

373-374
,

387-388
,

391-392

lines

grid
lines,

190-191

multiple
in
column,

208-212

link
button,

264-266

list

radio
buttons,

276-278

list
box
cell
type,

274-275

list
of
How
To’s,

49-51

list
of
How
To's,

49-51

Load
on
Demand,

67
,

106-108

overview,

67
,

106-108

loading,

327

data
from
files,

338

Excel
files,

339-340

from
text
files,

340

Loading
Data
for
Each
Page
Request,

358-364

Loading
or
Saving
the
Chart
Control
to
XML,

439-440

loading
page,

315-316

Locking
a
Cell,

159-161

locking
cells,

159-161

Maintaining
State,

74
,

354
,

354

management

of
state,

354

Managing
Data
Binding,

290

Spread for ASP.NET Developer’s Guide 484

Copyright © GrapeCity, Inc. All rights reserved.

Managing
Data
in
the
Component,

311

Managing
File
Operations,

327

Managing
Filtering
of
Rows
of
User
Data,

135-136

Managing
Formulas,

318

Managing
Printing,

174

margins,

230-232

cell,

230-232

market,

374-376

market
chart,

374-376

Market
Data
(High-Low)
Charts,

374-376

masked
edit
cell
type,

282-283

maximum
iteration,

321-322

menu

sparklines,

80-81

merge
policy,

238-240

merging,

238-240

cells,

238-240

contrast
with
spanning,

238-240

introduction,

238-240

message
row

effect
of
EnableClientScript,

314-315

model
data
binding,

294-298

Model
Data
Binding
in
ASP.NET
4.5,

294-298

models,

69-71

axis,

72-73
,

342-344

base,

342-344

basis
for
customization,

341-342

data,

72-73
,

342-344

default,

342-344

interfaces,

342-344

optional
interfaces,

351

selection,

72-73
,

342-344

sorting,

154-155

span,

72-73
,

342-344

style,

72-73
,

342-344

types,

342-344

modes

operation,

170-172

moving

columns,

130-131

Moving
and
Resizing
the
Chart
Control
in
Spread,

444-445

Mozilla
Firefox

browser
support,

36-38

Spread for ASP.NET Developer’s Guide 485

Copyright © GrapeCity, Inc. All rights reserved.

multiple
headers,

66

Multiple
Sheets,

67
,

182-183

multiple-column
combo
box,

275-276

Multiple-Line
Columns,

67
,

208-212

mvc,

44-48
,

40-44

named
expressions
in
formulas,

325-326

named
range

custom
name,

325-326

named
styles,

232-234

editor,

90-91
,

81

NamedStyle
Collection
Editor,

90-91

names

custom,

325-326

Namespaces
Overview,

75

navigation

page
nav
buttons,

128-129

nesting
functions,

322

Nesting
Functions
in
a
Formula,

322

NonBlanks
(filtering
list
item),

141-142
,

140-141

non-scrollable

rows
and
columns,

66

notes

cells,

156-157

number
cell
(see
general
cell
type),

259-260

number
cell
type
(see
integer
or
double
cell
type),

258-259
,

260-261

numeric
cell
type,

283

object
models,

69-71
,

342-344

Object
Parentage,

71

ODF
document,

101-102

one-based
ref.s

in
formulas,

319-320

opening,

327

text
files,

340

data
from
files,

338

Excel
files,

339-340

files,

101-102

Spread
XML
files,

338-339

Opening
a
Spread
XML
File,

338-339

Opening
a
Text
File,

340

Opening
an
Excel-Formatted
File,

339-340

Opening
Existing
Files,

338

Opening
the
Chart
Designer,

429-430

operation
mode,

316-317
,

170-172

Spread for ASP.NET Developer’s Guide 486

Copyright © GrapeCity, Inc. All rights reserved.

introduction,

170-172

option
button
list
(see
radio
button
list),

276-278

optional

interfaces,

351

options

regional,

20-21

order
of
precedence,

71

orientation

printing,

332-334

Outlook-style
grouping,

148-149
,

148

overview,

63

padding

See
cell
margins,

230-232

page
footers

printing,

334-338

page
headers

printing,

334-338

page
load
event,

315-316

page
loading

state
management,

358-364

page
navigation

buttons,

128-129
,

125-128

position,

125-128

settings,

125-128

page
size,

188-190

pages

defined,

188-190

size
(number
of
rows),

188-190

parent

hierarchy,

299-302

inherit
formatting,

71

parent
sheet,

299-302

Pareto
chart,

423-425

parts

Web
Parts,

40

pdf
files,

331

saving
to,

331

PDF
Support,

67

percent
cell
type,

261-262

picture
cell
(see
image
cell
type),

272-273

Pie
Charts,

385

Pie
Plot
Types,

384

Placing
a
Formula
in
Cells,

318-319

Spread for ASP.NET Developer’s Guide 487

Copyright © GrapeCity, Inc. All rights reserved.

Placing
and
Retrieving
Data,

311

placing
formula
in
sheet,

318-319

plot
types,

393-394
,

367
,

386
,

389-390
,

378
,

380-381

PlotArea
Collection
Editor,

434-435

Point
Charts,

379-380
,

381-382
,

376-377
,

386-387
,

390-391

polar
plot
type,

386

Polar
Plot
Types,

386

policy

merging,

238-240

scroll
bars,

103-104

positioning

command
bar,

115-117

postbacks

limiting,

304

posting
back,

315-316

precedence

order
of,

71

preview
rows,

134-135

print
dialog,

174

Printing,

67-68

automatically
determining
settings,

332-334

fitting
to
pages,

332-334

footers,

175
,

334-338

headers,

175
,

334-338

orientation,

332-334

overview,

67-68
,

67

page
footer,

334-338

page
header,

334-338

Print
icon,

174-175

scaling,

332-334

sheets,

174

sizing,

332-334

SmartPrint,

332-334

specifying
printed
data,

332-334

zoom,

332-334

Printing
a
Spreadsheet,

174-175

printing
files

saving,

331

procedures

How
To’s,

49-51

How
To's,

49-51

processing

Tab
key,

108

Spread for ASP.NET Developer’s Guide 488

Copyright © GrapeCity, Inc. All rights reserved.

ProcessTab
Property

using,

108

Product
Overview,

61-62

Product
Requirements,

20

Property
Designer
FpSpread,

76-77

protecting
cells,

159-161

Radar
Plot
Types,

389-390

radio
button
list
cell
type,

276-278

range

of
cells,

235-236

searching,

68

sorting,

68

range
of
cells

custom
name,

325-326

rating
cell
type,

283-284

real
world
objects,

69-71

recalculates

formulas
automatically,

323-324

Recalculating
and
Updating
Formulas
Automatically,

323-324

recursive

formula,

321-322

reference

cell,

319-320

circular,

321-322

regional
settings
(Windows),

253-255
,

20-21

regular
expression
cell
type,

262-263

removing

columns,

202-204

headers
(turning
off),

214-216

rows,

202-204

selections,

172-173

sheets,

184-185

Removing
a
Row
or
Column,

202-204

Removing
a
Sheet,

184-185

renderers

cell
types,

249

Rendering
or
Saving
the
Chart
Control
to
an
Image,

439

Resetting
Parts
of
the
Interface,

179-180

resize,

452

resizing

rows
or
columns,

131-132

returning

data,

311

Spread for ASP.NET Developer’s Guide 489

Copyright © GrapeCity, Inc. All rights reserved.

rotation,

401-402

row
edit
templates,

133-134

Row
Filtering,

68

overview,

68

row
headers

automatic
text,

216-218

content,

218-219

custom
text,

218-219

default
style,

213-214

displaying,

214-216

editor,

89-90
,

81

hiding,

214-216

multiple,

66

multiple
columns,

221-224

spans,

224-225

text,

216-218
,

218-219

Row
Preview,

68

overview,

68

row
template

editor,

91-92
,

81

overview,

68

Row
Template
Editor,

68
,

91-92

row
templates,

208-212

rows

appearance,

200

adding,

201-202

adding
unbound,

303-304

alternating
styles,

207-208

default
number,

200-201

editor,

82-83
,

81

expandable,

302-303

filtering,

140-141

frozen,

66
,

132-133

grid
lines,

190-191

grouping,

66
,

148-149
,

148

height,

205-206

hiding,

204-205

number
displayed,

188-190

preview
row,

134-135

removing,

202-204

resizing,

131-132

searching,

68

setting
number
of,

200-201

Spread for ASP.NET Developer’s Guide 490

Copyright © GrapeCity, Inc. All rights reserved.

setting
top,

204-205

shortcut
object,

200
,

69-71

sorting,

68
,

154-155

rule

average,

168-169

color
scale,

162-163

data
bar,

163-165

highlight,

165-167

icon
set,

167-168

top
ranked,

168-169

rules,

161-162

save,

330-331

SaveChanges
method,

117-120

saving,

327

to
pdf
file,

331

to
text
file,

329-330

data
to
files,

327

files,

101-102

to
Excel
files,

328-329

to
pdf
files,

331

to
Spread
XML
files,

327-328

to
text
files,

329-330

Saving
and
Opening
Design
Files,

101-102

saving
changes
to
server,

117-120
,

311

Saving
Data
to
a
File,

327

Saving
Data
to
an
SQL
Database,

358

Saving
Data
to
the
Server,

311

Saving
Data
to
the
Session
State,

356-358

Saving
Data
to
the
View
State,

354-356

Saving
to
a
PDF
File,

331

Saving
to
a
Spread
XML
File,

327-328

Saving
to
a
Text
File,

329-330

Saving
to
an
Excel
File,

328-329

Saving
to
an
HTML
File,

330-331

Saving
to
PDF
Methods,

331-332

scripting,

74

browser
support,

36-38

client-side,

65

enabling
on
server,

314-315

scroll
bars,

103-104

colors,

105-106

displaying,

103-104

policy¶,

103-104

Spread for ASP.NET Developer’s Guide 491

Copyright © GrapeCity, Inc. All rights reserved.

searching,

68
,

110-111

Searching
Features,

68

Searching
for
Data
with
Code,

110-111

Selecting
the
Chart
Control
in
Spread,

445-446

selection

effect
of
EnableClientScript,

314-315

Selection
model,

72-73
,

342-344

selections

adding,

172-173

appearance,

173-174

background,

173-174

border,

173-174

clearing,

172-173

customizing,

170

operation
mode,

170-172

Spread
Designer,

76-77

SelectMethod,

294-298

separator

currency,

253-255

Series,

394-395

Series
Collection
Editor,

436

server

enabling
client
script,

314-315

posting
back,

315-316

saving
updates
to,

311

Server-Side
Scripting,

314

session
state,

356-358

setting

active
cell,

226

active
sheet,

182

alternating
rows,

207-208

button
type,

117-120

cell
background,

186-187

cell
reference
style,

319-320

cell
type,

253

cell
types,

264

column
width,

205-206

min,
max
for
currency,

255-256

row
height,

205-206

Setting
a
Button
Cell,

264-266

Setting
a
Calendar
Cell,

281-282

Setting
a
Check
Box
Cell,

266-268

Setting
a
Combo
Box
Cell,

282
,

268-270

Spread for ASP.NET Developer’s Guide 492

Copyright © GrapeCity, Inc. All rights reserved.

Setting
a
Currency
Cell,

253-255

Setting
a
Date-Time
Cell,

256-257

Setting
a
Double
Cell,

258-259

Setting
a
Filtered
Text
Cell,

282

Setting
a
General
Cell,

259-260

Setting
a
Hyperlink
Cell,

270-272

Setting
a
Label
Cell,

273-274

Setting
a
List
Box
Cell,

274-275

Setting
a
Masked
Edit
Cell,

282-283

Setting
a
Multiple-Column
Combo
Box
Cell,

275-276

Setting
a
Mutually
Exclusive
Check
Box
Cell,

283

Setting
a
Numeric
Spin
Cell,

283

Setting
a
Percent
Cell,

261-262

Setting
a
Radio
Button
List
Cell,

276-278

Setting
a
Rating
Cell,

283-284

Setting
a
Regular
Expression
Cell,

262-263

Setting
a
Slide
Show
Cell,

284

Setting
a
Slider
Cell,

284

Setting
a
Tag
Cloud
Cell,

278-280

Setting
a
Text
Box
with
Watermark
Cell,

284-285

Setting
a
Text
Cell,

263-264

Setting
an
Automatic-Completion
Cell,

281

Setting
an
Image
Cell,

272-273

Setting
an
Integer
Cell,

260-261

setting
cell
type

button,

264-266

check
box,

266-268

combo
box,

268-270

date
time,

256-257

double,

258-259

general,

259-260

hyperlink,

270-272

image,

272-273

integer,

260-261

label,

273-274

list
box,

274-275

percent,

261-262

radio
button,

276-278

regular
expression,

262-263

text,

263-264

Setting
Headers
and
Footers,

334-338

Setting
PrintInfo
Class
Properties,

332

Setting
Smart
Print
Options,

332-334

Spread for ASP.NET Developer’s Guide 493

Copyright © GrapeCity, Inc. All rights reserved.

Setting
the
Appearance
of
Grouped
Rows,

150-152

Setting
the
Background
Color
of
the
Sheet,

186-187

Setting
the
Cell
Types
for
Bound
Data,

298-299

Setting
the
Cell
Types
of
the
Register,

57-59

Setting
the
Chart
Control
Border
in
Spread,

446-447

Setting
the
Chart
View
Type,

447-448

Setting
the
Row
Height
or
Column
Width,

205-206

Setting
the
Size
of
Header
Cells,

219-220

Setting
the
Top
Row
to
Display,

206-207

Setting
up
Preview
Rows,

134-135

Setting
up
Row
Edit
Templates,

133-134

Setting
up
the
Database
Connection,

306-307

Setting
Up
the
Rows
and
Columns
of
the
Register,

55-57

settings

appearance,

176

composite,

71

regional,

20-21

scroll
bars,

103-104

Settings
Menu,

80

shapes,

402-405

SharePoint,

40

sheet
corner,

191-193
,

65-66

customizing,

191-193

styles,

191-193

sheet
name
tabs,

123-125

default
names,

123-125

sheet
skins,

199-200
,

197-199

editor,

92-93
,

81

overview,

66

sheetcorner,

65-66

sheets

active
sheet,

182

adding
data,

311

binding
to
data
source,

290

child
views,

299-302

corner
(See
sheet
corner),

191-193

default
sheet
names,

123-125

editor,

93-94
,

81

grid
lines,

190-191

hiding,

185-186

multiple,

182-183

names,

123-125

number
of
rows
displayed,

188-190

Spread for ASP.NET Developer’s Guide 494

Copyright © GrapeCity, Inc. All rights reserved.

printing,

174

removing,

184-185

shortcut
object,

181-182

skins,

199-200
,

197-199

subtitle,

187-188

templates,

199-200
,

197-199

title,

187-188

SheetSkin
Editor,

92-93
,

81

SheetView
Collection
Editor,

93-94
,

81

SheetView
versus
FpSpread,

73

shortcut
objects,

69-71

cell,

225-226
,

69-71

column,

200
,

69-71

header,

212-213
,

69-71

row,

200
,

69-71

sheet,

181-182

Showing
or
Hiding
a
Sheet,

185-186

Showing
or
Hiding
Headers,

214-216

Showing
or
Hiding
Rows
or
Columns,

204-205

Size
-
Height,
Width,
and
Depth,

405-406

size
of
control

effect
of
EnableClientScript,

314-315

skins

applying,

199-200

creating,

197-199

editor,

92-93
,

81

overview,

66

slide
show
cell
type,

284

slider
cell
type,

284

SmartPrint
feature,

332-334

sort
indicators

customizing,

109-110

sorting,

68
,

154-155
,

462-463

affect
on
data
models,

154-155

cell
types,

154-155

customizing
images,

109-110

grouping,

148-149

introduction,

154-155

rows
or
columns,

154-155

Sorting
Capabilities,

68

spaces

in
text
cell,

263-264

spacing

Spread for ASP.NET Developer’s Guide 495

Copyright © GrapeCity, Inc. All rights reserved.

between
group
names,

152-153

cell,

230-232

span
model,

72-73
,

342-344

Spannable
Cells,

68

Spanning
Cells,

236-238
,

68

spans

column
headers,

224-225

row
headers,

224-225

sparkline

add,

241-243

axis,

245-246

group,

246-247

markers,

243-245

Sparklines,

68
,

240-241

Sparklines
Menu,

80-81

specifying

formula,

318-319

Specifying
a
Cell
Reference
Style
in
a
Formula,

319-320

Specifying
Horizontal
and
Vertical
Axes,

245-246

Specifying
the
Data
to
Use,

307-308

Specifying
What
the
User
Can
Select,

170-172

spin
cell
type,

283

Spread

regional
settings,

20-21

Spread
Designer,

68-69
,

76-77
,

76

applying
changes,

102
,

77-78

closing,

102
,

77-78

editors,

81

exiting,

102

files,

101-102

formatting,

81

formula
bar,

97-99

Formula
Editor,

81
,

87-88

Formula
toolbar,

99-101

general,

81

introduction,

76

menus,

77-78

opening,

76

overview,

68-69

selections,

76-77

starting,

76

toolbars,

81

working
with,

95-96

Spread for ASP.NET Developer’s Guide 496

Copyright © GrapeCity, Inc. All rights reserved.

Spread
Designer
Context
Menus,

94-95

Spread
Designer
Editors,

81

Spread
Designer
Menus,

77-78

Spread
Designer
Toolbars,

81

Spread
Wizard,

69

overview,

69

Spread
XML,

101-102

Spread
XML
files

loading
from,

338-339

opening,

338-339

saving
to,

327-328

spreadsheet
objects,

69-71

SQL
database

state
management,

358

Starting
the
Spread
Designer,

76

Starting
the
Spread
Wizard,

51-52

state

each
page
as
requested,

358-364

maintaining,

354

session
state,

356-358

view
state,

354-356

state
management,

354

database,

358

State
Overview,

354

streams

opening
Excel
files,

339-340

Stripe
Charts,

380
,

384
,

377-378
,

389
,

392-393

strongly
typed,

49

structured
storage

opening,

339-340

style
model,

72-73
,

342-344

StyleInfo

editor,

90-91
,

81

styles

cell
reference,

319-320

default
headers,

213-214

editor,

90-91
,

81

effect
of
EnableClientScript,

314-315

filtering,

136-140

for
cells,

232-234

for
cells[styles

cells],

232-234

named,

232-234

Spread for ASP.NET Developer’s Guide 497

Copyright © GrapeCity, Inc. All rights reserved.

sheet
corner,

191-193

skins
overview,

66

subtitles

sheet,

187-188

support

browsers,

36-38

Surface
Charts,

383-384

Tab
key

handling,

108

tab-delimited
files,

329-330

table
cell,

230-232

spacing,

230-232

tabs

sheet
names,

123-125

tag
cloud
cell
type,

278-280

tags,

157-159

cell
type,

278-280

template

for
cells,

232-234

for
cells[template

cells],

232-234

templates

row,

208-212

row
edit,

133-134

sheet
skins,

199-200
,

197-199

text

automatic
header,

216-218

column
headers,

216-218
,

218-219

row
headers,

216-218
,

218-219

text
box

cell
type,

284-285

text
cell
(see
general
cell
type),

259-260

text
cell
type,

263-264

text
file,

101-102

text
files

loading
from,

340

opening,

340

saving
to,

329-330

text
tips,

105

Theme
Roller,

69

tick
marks,

396-398

Title
and
Subtitle,

69

titles

Spread for ASP.NET Developer’s Guide 498

Copyright © GrapeCity, Inc. All rights reserved.

overview,

69

sheet,

187-188

tool
bars,

115

scroll
bars,

103-104

command
bar
position,

115-117

command
buttons,

117-120

page
navigation,

125-128

pager,

125-128

sheet
name
tabs,

123-125

toolbars

formula,

99-101

Top
or
Average
Rules,

168-169

top
row

setting,

204-205

touch,

453-454
,

462-463

touch
menu,

451-452

touch
strip,

451-452

Touch
Support,

69

Tutorial:
Binding
to
a
Corporate
Database,

304

Tutorial:
Creating
a
Checkbook
Register,

53

tutorials

adding
Spread
component,

53-55

binding
to
database,

304

checkbook
register,

53

getting
started,

53-55

unbound
rows

adding,

303-304

Underlying
Models,

72-73

Understanding
and
Customizing
Charts,

365

Understanding
Browser
Support,

36-38

Understanding
Cell
Type
Basics,

249

Understanding
Effects
of
Client-Side
Validation,

314-315

Understanding
How
Cell
Type
Affects
Model
Data,

251-252

Understanding
How
Cell
Types
Display
Data,

249-251

Understanding
How
Cell
Types
Work,

249

Understanding
How
the
Models
Work,

342-344

Understanding
Parts
of
the
Component
Interface,

38-39

Understanding
Postback
and
Page
Load
Events,

315-316

Understanding
Procedures
in
the
Documentation,

49-51

Understanding
the
Axis
Model,

344-345

Understanding
the
Data
Model,

345-348

Understanding
the
Effect
of
Mode
on
Events,

316-317

Understanding
the
Models,

342

Spread for ASP.NET Developer’s Guide 499

Copyright © GrapeCity, Inc. All rights reserved.

Understanding
the
Optional
Interfaces,

351

Understanding
the
Product,

61

Understanding
the
Selection
Model,

348

Understanding
the
Span
Model,

348

Understanding
the
Spread
Designer
Interface,

76-77

Understanding
the
Spread
Wizard,

51

Understanding
the
Style
Model,

348-351

Understanding
Touch
Gestures,

450

Understanding
Touch
Support,

450

Update
button
(command
bar),

117-120
,

311

UpdateMethod,

294-298

updates

saving,

311

updating

formulas
automatically,

323-324

uplevel
browser,

36-38

User
Controls,

40

user
interaction

customizing,

103
,

103

user
selection,

170-172

user-defined
functions,

324-325

user-defined
names,

325-326

Using
a
Bound
Data
Source,

425-427

Using
a
Circular
Reference
in
a
Formula,

321-322

Using
an
Unbound
Data
Source,

427-428

Using
ASP.NET
AJAX
Extenders,

114-115

Using
Conditional
Formatting
in
Cells,

161

Using
Enhanced
Filtering,

143-145

Using
Grouping,

148-149

Using
Raw
Data
Versus
Represented
Data,

428-429

Using
Row
Filtering,

140-141

Using
Sheet
Models,

341-342

Using
Sparklines,

240-241

Using
Spread
with
the
AccessDataSource
Control,

305-306

Using
Spread
with
Visual
Studio
2012
and
the
SQL
Data
Source,

304-305

Using
the
Chart
Collection
Editors,

433

Using
the
Chart
Context
Menu,

448-449

Using
the
Chart
Control,

437

Using
the
Chart
Control
in
Spread,

440

Using
the
Chart
Designer,

429

Using
the
Filter
Bar,

145-148

Using
the
jQuery
Theme
Roller
with
Spread,

180-181

Using
the
Spread
Designer,

436-437
,

95-96

Spread for ASP.NET Developer’s Guide 500

Copyright © GrapeCity, Inc. All rights reserved.

Using
the
Spread
Wizard,

52-53

Using
the
Touch
Menu
Bar,

451-452

Using
Touch
Support,

450-451

Using
Touch
Support
when
Moving
Columns,

456-457

Using
Touch
Support
when
Resizing
Columns
or
Rows,

457-459

Using
Touch
Support
with
AutoFit,

452

Using
Touch
Support
with
Charts,

452

Using
Touch
Support
with
Editable
Cells,

452-453

Using
Touch
Support
with
Filtering,

453-454

Using
Touch
Support
with
Grouping,

454-456

Using
Touch
Support
with
Scrolling,

459-460

Using
Touch
Support
with
Selections,

461-462

Using
Touch
Support
with
Sorting,

462-463

Using
Touch
Support
with
the
Component,

450

Using
Validation
Controls,

285-289

validation,

285-289

enabling
on
client,

314-315

Validation
Controls,

69

verbs

Spread
Designer,

76

vertical

indent,
between
group
names,

152-153

vertical
alignment,

228-229

vertical
grid
lines,

190-191

View
Menu,

79

view
state,

354-356

virtual
mode

See
load
on
demand.,

106-108

visible

footer,

193-197

hiding
rows
or
columns,

204-205

sheets,

185-186

visual,

365

vs2012,

28-30

wall,

395-396

Walls,

395-396

watermark

cell
type,

284-285

watermark
text
box,

284-285

Web
Parts,

40

width,

395-396

columns,

205-206

headers,

219-220

Spread for ASP.NET Developer’s Guide 501

Copyright © GrapeCity, Inc. All rights reserved.

Windows,

40

Windows
Azure,

40

Windows
regional
settings,

253-255
,

20-21

Working
with
AJAX,

113

Working
with
ASP.NET
AJAX
Extender
Cell
Types,

280-281

Working
with
Collection
Editors,

39

Working
with
Editable
Cell
Types,

253

Working
with
Graphical
Cell
Types,

264

Working
with
Microsoft
ASP.NET
MVC
3,

44-48

Working
with
Microsoft
ASP.NET
MVC
5,

40-44

Working
with
Multiple
Sheets,

182-183

Working
with
Selections
of
Cells,

172-173

Working
with
Sparklines,

246-247

Working
with
Strongly
Typed
Data
Controls,

49

Working
with
the
Active
Cell,

226

Working
with
the
Active
Sheet,

182

Working
with
the
Chart
Control,

365

Working
with
the
Component,

21

Working
with
the
Spread
Designer,

76

Working
with
Web
Parts,

40

Working
with
Windows
Azure,

40

XLSX
file
support,

339-340

XML
files

opening
XML
files

loading
from
,

338-339

XML,
Spread,

101-102

XY
Plot,

378

XY
Plot
Types,

378

XYZ
Plot
Types,

380-381

Y
plot,

368

Y
Plot
Types,

368

YPlot,

368

Zero-Based
Indexing,

74

Spread for ASP.NET Developer’s Guide 502

Copyright © GrapeCity, Inc. All rights reserved.

	Developer's Guide
	Table of Contents
	Getting Started
	Handling Installation
	Installing the Product
	Licensing a Trial Project after Installation
	End-User License Agreement
	Creating a Build License
	Handling Redistribution
	Product Requirements
	Handling Variations In Windows Settings

	Working with the Component
	Adding a Component to a Web Site using Visual Studio 2015 or 2017
	Adding a Component to a Web Site using Visual Studio 2013
	Adding a Component to a Web Site using Visual Studio 2012
	Adding a Component to a Web Site using Visual Studio 2010
	Adding and Using JavaScript Intellisense
	Adding JavaScript IntelliSense for Visual Studio 2012
	Adding JavaScript IntelliSense for Visual Studio 2010

	Understanding Browser Support
	Understanding Parts of the Component Interface
	Working with Collection Editors
	Working with Web Parts
	Working with Windows Azure
	Working with Microsoft ASP.NET MVC 5
	Working with Microsoft ASP.NET MVC 3
	Copying Shared Assemblies to Local Folder
	Working with Strongly Typed Data Controls

	Getting More Practice
	Understanding Procedures in the Documentation
	Getting Technical Support

	Understanding the Spread Wizard
	Starting the Spread Wizard
	Using the Spread Wizard

	Tutorial: Creating a Checkbook Register
	Adding Spread to the Checkbook Project
	Adding Spread to a Project
	Setting Up the Rows and Columns of the Register
	Setting the Cell Types of the Register
	Adding Formulas to Calculate Balances

	Understanding the Product
	Product Overview
	Features Overview
	AJAX Support
	ASP.NET AJAX Extenders
	Built-In Functions
	Cell Types
	Chart Control
	Client-Side Scripting
	Conditional Formatting
	Context Menu
	Corner Customization
	Customized Appearance (Skins)
	Data Binding
	Footers for Columns or Groups
	Frozen Rows and Columns
	Goal Seeking
	Grouping
	Headers with Multiple Columns and Rows
	Hierarchical Display
	Import and Export Capabilities
	Load on Demand
	Multiple-Line Columns
	Multiple Sheets
	PDF Support
	Printing
	Row Filtering
	Row Preview
	Row Template Editor
	Searching Features
	Sorting Capabilities
	Spannable Cells
	Sparklines
	Spread Designer
	Spread Wizard
	Theme Roller
	Title and Subtitle
	Touch Support
	Validation Controls

	Concepts Overview
	Shortcut Objects
	Object Parentage
	Underlying Models
	Cell Types
	SheetView versus FpSpread
	Formatted versus Unformatted Data
	Zero-Based Indexing
	Client-Side Scripting
	Maintaining State

	Namespaces Overview
	Working with the Spread Designer
	Starting the Spread Designer
	Understanding the Spread Designer Interface
	Spread Designer Menus
	File Menu
	Home Menu
	Insert Menu
	Data Menu
	View Menu
	Settings Menu
	Chart Tools Menu
	Sparklines Menu

	Spread Designer Toolbars
	Spread Designer Editors
	Alternating Rows Editor
	Cells, Columns, and Rows Editor
	ContextMenu Collection Editor
	DataKey Names (String Collection) Editor
	Formula Editor
	GroupInfo Collection Editor
	Header Editor
	NamedStyle Collection Editor
	Row Template Editor
	SheetSkin Editor
	SheetView Collection Editor

	Spread Designer Context Menus

	Using the Spread Designer
	Customizing Sheets, Rows, and Columns in Spread Designer
	Customizing Cells in Spread Designer
	Adding Formulas to Cells
	Saving and Opening Design Files
	Applying Changes and Closing Spread Designer

	Customizing User Interaction
	Customizing Interaction with the Overall Component
	Displaying Scroll Bars
	Displaying Scroll Bar Text Tips
	Customizing the Scroll Bar Colors
	Allowing Load on Demand
	Customizing Interaction Based on Events
	Handling the Tab Key
	Customizing the Graphical Interface
	Searching for Data with Code
	Adding a Context Menu

	Working with AJAX
	Enabling AJAX support
	Using ASP.NET AJAX Extenders

	Customizing the Toolbars
	Customizing the Command Bar on the Component
	Customizing the Command Buttons
	Changing the Command Button Images
	Hiding a Specific Command Button
	Displaying the Sheet Names
	Customizing Page Navigation
	Customizing Page Navigation Buttons on the Client
	Customizing the Hierarchy Bar

	Customizing Interaction with Rows and Columns
	Allow the User to Move Columns
	Allowing the User to Resize Rows or Columns
	Freezing Rows and Columns
	Setting up Row Edit Templates
	Setting up Preview Rows

	Managing Filtering of Rows of User Data
	Creating Filtered Rows and Setting the Appearance
	Customizing Simple Filtering of Rows of User Data
	Using Row Filtering
	Customizing the List of Filter Items
	Creating a Completely Custom Filter

	Using Enhanced Filtering
	Using the Filter Bar

	Customizing Grouping of Rows of User Data
	Using Grouping
	Allowing the User to Group Rows
	Setting the Appearance of Grouped Rows
	Customizing the Group Bar
	Creating a Custom Group
	Compatibility with Other Features

	Customizing Sorting of Rows of User Data
	Allowing User Sorting

	Customizing Interaction with Cells
	Adding a Note to a Cell
	Adding a Tag to a Cell
	Locking a Cell
	Using Conditional Formatting in Cells
	Creating Conditional Formatting with Rules
	Color Scale Rules
	Data Bar Rule
	Highlighting Rules
	Icon Set Rule
	Top or Average Rules

	Conditional Formatting of Cells

	Customizing Selections of Cells
	Specifying What the User Can Select
	Working with Selections of Cells
	Customizing the Appearance of Selections

	Managing Printing
	Printing a Spreadsheet
	Adding Headers and Footers to Printed Pages

	Customizing the Appearance
	Customizing the Appearance of the Overall Component
	Customizing the Dimensions of the Component
	Customizing the Outline of the Component
	Customizing the Default Initial Appearance
	Resetting Parts of the Interface
	Using the jQuery Theme Roller with Spread

	Customizing the Appearance of the Sheet
	Working with the Active Sheet
	Working with Multiple Sheets
	Adding a Sheet
	Removing a Sheet
	Showing or Hiding a Sheet
	Setting the Background Color of the Sheet
	Adding a Title and Subtitle to a Sheet
	Customizing the Page Size (Rows to Display)
	Displaying Grid Lines on the Sheet
	Customizing the Sheet Corner
	Displaying a Footer for Columns or Groups
	Creating a Skin for Sheets
	Applying a Skin to a Sheet

	Customizing the Appearance of Rows and Columns
	Customizing the Number of Rows or Columns
	Adding a Row or Column
	Removing a Row or Column
	Showing or Hiding Rows or Columns
	Setting the Row Height or Column Width
	Setting the Top Row to Display
	Creating Alternating Rows
	Creating Row Templates (Multiple-Line Columns)

	Customizing the Appearance of Headers
	Customizing the Style of Header Cells
	Showing or Hiding Headers
	Customizing the Default Header Labels
	Customizing Header Label Text
	Setting the Size of Header Cells
	Customizing the Header Empty Areas
	Creating a Header with Multiple Rows or Columns
	Creating a Span in a Header

	Customizing the Appearance of a Cell
	Working with the Active Cell
	Customizing the Colors of a Cell
	Aligning Cell Contents
	Customizing Cell Borders
	Customizing the Margins and Spacing of the Cell
	Creating and Applying a Custom Style for Cells
	Assigning a Cascading Style Sheet to a Cell
	Creating a Range of Cells
	Spanning Cells
	Allowing Cells to Merge Automatically
	Using Sparklines
	Adding a Sparkline to a Cell
	Customizing Markers and Pointers
	Specifying Horizontal and Vertical Axes
	Working with Sparklines

	Customizing with Cell Types
	Understanding How Cell Types Work
	Understanding Cell Type Basics
	Understanding How Cell Types Display Data
	Understanding How Cell Type Affects Model Data
	Determining the Cell Type of a Cell

	Working with Editable Cell Types
	Setting a Currency Cell
	Limiting Values for a Currency Cell
	Setting a Date-Time Cell
	Displaying a Calendar in a Date-Time Cell
	Setting a Double Cell
	Setting a General Cell
	Setting an Integer Cell
	Setting a Percent Cell
	Setting a Regular Expression Cell
	Setting a Text Cell

	Working with Graphical Cell Types
	Setting a Button Cell
	Setting a Check Box Cell
	Setting a Combo Box Cell
	Setting a Hyperlink Cell
	Setting an Image Cell
	Setting a Label Cell
	Setting a List Box Cell
	Setting a Multiple-Column Combo Box Cell
	Setting a Radio Button List Cell
	Setting a Tag Cloud Cell

	Working with ASP.NET AJAX Extender Cell Types
	Setting an Automatic-Completion Cell
	Setting a Calendar Cell
	Setting a Combo Box Cell
	Setting a Filtered Text Cell
	Setting a Masked Edit Cell
	Setting a Mutually Exclusive Check Box Cell
	Setting a Numeric Spin Cell
	Setting a Rating Cell
	Setting a Slider Cell
	Setting a Slide Show Cell
	Setting a Text Box with Watermark Cell

	Using Validation Controls

	Managing Data Binding
	Data Binding Overview
	Binding to a Data Source
	Binding to a Range
	Model Data Binding in ASP.NET 4.5
	Setting the Cell Types for Bound Data
	Displaying Data as a Hierarchy
	Handling Row Expansion
	Adding an Unbound Row
	Limiting Postbacks When Updating Bound Data
	Tutorial: Binding to a Corporate Database
	Using Spread with Visual Studio 2012 and the SQL Data Source
	Using Spread with the AccessDataSource Control
	Adding Spread to a DataBind Project
	Setting up the Database Connection
	Specifying the Data to Use
	Creating the Data Set
	Binding Spread to the Database
	Improving the Display by Changing the Cell Type

	Managing Data in the Component
	Saving Data to the Server
	Placing and Retrieving Data
	Handling Data Using Sheet Methods
	Handling Data Using Cell Properties

	Server-Side Scripting
	Understanding Effects of Client-Side Validation
	Understanding Postback and Page Load Events
	Understanding the Effect of Mode on Events

	Managing Formulas
	Placing a Formula in Cells
	Specifying a Cell Reference Style in a Formula
	Using a Circular Reference in a Formula
	Nesting Functions in a Formula
	Finding a Value with Goal Seeking
	Recalculating and Updating Formulas Automatically
	Creating a Custom Function
	Creating a Custom Name

	Managing File Operations
	Saving Data to a File
	Saving to a Spread XML File
	Saving to an Excel File
	Saving to a Text File
	Saving to an HTML File
	Saving to a PDF File
	Saving to PDF Methods
	Setting PrintInfo Class Properties
	Setting Smart Print Options
	Setting Headers and Footers

	Opening Existing Files
	Opening a Spread XML File
	Opening an Excel-Formatted File
	Opening a Text File

	Using Sheet Models
	Understanding the Models
	Understanding How the Models Work
	Customizing Models
	Understanding the Axis Model
	Understanding the Data Model
	Understanding the Selection Model
	Understanding the Span Model
	Understanding the Style Model

	Understanding the Optional Interfaces
	Creating a Custom Sheet Model

	Maintaining State
	State Overview
	Saving Data to the View State
	Saving Data to the Session State
	Saving Data to an SQL Database
	Loading Data for Each Page Request

	Working with the Chart Control
	Understanding and Customizing Charts
	Chart User Interface Elements
	Chart Types and Views
	Plot Types
	Y PlotTypes
	Area Charts
	Bar Charts
	Line Charts
	Market Data (High-Low) Charts
	Point Charts
	Stripe Charts

	XY Plot Types
	Bubble Charts
	Line Charts
	Point Charts
	Stripe Charts

	XYZ Plot Types
	Point Charts
	Line Charts
	Surface Charts
	Stripe Charts

	Pie Plot Types
	Doughnut Charts
	Pie Charts

	Polar Plot Types
	Point Charts
	Line Charts
	Area Charts
	Stripe Charts

	Radar Plot Types
	Point Charts
	Line Charts
	Area Charts
	Stripe Charts

	Data Plot Types

	Series
	Walls
	Axis and Other Lines
	Fill Effects
	Elevation and Rotation
	Lighting, Shapes, and Borders
	Size - Height, Width, and Depth
	Labels
	Legends

	Creating Charts
	Creating Plot Types
	Creating a Y Plot
	Creating an XY Plot
	Creating an XYZ Plot
	Creating a Pie Plot
	Creating a Polar Plot
	Creating a Radar Plot
	Combining Plot Types

	Connecting to Data
	Using a Bound Data Source
	Using an Unbound Data Source
	Using Raw Data Versus Represented Data

	Using the Chart Designer
	Opening the Chart Designer
	Creating a Chart Control
	Using the Chart Collection Editors
	LabelArea Collection Editor
	LegendArea Collection Editor
	PlotArea Collection Editor
	Light Collection Editor
	Series Collection Editor

	Using the Spread Designer
	Using the Chart Control
	Creating the Chart Control
	Rendering or Saving the Chart Control to an Image
	Loading or Saving the Chart Control to XML

	Using the Chart Control in Spread
	Creating the Chart Control with Code
	Binding the Chart Control with Spread
	Moving and Resizing the Chart Control in Spread
	Selecting the Chart Control in Spread
	Setting the Chart Control Border in Spread
	Setting the Chart View Type
	Using the Chart Context Menu

	Using Touch Support with the Component
	Understanding Touch Support
	Understanding Touch Gestures

	Using Touch Support
	Using the Touch Menu Bar
	Using Touch Support with AutoFit
	Using Touch Support with Charts
	Using Touch Support with Editable Cells
	Using Touch Support with Filtering
	Using Touch Support with Grouping
	Using Touch Support when Moving Columns
	Using Touch Support when Resizing Columns or Rows
	Using Touch Support with Scrolling
	Using Touch Support with Selections
	Using Touch Support with Sorting

	Index

